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Abstract:

 

By far the majority of computers in use to-day are  AMD/Cyrix/Intel-based  PCs,  
and a big fraction of the rest are old  680x0-based  Apple Macintoshes.  Owners of 
these machines are mostly unaware that their floating-point arithmetic hardware is 
capable of delivering routinely better results than can be expected from the more 
prestigious and more expensive workstations preferred by much of the academic  
Computer Science  community.  This work attempts to awaken an awareness of the 
difference in arithmetics by comparing results for an idealized problem not entirely 
unrepresentative of industrial strength computation.  The problem is to compute the 
deflection under load of a discretized approximation to a horizontally cantilevered 
steel spar.  Discretization generates  N  simultaneous linear equations that can be 
solved in time proportional to  N  as it grows big,  as it must to ensure physical 
verisimilitude of the solution.  Their solution is programmed in  MATLAB 4.2  
which,  like most computer languages nowadays,  lacks any way to mention those 
features that distinguish better arithmetics from others.  None the less this program 
yields results on  PCs  and old  Macs  correct to at least  52  sig. bits for all values  N  
tried,  up to  N = 18827  on a  Pentium.  However the other workstations yield 
roughly  52.3 - 4.67 log N  correct sig. bits from the same program despite that it 
tries two styles of  Iterative Refinement;  at  N = 18827  only a half dozen bits are 
left.  This kind of experience raises troublesome questions about the coverage of 
popular computer benchmarks,  and about the prospects for a would–be universal 
language like  

 

JAVA

 

   that purports to deliver identical numerical results on all 
computers from one library of numerical software.

The  MATLAB 4.2  program used to get the aforementioned results is available by 
electronic mail from the authors:  ivory@cs.berkeley.edu  and  wkahan@cs... .  For 
related work see also  http://http.cs.berkeley.edu/~wkahan/triangle.ps .
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Roundoff  Degrades  an  Idealized  Cantilever

 

A uniform steel spar is clamped horizontal at one end and loaded with a mass at the 
other.  How far does the spar bend under load?

The calculation is  discretized:  For some integer  N  large enough  ( typically in the 
thousands )  we compute approximate deflections
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at  uniformly spaced stations along the spar.  Discretization errors,  the differences 

between these approximations and true deflections,  tend to  0  like 1/N

 

2

 

 .  These  
x

 

j

 

 's  are the components of a column vector  

 

x

 

  that satisfies a system  

 

A

 

·

 

x

 

 = 

 

b

 

  of 

linear equations in which column vector  

 

b

 

  represents the load  ( the mass at the end 
plus the spar’s own weight )  and the matrix  

 

A

 

  looks like this for  N = 10 :

The usual way to solve such a system of equations is by  Gaussian  elimination,  
which is tantamount to first factoring  

 

A

 

 = 

 

L

 

·

 

U

 

  into a lower-triangular  

 

L

 

  times an 
upper-triangular  

 

U

 

 ,  and then solving  

 

L

 

·(
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·

 

x

 

) = 

 

b

 

  by one pass each of forward 
and backward substitution.  Since  

 

L

 

  and  

 

U

 

  each has only three nonzero diagonals,  
the work goes fast;  fewer than  30·N  arithmetic operations suffice.  But this,  the 
usual way to compute  

 

x

 

 ,  is extremely sensitive to rounding errors;  they can get 

amplified by the  

 

condition number

 

  of  

 

A

 

 ,  which is of the order of  N

 

4

 

 .

 

To assess the effect of roundoff we compare this computed solution  

 

x

 

  with another obtained very 

accurately and very fast with the aid of a trick:  There is another triangular factorization  

 

A

 

 = 

 

R

 

·

 

R

 

T

 

  
in which  

 

R

 

  is an upper-triangle with three nonzero diagonals containing only small integers  1  
and  

 

±

 

2 .  Consequently the desired solution can be computed with about  4·N  additions and a 
multiplication.  Such a simple trick is unavailable for realistic problems.
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The loss of accuracy to roundoff during  Gaussian  elimination poses a  

 

Dilemma:

 

Discretization error  —> 0  like  1/N

 

2

 

 ,  so for realistic results we want  N  big.

Roundoff is amplified by  N

 

4

 

 ,  so for accurate results we want  N  small.

For realistic problems  ( aircraft wings,  crash-testing car bodies, ...),   typically  
N > 10000 .  With  REAL*8  arithmetic carrying the usual  53  sig. bits,  about  16 
sig. dec.,  we must expect to lose almost all accuracy to roundoff occasionally.

 

Iterative Refinement

 

  mollifies the dilemma:
Compute a  

 

residual

 

  

 

r

 

 := 

 

A

 

·

 

x

 

 - 

 

b

 

  for  

 

x

 

 .  Solve  

 

A

 

·

 

∆

 

x

 

 = 

 

r

 

  for a correction  

 

∆

 

x

 

  
using the same program  ( and triangular factors  

 

L

 

  and  

 

U

 

 )  as  “solved” 

 

 A

 

·

 

x

 

 = 

 

b

 

  
for an  

 

x

 

  contaminated by roundoff.  Update  

 

x

 

 := 

 

x

 

 - 

 

∆

 

x

 

  to refine its accuracy.

Actually,  this  Iterative Refinement  as performed on the prestigious work-stations  
( IBM RS/6000,  DEC Alpha,  Convex,  H-P,  Sun SPARC,  SGI-MIPS,  ... )  does 
not necessarily refine the accuracy of  

 

x

 

  much though its residual  

 

r

 

  may get much 
smaller,  making  

 

x

 

  look much better to someone who does not know much better.

Only on  AMD/Cyrix/Intel-based  PCs  and  680x0-based  Macs  ( not  Power–
Macs )  can  Iterative Refinement  

 

always 

 

 improve the accuracy of  

 

x

 

  substantially  

 

provided

 

  the program is not prevented by a feckless language or compiler from 
using the floating-point hardware as it was designed to be used:

Accumulate residual  

 

r

 

 := 

 

A

 

·

 

x

 

 - 

 

b

 

  in the computer’s  REAL*10  registers.
They carry  11  more bits of precision than  REAL*8’s  53  sig. bits.  Using them 
improves accuracy by at least about  11  sig bits whenever more than that were lost.

 

To get comparable or better results on the prestigious workstations,  somebody would have to 
program simulated  ( SLOW )  extra-precise computation of the residual,  or invent other tricks.

 

e.g.:  Accuracies from a  MATLAB 4.2  program (

 

 WITH NO MENTION  of  REAL*10 )

N = 18827 PCs & 680x0 Macs Others Condition no. > 257

Unrefined Residual 156 ulps. ≈156 ulps. Why N = 18827 ?
Because for bigger  N

a bug in  MATLAB 4.2
made its stack overflow
 on a  Pentium  with  64
MB RAM .  80  MB  on
a  Mac  went no better.

Refined Residual 0·41 ulps. ≈0·7 ulps.

Unrefined Accuracy 6 sig. bits ≈6 sig. bits

Refined Accuracy 53 sig. bits ≈5 sig. bits
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The foregoing tabulated results are misleading because they compare results from 
the  same  MATLAB 4.2  program run on  different  computers,  which is exactly 
how current benchmarks are expected to assess different computers’ comparative 
merits.  But this refinement program would probably not exist if the only computers 
on which it had to run were prestigious workstations that lack fast extended–
precision;  on these computers,  iterative refinement is best performed in a different 
way.  The difference is subtle and yet important,  if only because it raises questions 
about a popular notion,  promulgated especially by  JAVA  enthusiasts,  that all 
software ought to work identically on every computer.

Every iterative refinement program repeats the three steps
{   r := A·x - b ;     solve  A·∆x = r  for  ∆x  ;      update     x := x - ∆x  ; }

until something stops it  The programs most in use nowadays,  like  _GERFS  in  
LAPACK,  employ an  r-based  stopping criterion:

Stop  when the residual  r  no longer attenuates,   or when 
it becomes acceptably small,  whichever occurs first.

Usually the first  x ,  if produced by a good  Gaussian  elimination program,  has an 

acceptably small residual  r ,  often smaller than if  x  had been obtained from   A-1b  
calculated exactly and then rounded off to full  REAL*8  precision!  Therefore,  that 
criterion usually inhibits the  solve  and  update  operations entirely.

What if  r  is initially unacceptably big?  This can occur,  no matter whether  A  is 
intrinsically ill conditioned,  because of some other rare pathology like gargantuan 
dimension  N  or disparate scaling.  Such cases hardly ever require more than one 
iteration to satisfy the foregoing criterion.  That iteration always attenuates  x 's   
inaccuracy too,  but only on  PCs  and  Macs  that accumulate  r  extra–precisely.

On workstations that do not accumulate  r  extra-precisely,  updating  x  often 
degrades it a little and almost never improves it much unless inaccuracy in  x  is 
caused initially by one of those rare pathologies other than intrinsic ill-condition.

Thus,  the  r-based  stopping criterion serves these workstations well by stopping 
them as soon as they have achieved a goal appropriate for them,  namely ...

Locate an approximate solution  x  whose  computed  
residual  r := A·x - b  will not much exceed the roundoff 
that may accrue while it is being computed.

Such an approximate  x  may still be very inaccurate;  this happens just when  A  is 
intrinsically  “ill-conditioned,”  which is what we say to blame inaccuracy upon the 
data instead of our own numerical  (in)expertise.
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Reconsider now the results tabulated earlier for the cantilever with  N = 18827 .  A 
smaller  N  would do as well;  for all of them,  x  is accurate to  52  or  53  sig. bits 
after refinement on a  PC  or  680x0-based Mac.  How do these machines achieve 
accuracy to the last bit or two in the face of condition numbers so huge that the 
survival of any sig. bits at all surprises us?  Not by employing an  r-based  stopping 
criterion;  it would too often terminate iteration prematurely.

The stopping criterion employed to get those results is  x-based:
Stop  when decrement  ∆x  no longer attenuates,  or when 
it becomes acceptably small,  whichever occurs first.

To get those results,  “acceptably small”  here was set to zero,  which seems rather tiny but shows 
what the program can do.  At  N = 18827  the cost of those  53  sig. bits was  10  iterations of  
Iterative Refinement;  at lesser dimensions  N  the cost was roughly   1/( 1  -  0.091 log N )  

iterations,  which suggests that dimensions  N  beyond  55000  ( with condition numbers  > 263 )  
lie beyond the program’s reach.  It carries  64  sig. bits to compute residuals.  Coincidence?

This  x-based  stopping criterion that so enhances the accuracy of results from  
PCs  and  680x0-based Macs  must not be employed on other workstations 
lest it degrade the accuracy of their results and,  worse,  waste time.

Different strokes for different folks.
. . . . . . . . . . . . . . . . . . . . .

How relevant is this  idealized  cantilever problem to more general elastostatic problems whose 
coefficient matrices  A  generally do not have entries consisting entirely of small integers?  Small 
integers make for better accuracy from a simpler program,  but they are not essential.  What is 
essential is that we preserve important  correlations  among the many coefficient entries,  which 
are determined from relatively few physically meaningful parameters,  despite roundoff incurred 
during the generation of those entries.  Such a correlation is evident in the example explored here;  
all but the first two row-sums of  A  vanish,  as do row–sums for a non–uniform cantilever whose 
matrix  A  has varying rows of non-integer coefficients.  We must force the same constraint,  
among others,  upon the rounding errors in  A ,  and then they will do us less harm.

But the rounding errors incurred later during  Gaussian  elimination cannot be so constrained.  
Though tiny,  they become dangerous when amplified by big condition numbers.  Thus we are 
compelled either to attenuate them by employing inverse iteration with extra-precise residuals,  or 
to devise other tricks that do not incur such dangerous errors.
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If you do not know how much  Accuracy  you have,  what good is it?
Like an expected inheritance that has yet to  “mature,”  you can’t bank on it.

Iterative refinement programs like  _GERFS  that employ the  r-based  stopping 
criterion can also provide,  at modest extra cost,  an  almost–always–over–estimate  
of the error in  x .  They do so by first computing a majorizer  R  that dominates  

r := A·x - b  plus its contamination by roundoff.  Then they estimate  ||A-1R||∞  

without ever computing  A-1   to obtain the desired bound upon error in  x .  This 
estimate costs little more than a few steps of  Iterative Refinement.

Unfortunately,  it is not infallible,  though serious failures  ( gross under–estimates 
of the error in  x )  must be very rare since the only known instances are deftly 
contrived examples with innocent–looking but singular matrices  A .  Worse,  this 
error bound tends to be grossly pessimistic when  A  is very ill-conditioned and/or 
its dimension  N  is extremely big.  The pessimism often amounts to several orders 
of magnitude for reasons not yet fully understood.

In short,  versions of  Iterative Refinement  working on prestigious workstations can 
provide error bounds but they are too often far too pessimistic,  and they can fail.

Iterative Refinement  programs that employ the  x-based  stopping criterion can also 
provide,  at no extra cost,  an  almost–always–over–estimate  of the error in  x .  
They do so by keeping track of  ||∆x||  which,  if convergence is not too slow,  gives 
a fair  ( rarely much too pessimistic )  indication of the error in  x .  This is not an 
infallible indication;  it fails utterly whenever the computed residual

r := (A·x - b  plus roundoff )
happens to vanish.  Iterative Refinement  produces residuals that vanish surprisingly 
often and not necessarily because  x  is exactly right.

( The  INEXACT  flag mandated by  IEEE Standard 754 for Binary Floating–Point Arithmetic  
would,  if  MATLAB  granted us access to that flag,  help us discriminate between solutions  x  
that are exactly right and those,  perhaps arbitrarily wrong,  whose residuals vanish by accident.)

In short,  Iterative Refinement  appropriate for  PCs  and  680x0-based Macs  comes 
with a cost-free indication,  usable if hardly infallible,  of its superior accuracy.

The other workstations have nothing like it.

The following figures exhibit some evidence to support the foregoing claims.
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ACCURACY
of a  Cantilever’s Deflection  after  Iterative Refinement

by a  MATLAB 4.2  program run on workstations

Iterative Refinement  of residuals  r  ( employing the  r-based  stopping criterion ),   
as does  LAPACK  program  _GERFS,  always reduces the residual  r  below an ulp 
or two,  but rarely improves the accuracy of the solution  x  much,  and sometimes 
degrades it a little,  on workstations that do not accumulate residuals to extra 
precision.  And the error-bound on  x  inferred from  r  is often too pessimistic.  But 
to do better on those workstations is too difficult in  MATLAB  to be worthwhile.
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ACCURACY
of a  Cantilever’s Deflection  after  Iterative Refinement

by a  MATLAB 4.2  program run on workstations

Iterative Refinement  of solutions  x  ( employing the  x-based  stopping criterion )  
is no more accurate than refinement of  r  for the  Cantilever  problem  ( and rarely 
more accurate for other problems )  on workstations that do not accumulate 
residuals to extra precision.  And the error-bound on  x  inferred from  ∆x  is still too 
pessimistic for this problem  ( and too optimistic for others ).  Worse,  refining  x  
usually takes more iterations than refining  r ,  though not for cases shown here.  
Therefore this kind of  Iterative Refinement  does not suit those workstations.
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ACCURACY
of a  Cantilever’s Deflection  after  Iterative Refinement
by a  MATLAB 4.2  program run on  PCs  and old  Macs

Iterative Refinement  of residuals  r  ( employing the  r-based  stopping criterion ),   
as does  LAPACK  program  _GERFS,  always reduces the residual  r  below an ulp 
or two,  and also improves the accuracy of the solution  x  if not stopped too soon  
( as occurred above at  N = 64  because the initial  r  was below  1 ulp )  on  PCs  
and  Macs  that accumulate residuals to extra precision.  But the error-bound on  x  
inferred from  r  is still too pessimistic.  On these computers we can do better.
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ACCURACY
of a  Cantilever’s Deflection  after  Iterative Refinement
by a  MATLAB 4.2  program run on  PCs  and old  Macs

Iterative Refinement  of solutions  x  ( employing the  x-based  stopping criterion )  
far surpasses the accuracy of refinement of  r  for ill–conditioned  Cantilever  
problems  ( and also for other problems )  on  PCs  and  Macs  that accumulate 
residuals to extra precision.  And the error-bound on  x  inferred from  ∆x  is 
satisfactory for this problem  ( and almost always for others ).  Of course,  the 
required number of iterations rises sharply as  A  approaches singularity.  Still,   this 
kind of  Iterative Refinement  is the right kind for those popular computers.
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How does our program get  MATLAB 4.2  to compute residuals with  11  extra bits 
of precision,  on machines that have it,  without mentioning it and without incurring 
a noticeable speed penalty?  The program uses two tricks,  both justifiable by their 
contribution to speed regardless of their contribution to accuracy.

The first trick is built into  MATLAB 4.2  and earlier versions.  To compute non–
sparse matrix products  P = C·Q  as quickly as it can,  MATLAB  accumulates the 
scalar products   pij = ∑k cik·qkj   in the computer’s internal registers rather than 

store each partial sum in memory only to reload it immediately afterwards.  These 
internal registers carry  64  sig. bits on  AMD/Cyrix/Intel–based IBM–compatible 
PCs  and  680x0–based Apple Macintoshes,  more than the  53 sig. bits carried in 
the other machines’ registers and stored by  MATLAB  into  8-byte  words in all 
machines’ memories.  Therefore  MATLAB’s  matrix products  P = C·Q  tend to be 
more accurate,  sometimes much more,  on  PCs  and old  Macs  than elsewhere.

With the possible exception of exponentiation  z^y ,  all operations other than non–
sparse matrix multiplication appear to be carried out by  MATLAB  without taking 
advantage of extra–precise registers.  This would contaminate residual  r = A·x - b  
by rounding  A·x  from  64  to  53  sig. bits before it has a chance to mostly cancel 
with  b .  To avoid this contamination we should compute  r  in one matrix–vector 
multiplication   r = [A, b]·[x; -1] ,  and we would do so were  A  not sparse.

The second trick exploits the repetitiveness of  A’s  rows;  all but the first two and 
last two are   [1, -4, 6, -4, 1]  amidst long strings of zeros.  We copy  x  and  b  into

Z = [[0;0;0;0;x], [0;0;0;x;0], [0;0;x;0;0], [0;x;0;0;0], [x;0;0;0;0], [0;0;b;0;0]]
and compute  s = Z·[1; -4; 6; -4; 1; -1] .  Discarding its first three elements yields all 
but the first one and last two elements of  r ,  which are computed separately.  The 
copying,  on machines with fast memory–to–memory block transfers,  goes at least 
about as fast the extraction of elements from  MATLAB’s  sparse matrices,  so no 
machine suffers a noticeable performance penalty to execute a trick that enhances 
accuracy only on  PCs  and old  Macs.

Evidently  Wider is Better  where arithmetic reliability is concerned,  but part of the 
computing industry has a different agenda.  JAVA  forbids the use of extra precision,  
and  Microsoft’s  Windows  turns it off.  It brings a line from  Othello  to mind:

“ Perplex’d in the extreme ...,  threw a pearl away
Richer than all his tribe.”


