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Circumscribing an Ellipsoid about the Intersection of Two Ellipsoids
 Prof. W. Kahan

Mathematics Dept.,  and  Elect. Eng. & Computer Science Dept.
University of California @ Berkeley

This paper is an update,  more readily accessible via the web and a little easier to read,  I hope,  of a paper with the 
same title the author first published in  pp. 437-441  of the  Canadian Math. Bulletin 11 #3 (1968)  when he was on 
the faculty of the  Mathematics  and  Computer Science Departments  at the  University of Toronto.

Abstract
The nontrivial intersection of two  n-dimensional  ellipsoids with a common center is so  Tightly  
circumscribed by each ellipsoid in a specified one-parameter family of them that no other 
ellipsoidal surface can slip between the intersection and any ellipsoidal surface in that family.

Introduction
Among the bodies that may be chosen to circumscribe complicated regions by simple ones in a 
computer are ellipsoids.  They are deemed  “simple”  because each can be represented by one 
inequality.  However,  often a complicated region turns out to be far smaller than any simple body 
circumscribed about it.  Consequently computer programs may have to manipulate combinations 
like  unions,  intersections and sums of simple bodies.  Storage capacity and the time consumed 
by computations limit the complexity achievable in practice,  forcing occasional simplifications of 
which one kind is the replacement of the intersection of circumscribing bodies by one simpler 
circumscribing body,  preferably not too much too big.  This work’s bodies are all ellipsoids,  a 
few circumscribing the intersection of others as tightly as is possible and not too much too big.

Each  n-dimensional  solid ellipsoid  WW  shall be identified with an  n-by-n  real symmetric 
positive (semi)definite matrix of the same name  W  via the relationship

 x ∈  WW   if and only if  x'·W·x ≤ 1 .
Here row  x'  is the transpose of real column vector  x .  Boundary  ∂WW  consists of all  x  for 
which  x'·W·x = 1 .  Note that all ellipsoids discussed hereunder are centered at the origin  o ,  and 
none of them can be  Flat  (contained in a proper subspace).  But when  W  is not positive definite  
(not invertible)  then  WW  is a slab or an infinitely long cylinder with an ellipsoidal cross-section.

We seek a formula for a matrix  H  whose ellipsoid  HH  contains the intersection  ∩k MMk  of a 
finite collection of ellipsoids  MMk  given their respective matrices  Mk .  A formula comes to mind:

  •  For any chosen nonnegative constants  µk  not all zero,  matrix  H := (∑k µk·Mk)/(∑k µk)     (‡)

     is identified with an ellipsoid  HH  satisfying   ∪ k MMk ⊇  HH ⊇  ∩k MMk  and  ∂HH ⊇  ∩k ∂MMk .

This assertion is easy to verify as follows:  x ∈  ∩k MMk   if and only if every  x'·Mk·x ≤ 1 ,  and 

then   x'·H·x = (∑k µk·x'·Mk·x)/(∑k µk) ≤ 1  too,  so  x ∈  HH ⊇  ∩k MMk  as claimed.  On the other 

hand,  if  x ∈  HH  then   (∑k µk·x'·Mk·x)/(∑k µk) = x'·H·x ≤ 1 ;  then at least one  x'·MK·x ≤ 1  so 

that  x ∈  MMK ,  which implies that the union  ∪ k MMk ⊇  HH  as claimed.  Finally if  ∩k ∂MMk  is not 

empty it consists of all  x  for which every  x'·Mk·x = 1 ,  so   x'·H·x = (∑k µk·x'·Mk·x)/(∑k µk) = 1  

too,  putting  x ∈  ∂HH  and confirming that  ∂HH ⊇  ∩k ∂MMk .  Thus is our formula (‡) vindicated.
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The search for a small ellipsoid circumscribing  ∩k MMk  might plausibly begin among ellipsoids  

HH  generated by our simple formula  (‡).  However,  if  ∩k ∂MMk  is empty,  which seems more 
likely than not when the given collection has more than two ellipsoids  MMk ,  then that formula’s 
smallest  HH  can be bigger than the smallest circumscribing ellipsoid.  Here is an example:

Example 1:  Formula (‡)’s Ellipsoid can be Too Big
When row  w' ≠ o'  the matrix  W := w·w'  belongs to a degenerate ellipsoid  WW  consisting of a 
slab between two parallel faces whose equations are  w'·x = ±1 .  In two dimensions this slab is 
actually a ribbon between two parallel lines.  Example 1  is the intersection of three such ribbons;  
it is a hexagon in the plane.  The three ribbons regarded as degenerate ellipses  MMk  have matrices

 Mk := mk·mk'  where   m1' := [0,  2] ,    m2' := [√3,  1] ,   m3' := [–√3,  1] .

The vertices of  MM1∩MM2∩MM3  have coordinate columns   ±[1/√3,  0]',   ±[–1/√12,  1/2]'  and  

±[1/√12,  1/2]'.  Because  ∂MM1∩∂MM2∩∂MM3  is empty,  the one ellipse through all six vertices,  

namely the circle of radius  1/√3 ,  lies strictly inside the smallest ellipse  HH  generated by our 
formula  (‡),  namely a circle of radius  1/√2  whose matrix  H = (M1 + M2 + M3)/3 = 2·I .

In general,  every  HH  generated by formula  (‡)  may be too big if  ∩k ∂MMk  is empty.  How much 

too big can the smallest such  HH  be?  Other than that  ∪ k MMk ⊇  HH ,  I don’t know.

Tightness
Any ellipsoid  HH  circumscribing  ∩k MMk  shall be called  “Tight”  just when no other ellipsoidal 

surface can come between  ∂HH  and  ∩k MMk .  “Smallest”  implies  “Tight”  but  “Tight”  need not 
imply  “Small”.  For instance,  the finite intersection  MM1∩MM2  of a cylinder  MM1  of elliptical 
cross section with a slab  MM2  perpendicular to the cylinder’s axis is circumscribed  Tightly  by 
each infinitely big  MMk .  All other ellipsoids  HH  generated by  (‡)  turn out  Tight  and finite.

So,  some  Tight  ellipsoids are not small at all.  Even the smallest  Tight  ellipsoid can extend well 
beyond  ∩k MMk  if the dimension  n  is big enough.  Here is an example:

Example 2:  Tight but Not Small
Fritz John’s Ellipsoid Theorem (1948)  says,  among other things,  that an ellipsoid  HH  of least   
Content  (area, volume, …)  circumscribing any given  n-dimensional  centrally symmetric 
bounded convex body  PP = –PP  must satisfy   HH ⊇  PP ⊇  HH/√n .  No divisor smaller than  √n  is valid 
here when  PP  is an  n-dimensional  parallelepiped.  Such a  PP  is the intersection of  n  slabs  MMk  
each a degenerate ellipsoid.  Our formula  (‡)  for  H  generates an  (n–1)-parameter  family of  
Tightly  circumscribing ellipsoids  ∂HH  each of which passes through  ∩k ∂MMk ,  which consists of 
all the vertices of  PP ,  and yet every  HH  extends beyond  PP  in some directions by a factor no less 
than  √n ;  one of the formula’s smaller ellipsoids  HH  is  Fritz John’s  ellipsoid of least content.
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Ellipsoids that Circumscribe  Tightly  the Intersection of Two Ellipsoids
To attenuate notational clutter let’s do away with superfluous subscripts.  Identify  n-dimensional  
solid ellipsoid  MM := { x :  x'·M·x ≤ 1 } with positive (semi)definite matrix  M ,  and likewise  WW  
with  W,  HH  with  H  and  TT  with  T.  Our objective is to circumscribe intersection  MM∩WW  as 
closely as possible by ellipsoidal surfaces  ∂TT .  When  “ TT ⊇  HH ⊇  MM∩WW ”  implies  “ HH = TT ”  
we declare that  TT  (actually  ∂TT )  circumscribes  MM∩WW  Tightly,  which means so closely that no 
other ellipsoidal surface can slip between  ∂TT  and  MM∩WW ;  and then we call  TT  “Tight”  too.  
That  Tight  ellipsoids exist follows from the monotonicity,  boundedness,  closure and therefore 
convergence of the matrices of any nested sequence of ellipsoids all circumscribing  MM∩WW .

To preclude trivialities,  we assume henceforth that neither  MM ⊇  WW  nor  WW ⊇  MM ;  otherwise 
only the smaller of  MM  and  WW  could circumscribe  MM∩WW  Tightly.  Our assumption ensures that  
∂MM∩∂WW  is nonempty;  it consists of two pairs of antipodal points if  n = 2  and otherwise a 
continuum  (curve,  surface,  …)  or two,  the intersection of ellipsoids  ∂MM  and  ∂WW  with the 
cone whose equation is  x'·(M–W)·x = 0 .  Because this intersection turns out to lie within all 
ellipsoidal surfaces  ∂TT  that circumscribe  MM∩WW   Tightly,  they are confined narrowly thus:

Theorem
The matrix  T  of every  Tight  ellipsoid   TT ⊇  MM∩WW   and only these is generated by the formula

    T := λ·W + (1–λ)·M    as  λ  runs from  0  up to  1 .       (†)

Before proving the  Theorem  analytically we should appreciate geometrically why it keeps  λ  
within  0 ≤ λ ≤ 1 .  We know already why  (†),  like  (‡),  ensures that  ∂TT ⊇  ∂MM∩∂WW ;  and our 
anti-triviality assumption ensures that a boundary point  b ∈  ∂MM∩∂WW  does exist.  The outward 
normals to  ∂WW  and  ∂MM  at  b  turn out to be respectively  W·b  and  M·b .  A normal to any plane 
supporting  MM∩WW  at  b  must be a nonnegatively weighted average of those outward normals lest 
the alleged support-plane actually dig inside  MM  or  WW  near  b ;  draw pictures to see why.  This 
support-plane is tangent to some  Tightly  circumscribing  ∂TT  at  b  just when its outward normal  
T·b  is the same nonnegatively weighted average of those outward normals  W·b  and  M·b .  The  
Theorem’s  T = λ·W + (1–λ)·M ,  so the coefficients  λ  and  (1–λ)  must be the nonnegatively 
weighted average’s weights.

The foregoing paragraph’s slightly circular argument does not figure in the  Theorem’s  proof but 
serves merely to help explain why  0 ≤ λ ≤ 1 .  The argument serves also to illuminate how the  
Theorem  helps us find one of the smaller circumscribing ellipsoids when  MM∩WW  extends much 
farther in some directions than others.  Among the smaller circumscribing ellipsoids are some that 
are  Tight.  Choosing one is tantamount to choosing  λ .  Ideal choices are determined from the 
outermost boundary points  b  of  ∂MM∩∂WW  because they can be shown with the aid of  Lagrange  

multipliers to satisfy  b/||b||2 = (λ·W + (1–λ)·M)·b  when  ||b||2 := b'·b  is maximized.  These 
equations’ geometrical interpretation is that  b  is normal to the smallest sphere circumscribing  
MM∩WW  and to a  Tight  ellipsoid  TT  inside it both touching  ∂MM∩∂WW  at  b .  However this ideal 
choice for  λ  is impractical because it requires an outermost boundary point  b  to be computed 
first,  and  b  costs too much to compute.  Later we shall investigate approximations to the ideal.

The earlier version of this work published in  1968  assumed all ellipsoids bounded since all their 
matrices were positive definite,  thus avoiding the complications posed by infinite cylinders and 
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slabs.  A reappraisal of their utility has been brought about by experience since then,  and now 
those complications must be addressed.  Here is the first complication:

A Notational Complication
Everyone agrees that a real symmetric  n-by-n  matrix  M = M'  be called  “Positive Definite”  just 
when  x'·M·x > 0  for every  n-vector  x ≠ o .  We call  M  “Positive Semidefinite”  just when  
x'·M·x ≥ 0  for every  x  and  z'·M·z = 0  for some  z ≠ o ;  many other users of the term  “Positive 
Semidefinite” omit the requirement that any such  z  exist.  To accommodate their ambiguity we 
call  M  “Positive (Semi)Definite”  just when  x'·M·x ≥ 0  for every  x  no matter whether  z  exists.

Nullspace  Revelation
 If matrix  M = M'  is positive (semi)definite,  and if  z'·M·z = 0 ,  then  M·z = o .

Proof:  Because   0 ≤ (z – ß·M·z)'·M·(z – ß·M·z)/ß = –2·(M·z)'·(M·z) + ß·(M·z)'·M·(M·z)   for 
every  ß > 0 ,  we find  0 ≤ (M·z)'·(M·z) ≤ ß·(M·z)'·M·(M·z)/2 → 0+  as  ß → 0+ ,  so  M·z = o .

Nullspace revelation will figure in the removal of the next complication,  which is the possibility 
that  MM∩WW  extends to infinity;  it will be removed after the  Corollary  below.

The  Theorem’s  proof relies solely upon the connection between the geometry of ellipsoids  TT,  
MM,   WW,  HH,  …  and the algebra of their respective  n-by-n  positive (semi)definite matrices  T,  M,  
W,  H,  … .  Summarized succinctly,  the connection goes thus:

Lemma
      TT ⊇  MM∩WW  if and only if  x'·T·x ≤ max{x'·M·x ,  x'·W·x}  for all column  n-vectors  x .

Proof:  If  TT ⊇  MM∩WW   then whenever   ß := max{x'·M·x ,  x'·W·x} ≠ 0  we find  x/√ß ∈  MM∩WW  
whence  x/√ß ∈  TT    and therefore  x'·T·x ≤ ß ;  however when  ß = 0  then,  for all  µ ≠ 0 ,  we find 

in turn that  (x/µ)'·M·(x/µ) = (x/µ)'·W·(x/µ) = 0 ,  x/µ ∈  MM∩WW ,  x/µ ∈  TT ,  x'·T·x ≤ µ2  and 
finally  x'·T·x = 0 = ß  after  µ → 0 .   Conversely,  if   x'·T·x ≤ ß := max{x'·M·x ,  x'·W·x}  for all  
x ,  and if  x ∈  MM∩WW ,  then  x'·T·x ≤ ß ≤ 1  so  x ∈  TT  and therefore  TT ⊇  MM∩WW .

Corollary
       TT ⊇  MM   if and only if   x'·T·x ≤ x'·M·x  for all column  n-vectors  x .

Proof:  Regard the whole vector-space as an ellipsoid  WW  whose matrix  W  is the zero matrix  O .

Now we can remove the complicating possibility that  MM∩WW  extends to infinity,  which happens 
only when some  z ≠ o  satisfies  z'·M·z = z'·W·z = 0 .  When this happens it reveals the existence 
of a proper subspace  Z  consisting of all vectors  z  that satisfy  M·z = W·z = o ;  this  Z  is the 
nonzero intersection of the nullspaces of  M  and of  W.  The Lemma implies for any  TT ⊇  MM∩WW  
that  z'·T·z = 0  too and reveals that  Z  is contained in the nullspace of  T.  Embed a basis for  Z  in 
any new basis for the whole space and change to new coordinates using this new basis.  Doing so 

transforms  M, W  and  T  into new  Congruent  matrices  ,    and    respectively in 

which the new smaller versions   M,  W  and  T  have the same properties as had the old larger 
versions except that now  x'·M·x  and  x'·W·x  cannot both vanish at the same vector  x ≠ o .  The old 
anti-triviality assumption,  namely that  x'·M·x > x'·W·x  for some  x  but  x'·M·x < x'·W·x  for 

O O

O M

O O

O W

O O

O T
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others,  also persists for the new smaller matrices.  Geometrically,  replacing old by new amounts 
to a projection parallel to  Z  of the original vector-space onto any subspace complementary to  Z ,  
thus conveying all containment relations from parallel cylinders and slabs in the full space to their 
respective intersections with that complementary subspace,  wherein we remain henceforth.

In short,  we now enjoy two simplifying assumptions:

•  The nullspaces of the given positive (semi)definite matrices  M  and  W  intersect only in  o , 
implying that  MM∩WW  is finite and  λ·W + (1–λ)·M  is positive definite for  0 < λ < 1 .

•   x'·M·x > x'·W·x  for some  x  but  x'·M·x < x'·W·x  for others,  so  ∂MM∩∂WW  is nonempty,  

thus precluding trivial cases like  dimension  n = 1  and others that imply  λ = λ2  in  (†) 
because the only  Tight  ellipsoid is whichever of  MM  and  WW  is included in the other.

These assumptions will simplify the  Theorem’s  proof without detracting from its utility though 
the proof remains complicated by its dependence upon a complicated procedure:

Interposition Procedure
Given the positive (semi)definite  n-by-n  matrix  H  of any ellipsoid   HH ⊇  MM∩WW ,   Tight  or not,  
the procedure laid out hereunder determines  λ  within  0 ≤ λ ≤ 1  to  interpose  the ellipsoidal 
surface  ∂TT   belonging to   T := λ·W + (1–λ)·M   between  HH  and  MM∩WW ,   so  HH ⊇  TT ⊇  MM∩WW .  
This  T,  the  Theorem’s  T  in  (†),  will turn out to be  Tight  though not during the procedure,  
which will merely be proved feasible albeit impractical.  Note that the anti-triviality assumption 
implies  n ≥ 2 ,  which makes the procedure’s first step computationally nontrivial:

     Determine   Ç := infx≠o max{x'·M·x ,  x'·W·x}/x'·H·x .

Ç ≥ 1  because the  Lemma  applies to  HH ⊇  MM∩WW .   Although the search for  Ç   has to avoid any  
x ≠ o  at which  H·x = o ,  infimum  Ç  is actually an attained minimum.  It is so because  M+W  is 
positive definite and   max{x'·M·x ,  x'·W·x}/x'·H·x   is homogeneous of degree  0  in  x ,  whence 
follows

        Ç = inf( max{x'·M·x ,  x'·W·x}/x'·H·x ) sought over  (M+W)·x ≠ o
= inf( max{x'·M·x ,  x'·W·x}/x'·H·x ) sought over  x'·(M+W)·x = 1 
≥ inf( (1/2)/x'·H·x ) sought over  x'·(M+W)·x = 1 . 

This means that the search for  Ç  can be confined to a closed bounded region on the ellipsoidal 
surface whereon  x'·(M+W)·x = 1  from which has been excised the open  (perhaps empty)  region 
wherein  x'·H·x < 1/(2Ç) .  Therefore  Ç  is the attained minimum of a continuous function on a 
compact set and is attained thereon at some vector  x = c  where  H·c ≠ o .  After  M  and  W  have 
been swapped if necessary,  this  c  will satisfy   c'·H·c > 0  and,  with  Ç ≥ 1 ,  also

      c'·W·c/c'·H·c ≤ Ç = c'·M·c/c'·H·c  ≤  max{x'·M·x ,  x'·W·x}/x'·H·x  for all  x ≠ 0 .        (#)

Now the procedure splits into three cases according to whether  c'·W·c = c'·M·c  and then,  if so,  
whether  W·c = M·c .  In each case the procedure will determine  λ  to satisfy 

 0 ≤ λ ≤ 1  and   T := λ·W + (1–λ)·M   and  x'·T·x ≥ Ç·x'·H·x ≥ x'·H·x  for all  x .          (◊)
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•  Case 1:  Suppose   c'·W·c < c'·M·c = Ç·c'·H·c   in  (#)  above.  In this case  T := M  for  λ := 0  
will be seen to satisfy  (◊)  as follows:

Given any vector  x  and scalar  ß ≠ 0  let  y := c – ß·x ,  and then invoke  (#)  to infer that 
 y'·W·y < y'·M·y   and so   Ç·y'·H·y ≤ y'·M·y   for all sufficiently small  |ß| > 0 .

Choose the sign of such a  ß  to make  ß·x'·(M – Ç·H)·c ≥ 0  too.  Then it will make 

     0  ≤  y'·(M – Ç·H)·y  =  ß2·x'·(M – Ç·H)·x – 2ß·x'·(M – Ç·H)·c  ≤  ß2·x'·(M – Ç·H)·x .
This implies  x'·T·x = x'·M·x ≥ Ç·x'·H·x  for every  x ,  so  T = M  satisfies  (◊).

•  Cases 2 and 3:  Suppose   c'·W·c = c'·M·c = Ç·c'·H·c   in  (#)  above.  Given any vector  x  and 
scalar  ß  let  y := x + ß·c  and invoke  (#)  to infer from  Ç·y'·H·y ≤ max{y'·M·y ,  y'·W·y}  that 

  Ç·x'·H·x + 2ß·Ç·x'·H·c ≤ max{x'·M·x + 2ß·x'·M·c ,  x'·W·x + 2ß·x'·W·c}  for all  x  and  ß .     (*)

One implication of this inequality  (*)  for cases 2 and 3 is that   Ç·H·c = λ·W·c + (1–λ)·M·c  for 
some scalar  λ ;  it comes about as follows:  Consider a vector   r := λ·W·c + ω·M·c – Ç·H·c    for 
scalars  λ  and  ω  chosen to satisfy  r'·W·c = r'·M·c = 0 .  Such scalars exist because they satisfy 
the  Normal Equations  for a  Least-Squares Problem  
   “ Choose  λ  and  ω  to minimize  r'·r = (λ·W·c + ω·M·c – Ç·H·c)'·(λ·W·c + ω·M·c – Ç·H·c) ”
that can always be solved for finite values  λ  and  ω  though not necessarily uniquely.  When  r  is 
substituted for  x  in  (*)  it satisfies   Ç·r'·H·r + 2ß·r'·r ≤ max{r'·M·r ,  r'·W·r}  for all  ß .  Letting  
ß → +∞  reveals that  r = o ;  in other words  Ç·H·c = λ·W·c + ω·M·c .  Premultiplying this 
equation by  c'  to get  1 = λ + ω  confirms the assertion above that   Ç·H·c = λ·W·c + (1–λ)·M·c  
for some scalar  λ  in cases 2 and 3.  We have not yet proved  0 ≤ λ ≤ 1 .

•  Case 2:  Suppose   c'·W·c = c'·M·c = Ç·c'·H·c   in  (#)  above but  W·c ≠ M·c .  In this case  W·c  
and  M·c  are linearly independent because otherwise,  were  W·c = ω·M·c  for some scalar  ω ,  
say,  premultiplying by  c'  and invoking this case’s suppositions would produce a contradictory  
ω = 1 .  This linear independence will constrain  λ  in the equation   Ç·H·c = λ·W·c + (1–λ)·M·c  to 
satisfy  0 ≤ λ ≤ 1  as follows:  Choose any vector  v  for which  v'·W·c > 0 > v'·M·c ;  one such 

choice is  v := W·c/√(c'·W2·c) – M·c/√(c'·M2·c) .  Substitute  v  for  x  in  (*),  replace  Ç·H·c  
there by  λ·W·c + (1–λ)·M·c ,  and let  ß  approach first  –∞  and then  +∞  to deduce first that   
v'·M·c ≤ λ·v'·W·c + (1–λ)·v'·M·c ≤ v'·W·c  and then that  0 ≤ λ ≤ 1  as has just been claimed.

Now set  T := λ·W + (1–λ)·M .  Its ellipsoid  TT ⊇  MM∩WW  because of  (‡).  Next we shall see why  
x'·T·x ≥ Ç·x'·H·x ≥ x'·H·x  for all vectors  x ,  but beginning with almost all.

Given any  x  for which  c'·(W–M)·x ≠ 0  set   ß := x'·(W–M)·x/c'·(W–M)·x   and   y := x – ß·c/2 .  
After   y'·W·y = y'·M·y = y'·T·y   has been confirmed,  substituting  y  for  x  in  (#)  implies  
y'·T·y ≥ Ç·y'·H·y ,  which this case’s suppositions about  c  and  Ç·H·c = T·c  transform into the 
desired inequality   x'·T·x ≥ Ç·x'·H·x   now valid for all  x  except maybe those in the plane whose 
equation is  c'·(W–M)·x = 0 .  Continuity eliminates this exception,  so  (◊)  is true this case.

•  Case 3:  Suppose   c'·W·c = c'·M·c = Ç·c'·H·c   in  (#)  above and  W·c = M·c .  This case will 
invoke the  Interposition Procedure  recursively upon the  (n–1)-dimensional  subspace  ¥  of all 
vectors  y  satisfying  c'·H·y = 0  ( = c'·M·y = c'·W·y  since  Ç·H·c = W·c = M·c  now) .
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Every vector  x  in the whole space possesses a unique decomposition  x = ß·c + y  with  y ∈  ¥ ;  
and both   x'·(W – Ç·H)x = y'·(W – Ç·H)y  and  x'·(M – Ç·H)x = y'·(M – Ç·H)y   because of this 
case’s suppositions.  Consequently the decomposition projects inequalities like  (#)  and  (◊)  from 
all  x  in the whole space onto analogous inequalities satisfied by all  y  in the subspace  ¥ ,  thus 
reducing the task of finding  T := λ·W + (1–λ)·M  with  0 ≤ λ ≤ 1  to the same task but satisfying   
ç·y'·H·y ≤ y'·T·y  only for all  y ∈  ¥  given  ç := info≠y∈ ¥ max{y'·M·y ,  y'·W·y}/y'·H·y ≥ Ç .  To 
interpret this in terms of matrices rather than subspaces,  choose any basis for  ¥  and append  c  to 
it to get a new basis for the whole space.  Then change to new coordinates using this new basis to 

transform  M,  W,  H  and  T  into congruent matrices respectively  ,  ,    and  

  in which  ω = c'·M·c = c'·W·c = Ç·c'·H·c = c'·T·c  regardless of  µ ,  and the new smaller 

matrices  M,  W,  H  and  T  play the same rôles as the old matrices did though with a new  ç ≥ Ç .

Interposition is accomplished trivially if  ¥  is  1-dimensional;  and otherwise the procedure is 
accomplished by repeating in  ¥  (upon the new smaller matrices)  the calculations carried out 
above for the whole space  (upon the original matrices).  Thus ends the  Interposition Procedure.

Proof of the Theorem
On the one hand,  suppose  H  is the matrix of a  Tight  ellipsoid  HH ⊇  MM∩WW .  The foregoing 
interposition procedure chooses  λ  in  0 ≤ λ ≤ 1  to produce the matrix  T := λ·W + (1–λ)·M  of an 
ellipsoid  T  satisfying  HH ⊇  TT ⊇  MM∩WW  which,  since  HH  is  Tight,  implies that  H = T  as the  
Theorem  claims.

On the other hand suppose now that  HH  is the ellipsoid belonging to a matrix  H = ß·W + (1–ß)·M  
for some  ß  in  0 ≤ ß ≤ 1 ;  why must  HH  be  Tight  as the  Theorem  claims?  If any ellipsoid’s 
surface  ∂YY  can slip between  HH  and  MM∩WW ,  the interposition procedure chooses again  λ  in  
0 ≤ λ ≤ 1  to produce another matrix  T := λ·W + (1–λ)·M  of an ellipsoid  TT  now satisfying  
HH ⊇  YY ⊇  TT ⊇  MM∩WW  which,  says the  Corollary,  implies that  x'·H·x ≤ x'·T·x  for all  x .  This 
inequality simplifies to  (ß–λ)·x'·(W–M)·x ≤ 0  for all  x ;  since the anti-triviality assumption 
makes  x'·(W–M)·x  positive for some vectors  x ,  negative for others,  the inequality forces  λ = ß  
and then  T = H ,  and this pinches  HH ⊇  YY ⊇  TT = HH  to force  YY = HH .  End of proof.

Including the  Interposition Procedure,  the proof takes over three pages.  Must it be so long?

The Smallest Ellipsoids Circumscribing the Intersection of Two Ellipsoids
So long as  “smaller than”  implies  “contained within”,  the smallest circumscribing ellipsoids 
must be found among the  Tight  ellipsoids,  and the  Theorem  exhibits all of these.  Which of 
these is smallest depends upon what  “smallest”  means.  Three possibilities come to mind.  The 
first,  “smallest in content”,  is independent of the choice of basis because the ratio of one body’s 
content to another’s does not change when coordinates change from one basis to another.  The 
other possibilities make sense in  Euclidean  spaces equipped,  as every  Euclidean  space can be,  
with an orthonormal basis.  A change of basis will help us examine all three possibilities.

M o

o' ω
W o

o' ω
H o

o' ω Ç⁄

T o

o' ω
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Any two real symmetric positive (semi)definite  n-by-n  matrices  W  and  M  can be diagonalized 
simultaneously by any one of infinitely many congruences;  this is summarized succintly in  §8.7  
of the text by  Golub and Van Loan (1996).  Each congruence is a change of basis that transforms  
W  and  M  into  C'·W·C = Diag[ωj]  and  C'·M·C = Diag[µj]  for one of infinitely many suitable 
invertible  n-by-n  matrices  C .  No matter which of these is chosen,  the same  (multi)set  {µj /ωj}  
of  n  ratios,  not necessarily all distinct nor all finite,  will be obtained.  The same congruence also 
diagonalizes the  Tight  ellipsoids’ matrices  T := λ·W + (1–λ)·M ,  transforming them into  
C'·T·C = Diag[λ·ωj + (1–λ)·µj] .  So far as choosing  λ  to minimize the content of a  Tight  
ellipsoid  TT ⊇  MM∩WW  is concerned,  the given matrices  W  and  M  might as well have been given 
diagonalized already,  letting  C := I .

Minimizing a  Tight  Ellipsoid’s Content
So far as choosing  λ  to minimize the content of a  Tight  ellipsoid  TT ⊇  MM∩WW  is concerned,  
those coordinate directions for which  ωj = µj  might as well be disregarded since corresponding 
entries in the diagonal  C'·T·C  do not change when  λ  changes.  Deleting these equal entries from 
all diagonals is geometrically tantamount to projecting all ellipsoids under consideration onto the 
lower-dimensional subspace where the shapes of  Tight  ellipsoids  are influenced by  λ .  In the 
next paragraph we assume for each  j  that either  ωj > µj ≥ 0  or  µj > ωj ≥ 0 ;  and each of these 
orderings must occur at least once lest the anti-triviality assumption be violated.

The choice  λ  that minimizes the content of the  Theorem’s  Tight  TT  must maximize  det(T)  or,  
equivalently,  maximize  ∏j (λ·ωj + (1–λ)·µj) .  The det-maximizing  λ  is a zero of the derivative   

ƒ(λ) := d log(det(T))/dλ = ∑j 1/(λ + µj/(ωj–µj))   provided it has a zero in the interval  0 ≤ λ ≤ 1 .  
If it does,  it has just one zero  λ  because  ƒ(λ)  is a monotone decreasing function in that interval.  
Otherwise the det-maximizing  λ := 0  if  ƒ(0) < 0  or  λ := 1  if  ƒ(1) > 0 ;  in such cases the  Tight  
ellipsoid  TT  of smallest content is either  MM  or  WW .  This is not unusual;  an example has  n = 2 ,  
µ1 /ω1 = 5/4 ,  µ2 /ω2 = 1/2 ,  λ = 1  and the  Tight  TT  of minimum area is   TT = WW .  In general,  
though,  λ < 1  and  TT ≠ WW  if any  ωj = 0 < µj ,  and  λ > 0  and  TT ≠ MM  if any  µj = 0 < ωj .

Example 3:  Tight with Minimum Content can be Too Long
How much bigger than  MM∩WW  can the  Tight  TT  of minimum content be?  Fritz John’s Ellipsoid 
Theorem  says   TT ⊇  MM∩WW ⊇  TT /√n ;  this example shows why no divisor smaller than  √n  can 
be valid in general:  First choose any tiny positive  ε ,  the tinier the better,  and then set every  
ωj := ε  and every  µj := 1  except  µn := 0 ;  now  ƒ(λ) = (n–1)/(λ – 1/(1–ε)) + 1/λ  vanishes at  

λ := 1/(n·(1–ε)) ,  making  T := λ·W + (1–λ)·M = Diag[1–1/n, 1–1/n, …, 1–1/n, ε/(n·(1–ε))] .  
Described geometrically,  this example has an infinite circular cylinder  MM  of radius  1 ,  a huge 
sphere  WW  of radius  1/√ε ,  a long rod  MM∩WW  cut from the cylinder by the sphere,  and a longer 
cigar-shaped ellipsoid   TT ⊇  MM∩WW ⊇  TT /√n·(1–ε) .  The width of  TT  exceeds the width of the 
cylindrical rod  MM∩WW  by a modest factor  1/√1–1/n ,  but the length of  TT  exceeds the rod’s 
length by a large factor  √n·(1–ε)   when the space’s dimension  n  is big.

The circumscribing ellipsoid of smallest content need not be nearly smallest in any other sense.
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Minimizing a  Tight  Ellipsoid’s Box-Diameter
Henceforth  MM∩WW  is assumed bounded for the sake of a slightly simpler exposition.

In an  n-dimensional  Euclidean  space the first gauge that comes to mind to measure the size of an 
ellipsoid  TT  is the length of its major axis,  which turns out to be   2/√(minimum eigenvalue of  T)  
where  T  is the positive definite matrix belonging to   TT := {x:  x'·T·x ≤ 1 } .  Of all  Tight  
TT ⊇  MM∩WW ,  the smallest by this gauge is found by choosing  λ  in  0 ≤ λ ≤ 1  to maximize the 
least eigenvalue of  T := λ·W + (1–λ)·M .  Like so many other ideas that come first to mind,  this 
gauge turns out to be a poor idea.  Besides being costly to compute,  the  Tight  TT  with the 
smallest major axis tends to rotundity wherever  MM∩WW  is long and narrow.  For instance,  in 
Example 3  the major axis of the  Tight  TT  is minimized when  λ := 1  and then  TT = WW  is the 
huge sphere of diameter  2/√ε  far fatter than the slender rod  MM∩WW  whose thickness is  2 .

A gauge better for our purposes should strike a compromise between the excessive width of the  
Tight  TT  with the smallest major axis,   and the excessive length of the  Tight  TT  with the least 
content.  And an affordable computational cost is another attribute we desire for the  TT  smallest  
by a better gauge.  Here is a candidate:

Let’s abbreviate  “rectangular parallelepiped”  to  “box”.  A box’s diameter is the length of any of 
its interior diagonals.  Define the  Box-Diameter  Bd(TT)  of a body  TT  to be the least of the 
diameters of its circumscribing boxes.  To compute the  Box-Diameter  Bd(TT)  of an ellipsoid  TT  

from its matrix  T  turns out to be comparatively easy:  Bd(TT) := 2√(Trace(T–1)) .  Moreover every 
box that barely circumscribes ellipsoid  TT ,  touching it with every face,  turns out to have that 
same least diameter.  In  Euclidean  space  Bd(TT)  seems to sum up concisely the overall size of an 
ellipsoid  TT ,  and its computational cost is tolerable.

To minimize  Bd(TT)  among  Tight   TT ⊇  MM∩WW ,  we must choose  λ  for  T := λ·W + (1–λ)·M  to 

minimize  Trace(T–1) .  The congruence that transformed  T  into  C'·T·C = Diag[λ·ωj + (1–λ)·µj]  
above produces 

 Trace(T–1) = Trace(C'–1·Diag[λ·ωj + (1–λ)·µj]–1·C–1) 

       = Trace((C'·C)–1·Diag[λ·ωj + (1–λ)·µj]–1) = ∑j θj/(λ·ωj + (1–λ)·µj) 

wherein  θj  is the  jth  diagonal element of  (C'·C)–1
 .  Every  θj > 0 .  The minimizing  λ  is a zero 

of the derivative   Θ(λ) := d Trace(T–1)/dλ = ∑j θj·(µj–ωj)/(λ·ωj + (1–λ)·µj)2   provided it has a 
zero in the interval  0 ≤ λ ≤ 1 .  If it does,  it has just one zero  λ  because  Θ(λ)  is a monotone 
increasing function in that interval.  Otherwise the minimizing  λ := 0  if  Θ(0) > 0  or  λ := 1  if  
Θ(1) < 0 ;  in such cases the  Tight  ellipsoid  TT  of smallest box-diameter is either  MM  or  WW .  
This is not unusual;  an example has  n = 2 ,  θ1 = θ2 = 1 ,  µ1 /ω1 = 5/4 ,  µ2 /ω2 = 1/2 ,  λ = 1  and 
the  Tight  TT  of minimum box-diameter is   TT = WW .  In general,  though,  λ < 1  and  TT ≠ WW  if 
any  ωj = 0 < µj ,  and  λ > 0  and  TT ≠ MM  if any  µj = 0 < ωj .

In the excluded case,  when some  ωj = µj = 0 ,  the foregoing computations must be preceded by 
the orthogonal projection of the vector space upon the orthogonal complement of the intersection  
Z  of the nullspaces of  M  and of  W ;  compare the paragraph after the  Corollary  above.
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Example 3  Revisited:  Tight,  Thin and Not Too Long
This example had  n-by-n  matrices  C := I ,  W := ε·I  and  M := I – u·u'  for any very tiny  ε > 0  

and  u' := [0, 0, 0, …, 0, 1] .  Now  Θ(λ) = (n–1)·(1–ε)/(1 – (1–ε)·λ)2 – 1/(ε·λ2)  vanishes at  
λ := (1 – √(n–1)·ε/(1–ε))/(1 – n·ε)  provided  0 < ε < 1/n .  This  λ  minimizes  Bd(TT)  for  
T := λ·W + (1–λ)·M .  To simplify the comparison of this ellipsoid  TT  with the long narrow rod  
MM∩WW ,  suppose that its dimension  n  is huge and  ε  is still negligible compared with  1/n .

Then the width of  TT  is about  2/√(n–1)·ε  which is much bigger than the width  2  of  MM∩WW  but 
small compared with its length  2/√ε ,  which is very slightly less than the length of  TT .  This  
Tight  ellipsoid of minimized box-diameter approximates the shape of rod  MM∩WW  far better than 
did the  Tight  ellipsoids of either minimum diameter or minimum content,  and yet this  TT  does 
not deserve to be called  “optimal”.  A slightly smaller  λ  can produce another  Tight  TT  at most a 
few percent longer but at least an order of magnitude slimmer.

Perhaps more than anything else,  what this example teaches is that in ostensibly uncomplicated 
situations the use of simple-minded criteria for optimality can produce results far from optimal in 
a broader sense.  But you probably know that already.  Too many others don’t,  alas.

Remarks and References
Simultaneous diagonalization of two positive (semi)definite matrices is an eigenvalue calculation 
treated succinctly in  §8.7  of the text  Matrix Computations  by  G.H. Golub  and  C.F. Van Loan 
(1996, 3rd ed., Johns Hopkins Press, Baltimore).  They supply a copious reading list too.

Fritz John’s Ellipsoid Theorem (1948)  and its proof covering arbitrary compact convex bodies 
were his contribution to the  1948 Courant Anniversary Volume  (InterScience/Wiley,  New 
York).  A direct proof for centrally symmetric convex bodies is on my web page near the end of  
<http://www.cs.berkeley.edu/~wkahan/MathH110/NORMlite.pdf>.  More applications of  Fritz John’s  
Ellipsoid Theorem  and another longer proof for its centrally symmetric case appear in  Keith 
Ball’s  lecture notes  “An Elementary Introduction to Modern Convex Geometry”,  pp. 1-58 of  
Flavors of Geometry, MSRI Publications - Vol. 31, edited by Silvio Levy  for  Cambridge 
University Press, Cambridge, 1997.  Don’t rely too much upon the title’s word  “Elementary”.  
Ball’s  notes are also posted at  <http://www.msri.org/publications/books/Book31/files/ball.pdf>.

In the late  1960s  the application of ellipsoids to circumscribe other bodies weighed on many 
minds.  The earlier version of this work published in  1968  cited …
•  D.K. Faddeèv and V.N. Faddeèva (1968) “Stability in Linear Algebra Problems”  Proc. IFIP 

Congress 68  in  Edinburgh.
•  F.C. Schweppe (1967) “Recursive state estimation when observation errors and system inputs 

are bounded”  Sperry Rand Research Centre Report RR-67-25, Sudbury, Mass.
•  W. Kahan (1967) “Circumscribing an ellipsoid about the Minkowski sum of given ellipsoids”  

(Submitted to J. Linear Algebra).  I cannot recall what happened to this submission.  An 
updated and much expanded version will be posted on my web page at  <…/MinkoSum.pdf>.

•  W. Kahan (1968) “An ellipsoidal error bound for linear systems of differential equations” 
(Manuscript to appear).  Now see my web page’s  <…/Math128/Ellipsoi.pdf>.
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Parts of the material in the last two citations were quoted in the late  Fred C. Schweppe’s  textbook  
Uncertain Dynamic Systems  (1973, Prentice-Hall, NJ)  though it is devoted mostly to a treatment 
of probabilistic uncertainty.  In the late  1960s  ellipsoidal bounds for errors and/or uncertainty 
weighed upon many minds but were considered extravagant;  they augmented an  n-dimensional  

computation of desired results with an  n2-dimensional  computation of bounds for those results’ 
uncertainties.  Computation costs so little nowadays that almost any extravagance is affordable,  
though few practitioners are inclined to perform enormously more computation to assess a result’s 
uncertainty than was performed merely to obtain that result.

An independent redevelopment of ellipsoidal bounds has been published by  Arnold Neumaier  in  
“The wrapping effect, ellipsoid arithmetic, stability and confidence regions” pp. 175-190 in  
Computing Supplementum 9 (1993), <http://solon.cma.univie.ac.at/papers.html#ell>.  Further 
recent work along similar lines has been published by  Pravin P. Varaiya and Alex A. Kurzhanskiy 
(fils)  in “Ellipsoidal Techniques for Reachability Analysis of Discrete-Time Linear Systems” 
IEEE Trans. Automatic Control,  to appear in 2006.   Another work is  “On Ellipsoidal Techniques 
for Reachability Analysis”  by  Varaiya and Alex B. Kurzhanski (père)  in  Optimization Methods 
and Software 17 (2002) pp. 177-237.  They concentrate upon ascertaining the boundary of a 
region rather than merely circumscribing it.  Much of their work is posted on  Varaiya’s web page:  
<http://paleale.eecs.berkeley.edu/~varaiya/hybrid.html>.  Beware:  They do not define  
“Tightly”  so tightly as it is defined here,  where ellipsoid  TT ⊇  BB  Tightly  just when  no other 
ellipsoid  HH  whatever  can satisfy  TT ⊇  HH ⊇  BB .  They let  TT  be called  “tight”  if both it and  HH  
are restricted to the same family of ellipsoids generated by one of their parameterized formulas.

So far as I know,  a few questions that required further study in  1968  remain unanswered.  What 
characterizes the ellipsoids that circumscribe  Tightly  the intersection of several ellipsoids?  What 
characterizes ellipsoids that circumscribe  Tightly  the intersection of two ellipsoids with different 
centers?  To decide numerically whether two ellipsoids,  one described by  (x–w)'·W·(x–w) ≤ 1  
and the other by  (x–m)'·M·(x–m) ≤ 1 ,  intersect nontrivially for given numerical data  w,  W,  m  
and  M  seems best accomplished by an eigenvalue computation:  A simultaneous diagonalization 
of  W  and  M  is followed by a search for all the real zeros  λ  of a rational function somewhat like  
Θ(λ)  and subsequent tests performed upon them.  Cited in  1968  were …
•  J.W. Burrows (1966) “Maximization of a second-degree polynomial on the unit sphere”  

pp. 441-4 in Math. of Comp. 20.
•  G.E. Forsythe and G.H. Golub (1965) “On the stationary values of a second-degree polynomial 

on the unit sphere” pp. 1050-1068 in J. Soc. Indust. Appl. Math. 13.
In principle the same decision about intersection could be rendered by an exact computation  (no 
rounding errors)  of a few polynomial discriminants involving the data  w,  W,  m  and  M ;  but the 
computational cost of those polynomials appears too horrible to contemplate so far as I know.
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