File: ARITH_17U version dated July 8, 2005 4:30 am

A Brief Tutorial on Gradual Underflow

Prepared for ARITH 17, Tues. 28 June 2005,
and subsequently augmented

Contents: Page
§0: What are Gradual and Abrupt Underflow ? 2
Pictures of Gradual and Abrupt Underflow 4

§1: Why IEEE 754’s Default is Gradual Underflow 5
Advantages of Gradual over Abrupt Underflow to Zero 6

§2: Implementations 7
IMPORTANT IMPLEMENTATION DETAIL: 9

All Floating-Point Traps can be Lightweight Traps 10

A Short Menu of Exception-Handling Options 11

§3: (Gradual) Underflow Avoidance in Applications 13
Examples of Programming Mistakes: 14
CAVEAT: 15

Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS Page 1/15

File: ARITH_17U version dated July 8, 2005 4:30 am 80: What are Gradua and Abrupt Underflow ?

80: What are Gradual and Abrupt Underflow ?

An attempt to generate a nonzero floating—point number that is too tiny
to represent in the usual way precipitates Underflow.

Representable floating—point numbers:
Given the specified format’s integers . . .

Radix: 3 =two (Binary) or B =ten (Decimal)
Precision: P = Number of “Significant Digits” carried
Exponent Range: [-E, +E]

each finite floating—point number x is represented by its two integers ...

Signed “Significand” or “Coefficient” m within |m|< B
Unbiased Exponent e intherange -E<e<E

thus: x =m-pe T

If there are no other constraints upon x, Underflow is Gradual.

Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS Page 2/15

File: ARITH_17U version dated July 8, 2005 4:30 am 80: What are Gradua and Abrupt Underflow ?

Representable x = m-B¢ 1P where im| < B° and -E<e<E.

If there are no other constraints upon x, Underflow is Gradual.

Gradual Underflow (GU) has the simplest mathematical model.
[.B. Goldberg mentioned GU in Comm.ACM (1967). W. Kahan had put GU onto an IBM 7094 and into SHARE by 1965.

If |m/<B°! and -E<e then x=mB'F = Bm)BT too.

To represent each representable number x uniquely, its exponent

¢ 1s minimized. Then ifits |m| = BP-1 we call its representation
“Normalized”.

Whether 0=0-BE"1"P is to be called “Normalized” too is not decidable mathematically.

A Subnormal x= m-BEFP has 0< im| <pBP~!. Suchan x has
no normalized representation.

Abrupt Underflow (AU) denies representation to subnormals.
Before 1985 amost all computers underflowed abruptly.

Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS Page 3/15

File: ARITH_17U version dated July 8, 2005 4:30 am Pictures of Gradual and Abrupt Underflow

Pictures of Gradual and Abrupt Underflow

For example, take Binary 3:=2 and Precision P:=4 dgg. bits. Below, “+”
stands for a representable positive floating-point number. Powers of 3 are
marked “1”. The positive subnormal numbersare red ; AU has none of them.

When Underflow is Gradual:

o-r-1-+f-+++F-+-+-+-+-+-4-4+-F---F-- - oo e oo oo - - -

B_E Bl_E BZ_E

When Underflow is Abrupt:

0----------- I S S T e E S T S T

B_E Bl_E BZ_E

Unlike GU, AU lacks the crucial property that the gaps between a floating-point
number x and its nearest neighbors not increase when |[x| decreases. Though
not always a bad thing, this lack undermines some error-analyses and proofs.

Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS Page 4/15

File: ARITH_17U version dated July 8, 2005 4:30 am 81: Why |EEE 754's Default is Gradual Underflow

81: Why IEEE 754's Default is Gradual Underflow

Underflow 1is destined almost always to be ignored, rightly or wrongly, no
matter what tiny value, zero or something else, is presubstituted for the event.

Like some migratory birds, Underflows are relatively rare, though they may
come in flocks. Their default presubstitution has to be a compromise best for the
vast majority of underflows that can then be ignored justifiably. GU has been

found best by enough to elect it to be the default. Still, AU has its uses too.
Other proposals, like an UN symbol for underflow, turn out to make matters worse.

If underflows occur frequently in a program, they may be a symptom of poor
program design, or a consequence of a well-considered choice. If the former,
the program should be revised to preclude underflow. If the latter, a non-default
presubstitution like AU — 0 may be better than GU. The programmer bears the
responsibility of choosing wisely. Underflow’s speed will influence his decision.
Let’s not complicate his choice unnecessarily by

implementing GU too much slower than AU.

