

File: ARITH_17U version dated July 8, 2005 4:30 am

 Page 1/15

A Brief Tutorial on Gradual Underflow

,

 Page

 2

 4

 5

 6

 7

 9
10
11

13

14
15
Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS

Prepared for ARITH 17, Tues. 28 June 2005
and subsequently augmented

Contents:

¤0: What are Gradual and Abrupt Underflow ?
Pictures of Gradual and Abrupt Underflow

¤1: Why IEEE 754Õs Default is Gradual Underflow
Advantages of Gradual over Abrupt Underflow to Zero

¤2: Implementations
IMPORTANT IMPLEMENTATION DETAIL:
All Floating-Point Traps can be Lightweight Traps
A Short Menu of Exception-Handling Options

¤3: (Gradual) Underflow Avoidance in Applications
Examples of Programming Mistakes:
CAVEAT:

File: ARITH_17U version dated July 8, 2005 4:30 am §0: What are Gradual and Abrupt Underflow ?

 Page 2/15

§0: What are Gradual and Abrupt Underflow ?

r that is too tiny

al)
 carried

 integers É

 < B

P

w is

Gradual

.

Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS

An attempt to generate a nonzero floatingÐpoint numbe
to represent in the usual way precipitates Underflow.

Representable floatingÐpoint numbers:

Given the specified formatÕs integers . . .

Radix: § = two (Binary) or § = ten (Decim
Precision: P = Number of ÒSignificant DigitsÓ
Exponent Range: [Ðé, +�]

each finite floatingÐpoint number x is represented by its two

Signed ÒSignificandÓ or ÒCoefficientÓ m within |m|
Unbiased Exponent e in the range Ðé ≤ e ≤ �

thus: x = má§e+1ÐP .

If there are no other constraints upon x , Underflo

File: ARITH_17U version dated July 8, 2005 4:30 am §0: What are Gradual and Abrupt Underflow ?

 Page 3/15

Representable x = má§

e+1ÐP

 where |m| < §

P

 and Ðé

≤

 e

≤

 � .

ual

.

atical model.

4 and into SHARE by 1965.

(§m)á§

eÐP

 too.
, its exponent

 representation

able mathematically.

Such an x has

o subnormals.

tly.
Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS

If there are no other constraints upon x , Underflow is Grad

Gradual Underflow (GU) has the simplest mathem
I.B. Goldberg mentioned GU in Comm.ACM (1967). W. Kahan had put GU onto an IBM 709

If |m| < §PÐ1 and Ðé < e then x = má§e+1ÐP =
To represent each representable number x uniquely
e is minimized. Then if its |m| ≥ §PÐ1 we call its

ÒNormalizedÓ.

 Whether 0 = 0á§é+1ÐP is to be called ÒNormalizedÓ too is not decid

A Subnormal x = má§é+1ÐP has 0 < |m| < §PÐ1 .
no normalized representation.

Abrupt Underflow (AU) denies representation t
Before 1985 almost all computers underflowed abrup

File: ARITH_17U version dated July 8, 2005 4:30 am Pictures of Gradual and Abrupt Underflow

 Page 4/15

Pictures of Gradual and Abrupt Underflow

 bits. Below, “+”
Powers of ß are

 has none of them.

--

†

---...

ß

2–È

--

†

---...

ß

2–È

en a floating-point
creases. Though
yses and proofs.
Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS

For example, take Binary ß := 2 and Precision P := 4 sig.
stands for a representable positive floating-point number.
marked “†”. The positive subnormal numbers are red ; AU

When Underflow is Gradual:
 0-†-†-+-†-+-+-+-†-+-+-+-+-+-+-+-†---+---+---+---+---+---+---+-

 ß–È ß1–È

When Underflow is Abrupt:
 0---------------†-+-+-+-+-+-+-+-†---+---+---+---+---+---+---+-

 ß–È ß1–È

Unlike GU, AU lacks the crucial property that the gaps betwe
number x and its nearest neighbors not increase when |x| de
not always a bad thing, this lack undermines some error-anal

File: ARITH_17U version dated July 8, 2005 4:30 am §1: Why IEEE 754’s Default is Gradual Underflow

 Page 5/15

§1: Why IEEE 754’s Default is Gradual Underflow

r wrongly, no
ted for the event.

hough they may
omise best for the
y. GU has been
as its uses too.

ake matters worse.

ymptom of poor
e. If the former,
tter, a non-default

rammer bears the
uence his decision.

arily by
n AU.

Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS

Underflow is destined almost always to be ignored, rightly o
matter what tiny value, zero or something else, is presubstitu

Like some migratory birds, Underflows are relatively rare, t
come in flocks. Their default presubstitution has to be a compr
vast majority of underflows that can then be ignored justifiabl
found best by enough to elect it to be the default. Still, AU h

Other proposals, like an UN symbol for underflow, turn out to m

If underflows occur frequently in a program, they may be a s
program design, or a consequence of a well-considered choic
the program should be revised to preclude underflow. If the la
presubstitution like AU→0 may be better than GU. The prog
responsibility of choosing wisely. UnderflowÕs speed will infl

LetÕs not complicate his choice unnecess
implementing GU too much slower tha

See §2.

File: ARITH_17U version dated July 8, 2005 4:30 am Advantages of Gradual over Abrupt Underflow to Zero

 Page 6/15

Advantages of Gradual over Abrupt Underflow to Zero

eighbors do not
 monotonicity.

erence is exact.

ounding errors.

U, but not AU.

U much worse
j is normal

h AU→0 is
tat. Comp. 5 (1984)

Ðx3)á(. . . an)))
 provided a0 is
mplicated.
ewsletter 16 (1981)

them later in ¤3.
Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS

Gaps between a floating-point number x and its nearest n
increase when |x| decreases, affecting error-analyses and

GUÕs x ± y cannot underflow since a subnormal diff
This figures in schemes that enhance accuracy by compensating for r

Finite " x = y Ó is the same as " xÐy = 0 Ó with G

Scalar product s := ∑j ajáxj is not degraded by G
than by roundoff provided at least one product ajáx
nonzero. Likewise matrix products. Behavior wit
more complicated. Cf. J.W. Demmel in SIAM J. Sci. S

Polynomial p(x) := a0 + (x Ð x1)á(a1 + (xÐx2)á(a2 + (x
is not degraded by GU much worse than by roundoff
normal nonzero. Behavior with AU→0 is more co

 Cf. S. Linnainmaa in ACM SIGNUM N

But GU seems to spoil some programs. More about

File: ARITH_17U version dated July 8, 2005 4:30 am §2: Implementations

 Page 7/15

§2: Implementations
n flush x ± y .

ormalization,
ro to produce a

omputers 28 (1989).

nderflows to 0
 xáy entails
which acts like
ded exponent.

ut may require
 slow anyway.
Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS

GU and x ± y barely affect each other. AU→0 ca

Ideally, GU affects xáy and x/y as if . . .

GU of xáy or x/y must be followed by Den
which acts like an addÐunnormalized of ze
properly rounded subnormal result.

See C. Lee in IEEE Trans. on C

xáy of two subnormals or of very tiny factors u
and needs no special treatment. Otherwise
prenormalization of a subnormal number,
a postnormalized add of zero with an exten

x/y of a subnormal or two behaves similarly b
one or two prenormalizations. Division is

File: ARITH_17U version dated July 8, 2005 4:30 am §2: Implementations

 Page 8/15

Originally GU was intended for Tagged floating-point registers with
 register É
al), &
ed), &
it or two, &
dles them faster.

er É
 mult./div. etc.)
rmalized, É)

rmalization first.
malization first.
dency changes.

cts every store to
eued.

e in advance.

 is available.
Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS

slightly extended exponent fields. A tag tells whether a
¥ is ready to add/subt./store (perhaps Subnorm
¥ is ready for mult., div., sqrt. ((pre)normaliz
¥ has to be denormalized, plus a rounded-up b
¥ is zero, infinity or NaN if tagging them han

A floating-point registerÕs tag is set whenever the regist
Loads from memory (ready to store, maybe not to
Receives a result (maybe subnormal, maybe preno

Mult./Div./Sqrt of an unready register may need preno
Add/Subt./Store of an unready register may need denor
Handle an unready register like a cache miss; no depen

Store operations may be tricky when the architecture expe
go without delay to a buffer where cache alterations are qu

Encourage compilers to schedule test-tag-and-de/prenormaliz

Simpler schemes work well if Fused Multiply-Add hardware

File: ARITH_17U version dated July 8, 2005 4:30 am IMPORTANT IMPLEMENTATION DETAIL:

 Page 9/15

IMPORTANT IMPLEMENTATION DETAIL:

trapping, É

ILY

rflow to zero.

ode result in zeros.

ikely to go to
 Then, if the
ly wastes time
ebugging or to

at generate a
l underflow.
Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS

If de/prenormalization is handled perhaps slowly by

DO NOT TRAP UNNECESSAR

when the result of the operation will predictably unde

Untrapped exponents below –(È+P) in a non-outward rounding m

In most programs, if an underflow occurs it is most l
zero no matter whether it goes gradually or abruptly.
Underflow Flag has already been raised, a trap mere
unless the program(mer) has requested a trap to aid d
Break out of a long loop.

Still, try not to vitiate the many valuable programs th
nonzero subnormal number with almost every gradua

File: ARITH_17U version dated July 8, 2005 4:30 am All Floating-Point Traps can be Lightweight Traps

 Page 10/15

All Floating-Point Traps can be Lightweight Traps
stem traps.

 of a loop or block
bandoned in that

 dependency,
nal operation.
 may do so.

s is restricted to …
 was enabled.

rap.
porarily.
 its …

sed result therein.

n of floating-point
ns from which an

 own handler.
kahan/Grail.pdf> .
Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS

They do not have to save a complete panel as do operating sy

Unless the programming language allows a trap to Break out
to a preset location, thus leaving unpredictable all variables a
loop or block, …

Floating-point traps change no previously determined
and resume execution immediately after the exceptio
They do not have to allow the pipeline to empty, but

A floating-point trap-handler’s access to a program’s variable
• The trap-handler’s own internal variables preset when the trap
• The location where program execution will resume after the t
• A status register or location that holds floating-point flags tem
• The nature (+, –, *, /, √, …) of the exceptional operation and

• Operands’ values, not their addresses.
• Destination register and perhaps an incompletely proces

IEEE 754 does not mandate traps. They are for implementatio
and for the support of a short menu of exception-handling optio
applications programmer can choose without ever writing his
See a Demonstration of Presubstitution … <http://www.cs.berkeley.edu/~w

File: ARITH_17U version dated July 8, 2005 4:30 am A Short Menu of Exception-Handling Options

 Page 11/15

A Short Menu of Exception-Handling Options
ecution right after
 result.

 its circumstances,
d not stopped.
ploit concurrency
ot have completed,
s to source-text. The
s in the compiler.

 the exceptional
ming some simple
e presubstitutions.
 exponent and
y products/quotients
t(A(x)) in §3.

on to which to
 block. The break
ough it must jump
predictable.
Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS

Of the three kinds of options, only the third does not resume ex
the exceptional operation, having perhaps altered its tentative

• Pause: Stop to debug an exceptional operation, displaying
and allow users to choose to resume execution as if it ha
This option may be unavailable or imprecise on systems that ex
heavily. Operations “before” the exceptional operation may n
operations “after” it may have begun, with obscure correlation
act of Pausing may alter timing relations and hide a bug perhap

• Presubstitute: Choose in advance a value to substitute for
operation’s result, perhaps after copying its sign or perfor
procedure like denormalization. IEEE 754’s defaults ar
Another simple procedure “wraps” an ov/underflowed result’s
inc/decrements a counter correspondingly to help rescale length
of sums/differences. One application is to determinants like de

• Abort: Choose in advance a kind of exception and a locati
Break if that exception occurs within a designated loop or
might not jump out exactly when the exception occurs th
before the loop or block finishes, leaving its variables un

File: ARITH_17U version dated July 8, 2005 4:30 am A Short Menu of Exception-Handling Options

 Page 12/15

The menu of exception-handling options challenges programming languages.

at menu has to be
eritance rules
ifferent rules.

ts in a hardware’s
 prescription.
d Macs provided
 Manual 2d Ed. (1988)
d by Addison-Wesley.
brary’s functions
ffice to support a menu
 trap-handling interface
odes would be global.

 system variables []CT
ogram could include a
licitly so they need not
 appear atomic like +,
/or modes, all of which
nely, would rather not
e minds of a committee
lobal variables do to
arily.
Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS

A programmer’s choice of exception-handling Mode from th
recorded in a Mode Variable. What scope, visibility and inh
govern mode and flag variables? Different languages favor d

So far, such variables have been treated as global, held in bi
control and status words, though IEEE 754 conveys no such
Apple’s old SANE (Standard Apple Numerics Environment) for 680x0-base
procedures to sense, set, save and restore mode variables; see Apple Numerics
and its successor Power PC Numerics, Inside Macintosh (1994), both publishe
C99 and Fortran 2003 provide analogous procedures. Microsoft’s C math li
manipulate the bits in the Intel x87 control and staus words. None of these su
of options like the aforementioned. Sun Microsystems’ C offers a complicated
through which such a menu could be programmed, but not easily. All these m

A better way to localize modes imitates the language APL’s treatment of its
(comparison tolerance), []IO (index origin), etc. More generally, every subpr
signature that tells which modes and flags are inherited and/or propagated imp
appear explicitly as arguments in every invocation. Some functions intended to
-, *, /, √, log, exp, … have to inherit, save, set, hide, restore and merge flags and
is tedious without appropriate hardware and language support. Most people, sa
think about these things. Someone has to think about them. They weigh upon th
currently considering revisions to IEEE 754 (1985) that will bind better than g
programming languages without burdening applications programmers unnecess

File: ARITH_17U version dated July 8, 2005 4:30 am §3: (Gradual) Underflow Avoidance in Applications

 Page 13/15

§3: (Gradual) Underflow Avoidance in Applications
ny sufficiently
e added to big
 way, choose

. Unfortunately,

 machine É

NS SLOWER.

n be dangerous,
row range. For
must occur. All
umbers slightly
w but flushed to
v./sqrt/log/É .

omogeneity: A
les is expected
d accuracy.
Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS

Most but not all underflows can be presubstituted to a
tiny numbers without ill effect because these will later b
numbers and rounded away. If yours are provably this
whichever of GU or AU runs faster on your machine

AU runs a lot faster on some machines. On such a

DONÕT CHOOSE AU JUST BECAUSE GU RU

Making AU the default and ignoring all underflows ca
especially in single-precision (float) arithmeticÕs nar
AUÕs higher speed to matter, vastly many underflows
of them must be proved negligible. Otherwise sums of n
above underflow threshold §Ðé plus others slightly belo
0 will err unobviously and corrupt subsequent mult./di

Likewise for double for reasons of methodological h
program tested on floats and then promoted to doub
to behave the same except for wider range and enhance

File: ARITH_17U version dated July 8, 2005 4:30 am Examples of Programming Mistakes:

 Page 14/15

No matter which of GU or AU be chosen, clusters of too many underflows

 zero, though any
e underflow while

aps by underflow,
ould stop sooner,

ensate for the cost

o annihilate
didates exist,
related threshold
ethought difficult
Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS

are most often a symptom of a programming mistake. É

Examples of Programming Mistakes:
Diffusion Problems: Initialize interior and boundary values to
tiny nonzero number like 10Ð30 is no worse and would preclud
interior values grow gradually.

Stopping Iterations: Stop when a residual becomes zero perh
though any residual smaller than a roundoff-related threshold w
with no loss of accuracy, saving at least one iteration to comp
of a threshold comparison.

Matrix Reductions: Stop an elimination process, designed t
nonzero elements of a matrix, just when no more nonzero can
though eliminating nonzero elements smaller than a roundoff-
wastes time. Determining a suitable threshold may require for
in some cases but worth the effort if it saves time.

File: ARITH_17U version dated July 8, 2005 4:30 am Examples of Programming Mistakes:

 Page 15/15

hose location is
 ƒ(x) = det(A(x))

upon x . Tricky
 a root-finder that

(x1)/ƒ(x2) .

nderflows often,
s the program’s
 mistake compels
 default, which is
es that took full

 Then who should
son or some other

LLY SUBJECT TO
OM READERS.
Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS

Root-Finding: Solving an equation ƒ(z) = 0 for a root z w
smeared by ignored underflow. This mistake occurs often when
for a matrix A(x) of large dimension depending nonlinearly
scaling may be required to prevent underflows from distracting
depends upon ƒ only through ratios like ƒ'(x)–1·ƒ(x) and ƒ

Benchmarks: Including among benchmarks a program that u
perhaps because of a mistake like one of the foregoing, unles
purpose is to reveal the slowness of underflow handling. This
competing compiler vendors to make Abrupt Underflow their
then imposed willy-nilly upon programs imported from sourc
conformity with IEEE 754’s Gradual Underflow for granted.
be held responsible if such a program malfunctions for that rea
when diagnosis is difficult ?

CAVEAT: THIS DOCUMENT IS A WORK IN PROGRESS CONTINUA
CHANGES IN RESPONSE TO CONSTRUCTIVE SUGGESTIONS FR

	§0: What are Gradual and Abrupt Underflow ?
	Pictures of Gradual and Abrupt Underflow
	§1: Why IEEE 754’s Default is Gradual Underflow
	Advantages of Gradual over Abrupt Underflow to Zer...
	§2: Implementations
	IMPORTANT IMPLEMENTATION DETAIL:
	All Floating-Point Traps can be Lightweight Traps
	A Short Menu of Exception-Handling Options
	§3: (Gradual) Underflow Avoidance in Applications
	Examples of Programming Mistakes:

