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A Brief Tutorial on Gradual Underflow

 

,

  

   Page

 

 2

 

 4

 

 5

 

 6

 

 7

 

 9
10
11

 

13

 

14
15
Prof. W. Kahan,  University of California at Berkeley                                                  WORK IN PROGRESS   
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An attempt to generate a nonzero floatingÐpoint  numbe
to represent in the usual way precipitates  Underflow.

Representable floatingÐpoint numbers:

Given the specified formatÕs integers  . . .

Radix: § = two (Binary)  or  § = ten (Decim
Precision: P = Number of   ÒSignificant DigitsÓ
Exponent Range: [Ðé,  +�]  

each finite floatingÐpoint number  x  is represented by its two

Signed  ÒSignificandÓ  or  ÒCoefficientÓ   m   within  |m|
Unbiased Exponent   e  in the range    Ðé ≤ e ≤ � 

thus:  x = má§e+1ÐP   .

If there are no other constraints upon  x ,  Underflo
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If there are no other constraints upon  x ,  Underflow  is  Grad

Gradual Underflow  (GU)  has the simplest mathem
I.B. Goldberg mentioned GU in Comm.ACM (1967).  W. Kahan had put GU onto an IBM 709

If   |m| < §PÐ1  and  Ðé < e   then    x =  má§e+1ÐP  =  
To represent each representable number  x  uniquely
e  is minimized.  Then if its   |m| ≥ §PÐ1  we call its

ÒNormalizedÓ.

  Whether   0 = 0á§é+1ÐP  is to be called  ÒNormalizedÓ  too is not decid

A  Subnormal   x =  má§é+1ÐP   has  0 < |m| < §PÐ1 .  
no  normalized  representation.

Abrupt Underflow (AU)  denies representation t
Before  1985  almost all computers underflowed abrup
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Pictures of Gradual and Abrupt Underflow
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For example,  take  Binary  ß := 2  and  Precision  P := 4  sig.
stands for a representable positive floating-point number.  
marked  “†”.  The positive subnormal numbers are  red ;  AU 

When Underflow is Gradual:
  0-†-†-+-†-+-+-+-†-+-+-+-+-+-+-+-†---+---+---+---+---+---+---+-

     ß–È ß1–È  

When Underflow is Abrupt:
  0---------------†-+-+-+-+-+-+-+-†---+---+---+---+---+---+---+-

     ß–È ß1–È  

Unlike  GU,  AU  lacks the crucial property that the gaps betwe
number  x  and its nearest neighbors not increase when  |x|  de
not always a bad thing,  this lack undermines some error-anal
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Underflow  is destined almost always to be ignored,  rightly o
matter what tiny value,  zero or something else,  is presubstitu

Like some migratory birds,  Underflows  are relatively rare,  t
come in flocks.  Their default presubstitution has to be a compr
vast majority of underflows that can then be ignored justifiabl
found best by enough to elect it to be the default.  Still,  AU  h

Other proposals,  like an  UN  symbol for underflow,  turn out to m

If underflows occur frequently in a program,  they may be a s
program design,  or a consequence of a well-considered choic
the program should be revised to preclude underflow.  If the la
presubstitution like  AU→0  may be better than  GU.  The prog
responsibility of choosing wisely.  UnderflowÕs speed will infl

LetÕs not complicate his choice unnecess
implementing  GU  too much slower tha

See  §2.
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Advantages of Gradual over Abrupt Underflow to Zero
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Gaps between a floating-point number  x  and its nearest n
increase when  |x|  decreases,  affecting error-analyses and

GUÕs  x ± y  cannot underflow since a subnormal diff
This figures in schemes that enhance accuracy by compensating for r

Finite  " x = y Ó    is the same as  " xÐy = 0 Ó  with  G

Scalar product   s := ∑j ajáxj    is not degraded by  G
than by roundoff provided at least one product  ajáx
nonzero.  Likewise matrix products.  Behavior wit
more complicated.         Cf.  J.W. Demmel  in  SIAM J. Sci. S

Polynomial   p(x) :=  a0 + (x Ð x1)á(a1 + (xÐx2)á(a2 + (x
is not degraded by  GU  much worse than by roundoff
normal nonzero.   Behavior with  AU→0  is more co

 Cf.  S. Linnainmaa  in  ACM SIGNUM N

But  GU  seems to spoil some programs.  More about 
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GU  and  x ± y  barely affect each other.  AU→0  ca

Ideally,  GU  affects  xáy  and  x/y  as if  . . . 

GU  of  xáy  or  x/y  must be followed by  Den
which acts like an addÐunnormalized of ze
properly rounded subnormal result.

See  C. Lee  in  IEEE Trans. on C

xáy  of two subnormals or of very tiny factors u
and needs no special treatment.  Otherwise
prenormalization of a subnormal number,  
a postnormalized add of zero with an exten

x/y  of a subnormal or two behaves similarly b
one or two prenormalizations.  Division is
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slightly extended exponent fields.  A tag tells whether a
¥  is ready to add/subt./store  (perhaps Subnorm
¥  is ready for mult.,  div.,  sqrt.  ((pre)normaliz
¥  has to be denormalized,  plus a rounded-up b
¥  is  zero,  infinity  or  NaN  if tagging them han

A floating-point registerÕs tag is set whenever the regist
Loads from memory  (ready to store,  maybe not to
Receives a result (maybe subnormal,  maybe preno

Mult./Div./Sqrt  of an unready register may need preno
Add/Subt./Store  of an unready register may need denor
Handle an unready register like a cache miss;   no depen

Store operations may be tricky when the architecture expe
go without delay to a buffer where cache alterations are qu

Encourage compilers to schedule test-tag-and-de/prenormaliz

Simpler schemes work well if  Fused Multiply-Add  hardware
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If de/prenormalization is handled perhaps slowly by 

DO  NOT  TRAP  UNNECESSAR

when the result of the operation will predictably unde

Untrapped exponents below  –(È+P)  in a non-outward rounding m

In most programs,  if an underflow occurs it is most l
zero no matter whether it goes gradually or abruptly.
Underflow Flag  has already been raised,  a trap mere
unless the program(mer)  has requested a trap to aid d
Break  out of a long loop. 

Still,  try not to vitiate the many valuable programs th
nonzero subnormal number with almost every gradua
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All Floating-Point Traps  can be  Lightweight Traps
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They do not have to save a complete panel as do operating sy

Unless the programming language allows a trap to  Break  out
to a preset location,  thus leaving unpredictable all variables a
loop or block, …

Floating-point traps change no previously determined
and resume execution immediately after the exceptio
They do not have to allow the pipeline to empty,  but

A floating-point trap-handler’s access to a program’s variable
•  The trap-handler’s own internal variables preset when the trap
•  The location where program execution will resume after the t
•  A status register or location that holds floating-point flags tem
•  The nature  (+, –, *, /, √, …)  of the exceptional operation and

•  Operands’ values,  not their addresses.
•  Destination register and perhaps an incompletely proces

IEEE 754  does not mandate traps.  They are for implementatio
and for the support of a short menu of exception-handling optio
applications programmer can choose without ever writing his
See a Demonstration of Presubstitution …  <http://www.cs.berkeley.edu/~w
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Of the three kinds of options,  only the third does not resume ex
the exceptional operation,  having perhaps altered its tentative

•  Pause:  Stop to debug an exceptional operation,  displaying
and allow users to choose to resume execution as if it ha
This option may be unavailable or imprecise on systems that ex
heavily.  Operations  “before”  the exceptional operation may n
operations  “after”  it may have begun,  with obscure correlation
act of  Pausing  may alter timing relations and hide a bug perhap

•  Presubstitute:  Choose in advance a value to substitute for
operation’s result,  perhaps after copying its sign or perfor
procedure like denormalization.  IEEE 754’s  defaults ar
Another simple procedure  “wraps”  an ov/underflowed result’s
inc/decrements a counter correspondingly to help  rescale  length
of sums/differences.  One application is to determinants like  de

•  Abort:  Choose in advance a kind of exception and a locati
Break  if that exception occurs within a designated loop or
might not jump out exactly  when  the exception occurs th
before the loop or block finishes,  leaving its variables un
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A programmer’s choice of exception-handling  Mode  from th
recorded in a  Mode Variable.  What scope,  visibility and inh
govern mode and flag variables?  Different languages favor d

So far,  such variables have been treated as global,  held in bi
control and status words,  though  IEEE 754  conveys no such
Apple’s  old  SANE  (Standard Apple Numerics Environment)  for  680x0-base
procedures to sense,  set,  save and restore mode variables;  see  Apple Numerics
and its successor  Power PC Numerics,  Inside Macintosh (1994),  both publishe
C99  and  Fortran 2003  provide analogous procedures.  Microsoft’s  C  math li
manipulate the bits in the  Intel x87 control and staus words.   None of these su
of options like the aforementioned.  Sun Microsystems’  C  offers a complicated
through which such a menu could be programmed,  but not easily.  All these m

A better way to  localize  modes imitates the language  APL’s  treatment of its 
(comparison tolerance),  []IO (index origin),  etc.  More generally,  every subpr
signature  that tells which modes and flags are inherited and/or propagated imp
appear explicitly as arguments in every invocation.  Some functions intended to
-, *, /, √, log, exp, …  have to inherit,  save,  set, hide, restore and merge flags and
is tedious without appropriate hardware and language support.  Most people,  sa
think about these things.  Someone has to think about them.  They weigh upon th
currently considering revisions to  IEEE 754 (1985)  that will bind better than g
programming languages without burdening applications programmers unnecess
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Most  but not all  underflows can be presubstituted to a
tiny numbers without ill effect because these will later b
numbers and rounded away.  If yours are  provably  this
whichever of  GU  or  AU  runs faster on your machine

AU  runs a lot faster on some machines.  On such a

DONÕT CHOOSE  AU  JUST BECAUSE  GU  RU

Making  AU  the default and ignoring all underflows ca
especially in single-precision  (float)  arithmeticÕs nar
AUÕs  higher speed to matter,  vastly many underflows 
of them must be  proved  negligible.  Otherwise sums of n
above underflow threshold  §Ðé  plus others slightly belo
0  will err unobviously and corrupt subsequent  mult./di

Likewise for  double  for reasons of methodological h
program tested on  floats  and then promoted to  doub
to behave the same except for wider range and enhance
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No matter which of  GU  or  AU  be chosen,  clusters of  too many underflows 
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are most often a symptom of a programming mistake.  É

Examples of Programming Mistakes:
Diffusion Problems:  Initialize interior and boundary values to
tiny nonzero number like  10Ð30  is no worse and would preclud
interior values grow gradually.

Stopping Iterations:  Stop when a residual becomes zero perh
though any residual smaller than a roundoff-related threshold w
with no loss of accuracy,  saving at least one iteration to comp
of a threshold comparison.

Matrix Reductions:  Stop an elimination process,  designed t
nonzero elements of a matrix,  just when no more nonzero can
though eliminating nonzero elements smaller than a roundoff-
wastes time.  Determining a suitable threshold may require for
in some cases but worth the effort if it saves time.
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Root-Finding:  Solving an equation  ƒ(z) = 0  for a root  z  w
smeared by ignored underflow.  This mistake occurs often when
for a matrix  A(x)  of large dimension depending nonlinearly 
scaling may be required to prevent underflows from distracting
depends upon  ƒ  only through ratios like   ƒ'(x)–1·ƒ(x)  and  ƒ

Benchmarks:  Including among benchmarks a program that u
perhaps because of a mistake like one of the foregoing,  unles
purpose is to reveal the slowness of underflow handling.  This
competing compiler vendors to make  Abrupt Underflow  their
then imposed  willy-nilly  upon programs imported from sourc
conformity with  IEEE 754’s  Gradual Underflow  for granted.
be held responsible if such a program malfunctions for that rea
when diagnosis is difficult ?

CAVEAT:  THIS DOCUMENT IS A WORK IN PROGRESS CONTINUA
CHANGES IN RESPONSE TO CONSTRUCTIVE SUGGESTIONS FR
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