See 82

Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS Page 5/15

File: ARITH_17U version dated July 8, 2005 4:30 am Advantages of Gradual over Abrupt Underflow to Zero

Advantages of Gradual over Abrupt Underflow to Zero

Gaps between a floating-point number x and its nearest neighbors do not
increase when [x| decreases, affecting error-analyses and monotonicity.

GU’s x =y cannot underflow since a subnormal difference is exact.
Thisfigures in schemes that enhance accuracy by compensating for rounding errors.

Finite "x=y "~ isthesameas "x-y=0" with GU, butnot AU.

Scalar product s :=) :a-x; isnotdegraded by GU much worse

than by roundoff provided at least one product a;'x; 1s normal

nonzero. Likewise matrix products. Behavior with AU -0 1is
more complicated. Cf. J.W. Demmel in SIAM J. Sci. Stat. Comp. 5 (1984)

Polynomial p(x):= ag+(xX—x7)(a; + (x—X)(ap + (x—=x3)(...a,)))
is not degraded by GU much worse than by roundoff provided a is

normal nonzero. Behavior with AU — 0 1s more complicated.
Cf. S.Linnainmaa in ACM SGNUM Newsdletter 16 (1981)

But GU seems to spoil some programs. More about them later in §3.

Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS Page 6/15

File: ARITH_17U version dated July 8, 2005 4:30 am §2: Implementations

§2: Implementations
GU and x +y barely affect each other. AU 0 can flush xt+y.

Ideally, GU affects x'y and x/y asif ...

GU of x'y or x/y must be followed by Denormalization,
which acts like an add—unnormalized of zero to produce a

properly rounded subnormal result.
See C. Lee in IEEE Trans. on Computers 28 (1989).

x'y of two subnormals or of very tiny factors underflows to 0
and needs no special treatment. Otherwise x-y entails
prenormalization of a subnormal number, which acts like
a postnormalized add of zero with an extended exponent.

x/y of a subnormal or two behaves similarly but may require
one or two prenormalizations. Division 1s slow anyway.

Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS Page 7/15

File: ARITH_17U version dated July 8, 2005 4:30 am §2: Implementations

Originally GU was intended for 7agged floating-point registers with
slightly extended exponent fields. A tag tells whether a register ...

* is ready to add/subt./store (perhaps Subnormal), &

e is ready for mult., div., sqrt. ((pre)normalized), &

* has to be denormalized, plus a rounded-up bit or two, &

* 1s zero, Infinity or NaN if tagging them handles them faster.

A floating-point register’s tag is set whenever the register ...
Loads from memory (ready to store, maybe not to mult./div. etc.)
Receives a result (maybe subnormal, maybe prenormalized, ...)

Mult./Div./Sqrt of an unready register may need prenormalization first.
Add/Subt./Store of an unready register may need denormalization first.
Handle an unready register like a cache miss; no dependency changes.

Store operations may be tricky when the architecture expects every store to
go without delay to a buffer where cache alterations are queued.

Encourage compilers to schedule test-tag-and-de/prenormalize in advance.

Simpler schemes work well if Fused Multiply-Add hardware is available.

Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS Page 8/15

File: ARITH_17U version dated July 8, 2005 4:30 am IMPORTANT IMPLEMENTATION DETAIL:

IMPORTANT IMPLEMENTATION DETAIL:

If de/prenormalization 1s handled perhaps slowly by trapping, ...
DO NOT TRAP UNNECESSARILY

when the result of the operation will predictably underflow to zero.

Untrapped exponents below —E+P) in anon-outward rounding mode result in zeros.

In most programs, 1f an underflow occurs it 1s most likely to go to
zero no matter whether i1t goes gradually or abruptly. Then, if the
Underflow Flag has already been raised, a trap merely wastes time
unless the program(mer) has requested a trap to aid debugging or to
Break out of a long loop.

Still, try not to vitiate the many valuable programs that generate a
nonzero subnormal number with almost every gradual underflow.

Prof. W. Kahan, University of California at Berkeley WORK IN PROGRESS Page 9/15

File: ARITH_17U version dated July 8, 2005 4:30 am All Floating-Point Traps can be Lightweight Traps

All Floating-Point Traps can be Lightweght Traps

They do not have to save a complete panel as do operating system traps.

Unless the programming language allows atrap to Break out of aloop or block
to apreset location, thus leaving unpredictable all variables abandoned in that
loop or block, ...

Floating-point traps change no previously determined dependency,
and resume execution immediately after the exceptional operation.
They do not have to alow the pipeline to empty, but may do so.

A floating-point trap-handler’ s accessto aprogram’ svariablesisrestricted to ...

» The trap-handler’ s own internal variables preset when the trap was enabled.
» The location where program execution will resume after the trap.
» A statusregister or location that holds floating-point flags temporarily.
e Thenature (+,— *,/,V, ...) of the exceptional operation and its ...
» Operands values, not their addresses.
» Destination register and perhaps an incompletely processed result therein.

|EEE 754 doesnot mandatetraps. They arefor implementation of floating-point
and for the support of a short menu of exception-handling options from which an

applications programmer can choose without ever writing his own handler.
See a Demonstration of Presubstitution ... <http://ww. cs. ber kel ey. edu/ ~wkahan/ G ai | . pdf > .

Prof. W. Kahan, University of Californiaat Berkeley WORK IN PROGRESS Page 10/15

File: ARITH_17U version dated July 8, 2005 4:30 am A Short Menu of Exception-Handling Options

A Short Menu of Exception-Handling Options

Of thethree kinds of options, only the third does not resume execution right after
the exceptional operation, having perhaps altered its tentative result.

« Pause: Stop to debug an exceptional operation, displaying its circumstances,
and allow users to choose to resume execution asif it had not stopped.

This option may be unavailable or imprecise on systems that exploit concurrency
heavily. Operations “before” the exceptional operation may not have completed,
operations “after” it may have begun, with obscure correlationsto source-text. The
act of Pausing may alter timing relations and hide a bug perhapsin the compiler.

* Presubstitute: Choose in advance a value to substitute for the exceptional
operation’ sresult, perhapsafter copying itssign or performing somesimple
procedure like denormalization. |EEE 754’s defaults are presubstitutions.

Another ssimple procedure “wraps’ an ov/underflowed result’ s exponent and
inc/decrements a counter correspondingly to help rescale lengthy products/quotients
of sumg/differences. One application isto determinants like det(A(x)) in §3.

» Abort: Choosein advance akind of exception and alocation to which to
Break if that exception occurswithin adesignated loop or block. The break
might not jump out exactly when the exception occursthough it must jump
before the loop or block finishes, leaving its variables unpredictable.

Prof. W. Kahan, University of Californiaat Berkeley WORK IN PROGRESS Page 11/15

File: ARITH_17U version dated July 8, 2005 4:30 am A Short Menu of Exception-Handling Options

The menu of exception-handling options challenges programming languages.

A programmer’ s choice of exception-handling Mode from that menu has to be
recorded in a Mode Variable. What scope, visibility and inheritance rules
govern mode and flag variables? Different languages favor different rules.

So far, such variables have been treated as global, heldin bitsin ahardware’'s

control and status words, though IEEE 754 conveys no such prescription.

Apple's old SANE (Standard Apple Numerics Environment) for 680x0-based Macs provided
proceduresto sense, set, save and restore mode variables;, see Apple Numerics Manual 2d Ed. (1988)
and itssuccessor Power PC Numerics, Inside Macintosh (1994), both published by Addison-Wesley.
C99 and Fortran 2003 provide analogous procedures. Microsoft’'s C math library’ s functions
manipulate the bitsin the Intel x87 control and stauswords. None of these suffice to support a menu
of optionslikethe aforementioned. Sun Microsystems C offersacomplicated trap-handling interface
through which such a menu could be programmed, but not easily. All these modes would be global.

A better way to localize modes imitates the language APL’s treatment of its systemvariables [|CT
(comparison tolerance), []1O (index origin), etc. More generally, every subprogram could include a
signature that tells which modes and flags are inherited and/or propagated implicitly so they need not
appear explicitly asargumentsin every invocation. Some functions intended to appear atomic like +,
-, *,1,V,log, exp, ... havetoinherit, save, set, hide, restore and merge flagsand/or modes, all of which
Is tedious without appropriate hardware and language support. Most people, sanely, would rather not
think about these things. Someone hasto think about them. They weigh upon the minds of acommittee
currently considering revisionsto |EEE 754 (1985) that will bind better than global variables do to
programming languages without burdening applications programmers unnecessarily.

Prof. W. Kahan, University of Californiaat Berkeley WORK IN PROGRESS Page 12/15

File: ARITH_17U version dated July 8, 2005 4:30 am 83: (Gradual) Underflow Avoidance in Applications

83. (Gradual) Underflow Avoidance in Applications

Most but not all underflows can be presubstituted to any sufficiently
tiny numbers without ill effect because these will later be added to big
numbers and rounded away. If yours are provably this way, choose
whichever of GU or AU runs faster on your machine. Unfortunately,

AU runs a lot faster on some machines. On such a machine ...

DON’T CHOOSE AU JUST BECAUSE GU RUNS SLOWER.

Making AU the default and ignoring all underflows can be dangerous,
especially in single-precision (f | oat) arithmetic’s narrow range. For

AU’s higher speed to matter, vastly many underflows must occur. A/l
of them must be proved negligible. Otherwise sums of numbers slightly

above underflow threshold 87" plus others slightly below but flushed to

0 will err unobviously and corrupt subsequent mult./div./sqrt/log/... .

Likewise for doubl e for reasons of methodological homogeneity: A
program tested on f | oat s and then promoted to doubl es is expected
to behave the same except for wider range and enhanced accuracy.

Prof. W. Kahan, University of Californiaat Berkeley WORK IN PROGRESS Page 13/15

File: ARITH_17U version dated July 8, 2005 4:30 am Examples of Programming Mistakes:

No matter which of GU or AU be chosen, clusters of too many underflows
are most often a symptom of a programming mistake. ...

Examples of Programming Mistakes:

Diffusion Problems: Initialize interior and boundary values to zero, though any
tiny nonzero number like 1073 is no worse and would preclude underflow while
interior values grow gradually.

Stopping Iterations: Stop when a residual becomes zero perhaps by underflow,
though any residual smaller than a roundoff-related threshold would stop sooner,
with no loss of accuracy, saving at least one iteration to compensate for the cost
of a threshold comparison.

Matrix Reductions. Stop an elimination process, designed to annihilate
nonzero elements of amatrix, just when no more nonzero candidates exist,
though eliminating nonzero elements smaller than a roundoff-related threshold
wastestime. Determining a suitable threshold may require forethought difficult
In some cases but worth the effort if it savestime.

Prof. W. Kahan, University of Californiaat Berkeley WORK IN PROGRESS Page 14/15

File: ARITH_17U version dated July 8, 2005 4:30 am Examples of Programming Mistakes:

Root-Finding: Solving an equation f(z) =0 for aroot z whose location is
smeared by ignored underflow. Thismistake occursoftenwhen f(x) = det(A(x))
for amatrix A(X) of large dimension depending nonlinearly upon x . Tricky
scaling may berequired to prevent underflows from distracting aroot-finder that
dependsupon f only through ratioslike f'(x)™-f(x) and FOx)/f(x5) .

Benchmarks:. Including among benchmarks a program that underflows often,
perhaps because of a mistake like one of the foregoing, unlessthe program’s
purpose is to reveal the slowness of underflow handling. This mistake compels
competing compiler vendorsto make Abrupt Underflow their default, whichis
then imposed willy-nilly upon programs imported from sources that took full
conformity with |EEE 754’ s Gradual Underflow for granted. Then who should
be held responsibleif such a program malfunctionsfor that reason or some other
when diagnosisis difficult ?

CAVEAT: THISDOCUMENT ISA WORK IN PROGRESS CONTINUALLY SUBJECT TO
CHANGES IN RESPONSE TO CONSTRUCTIVE SUGGESTIONS FROM READERS.

Prof. W. Kahan, University of Californiaat Berkeley WORK IN PROGRESS Page 15/15

	§0: What are Gradual and Abrupt Underflow ?
	Pictures of Gradual and Abrupt Underflow
	§1: Why IEEE 754’s Default is Gradual Underflow
	Advantages of Gradual over Abrupt Underflow to Zer...
	§2: Implementations
	IMPORTANT IMPLEMENTATION DETAIL:
	All Floating-Point Traps can be Lightweight Traps
	A Short Menu of Exception-Handling Options
	§3: (Gradual) Underflow Avoidance in Applications
	Examples of Programming Mistakes:

