

Filename: Grail version of July 5, 2005 5:51 am What Is It ?

A Demonstration of Presubstitution for ∞/∞

What Is It ?
Presubstitution supplies a value or a simple procedure to cope with floating-point exceptions

Invalid Operation, Overflow, Division-by-Zero, Underflow and Inexact
in a way better than aborting execution of a program when an exception occurs. The IEEE 754
(1985) standard specifies default presubstitutions when a programmer specifies no others:

“Division-by-Zero” really means “Infinite Result Exactly from Finite Operands”. An Invalid
Operation creates a new NaN (Not-a-Number) just when any other finite or infinite result would
most likely be more confusing; examples are 0/0 , ∞/∞ . 0·∞ , ∞ – ∞ , real √… < 0 , … among
many others. Gradual Underflow ensures that the gap between adjacent floating-point numbers
is a monotone non-decreasing function of their magnitudes instead of jumping by too many orders
of magnitude as the numbers pass through 0 , which is what happens if underflows flush to 0.0 .
All but a few esoteric programs, most concerned with exact integers, ignore Inexact exceptions.

The default presubstitutions specified by IEEE 754 were chosen carefully to maximize the
likelihood that programmers could either ignore the exceptions or postpone their detection and
handling to convenient places in their programs. To this end, each exception raises its own
sticky flag that can be reset (put down) only by an explicit command in the program, which
may also test, save or restore a flag. All that should be a long story for another day.

Alternatives
What alternative to an IEEE 754 default might a programmer choose? One alternative aborts or
at least pauses when a subprogram being debugged generates an unanticipated exception.
Aborting should never be the choice for a subprogram released to users lest control be wrested
from a user’s main program and sent into Limbo. (This is where innocent but unbaptized souls
languish forever between Heaven and Hell.) Another alternative filters out exceptions by testing
operands in advance and branching to special fix-up code whenever necessary. This can degrade
performance when the exception would occur so rarely that the branch would almost never be
taken but the test levies a tax upon performance all the time. More important, tests-and-branches
complicate a program’s structure and enlarge its capture-cross-section for mistakes.

Exception IEEE 754 Default Presubstitution

Invalid Operation NaN

Overflow ±∞ with the appropriate sign

Division-by-Zero ±∞

Underflow Gradual, to a Subnormal number or zero

Inexact Rounded (or infinite Overflowed) Result
Prof. W. Kahan, E.E.& C.S.Dept., Univ. of Calif. @ Berkeley WORK IN PROGRESS Page 1/10

Filename: Grail version of July 5, 2005 5:51 am Ideal Language

Ideal Language
Ideally a subprogram’s text should depart minimally from the simplest subprogram that handles
all the normal cases well. Ideally, rare exceptions generated within a subprogram’s inner loop
should be handled by a footnote (like a flag-test-and-branch) appended after the loop or by a
preface (like an invocation of a non-default presubstitution) prefixed before the loop.

In a block-structured programming language, an invocation of a non-default presubstitution acts
like a declaration of local variables at the beginning of a block. These variables are irrelevant
outside the block’s scope, as is the non-default presubstitution. Depending upon a language’s
conventions, local variables may or may not be inherited by nested sub-blocks; the same goes for
presubstitution. In a programming language whose variables are all global, so is presubstitution.

Designers and implementors of programming languages tend to regard presubstitution as a
nuisance, at best a form of “syntactic sugar” for other programming locutions, at worst an
invitation to engage in the arcana of floating-point hardware traps. Actually, presubstitution is the
only portable way found so far by which applications programmers may state how they wish to
handle certain kinds of transgressions, corner cases and other exceptions generated sometimes by
extreme data and often by accidents incidental to an otherwise auspicious algorithm.

“… the only portable way ” ?

Readers who balk at this extravagant assertion are invited to test their programming prowess on an
example whereon non-default presubstitution works better than almost everything else.

Example: The Holy Grail
Let us consider inner loops from a program designed to compute a few hundred eigenvalues and
eigenvectors of a real symmetric n-by-n matrix of huge dimensions n > 20000 on a distributed
computer system with many processors working in parallel. Such computations arise in physics,
chemistry and structural mechanics, among other areas. This program succeeds in establishing
the required orthogonality among eigenvectors computed on different processors without slowing
them down with intercommunication that would consume rather more time than the arithmetic
takes. This program has been called “The Holy Grail” because it has been sought for decades.
Currently it is the only program that can guarantee orthogonal eigenvectors for matrices too many
of whose eigenvalues are clustered tightly, as occurs for structures with many (near-)symmetries.

Details can be found in papers by B.N. Parlett and others in Acta Numerica (1995), Linear
Algebra and Applications (1997 and 2000), and SIAM J. on Matrix Analysis and Applications
(2004), with more to come. But those details won’t matter here.

Very little about the loops’ context need be known to appreciate how they
benefit from presubstitution, and that little will be supplied forthwith.

Input data are a positive integer index m , a real x and two real arrays D(0:n) and LLD(0:n)
of finite nonzero numbers except D(0) := LLD(0) := LLD(n) := 0 . Otherwise LLD(j)·D(j) > 0 .
The arrays determine the matrix’s eigenvalues z1 < z2 < z3 < … < zn–1 < zn as the n zeros of
two rational functions ƒ(x) and ß(x) generated by the loops. The loop running forward through
the arrays generates ƒ(x) ; running backwards generates ß(x) ; both have the same zeros zj .
Prof. W. Kahan, E.E.& C.S.Dept., Univ. of Calif. @ Berkeley WORK IN PROGRESS Page 2/10

Filename: Grail version of July 5, 2005 5:51 am Here are the loops:

Unfortunately each rational function has n poles too, one between every pair of adjacent zeros
zj , and another pole at x = ∞ . The n–1 finite poles of ƒ usually differ at least slightly from
those of ß . These slight differences will make all the difference when an eigenvector is to be
computed after its eigenvalue zm has been found, but the eigenvector is a detail that won’t matter
here. What will matter here is the computation of zm by a zero-finding process that generates a
sequence of values of x intended to converge to zm . In principle, zm is a value of x at which
ƒ(x) and ß(x) reverse sign by descending through zero.

In practice zm can lie arbitrarily close to a neighbor zm±1 and, worse, so close to a pole of ƒ(x)
and/or ß(x) that their graphs, plotted at discrete floating-point numbers, may fail to reveal zm
by crossing the x-axis there. In such a case zm will be revealed as a discontinuity of an integer
index k(x) computed in the same loops as compute ƒ(x) and ß(x) . This index has the property
that zk(x) < x ≤ zk(x)+1 provided we adopt conventions z0 := –∞ and zn+1 := +∞ . Then zm is
the value of x at which k(x) jumps from m–1 to m ; this jump can be found easily by binary
chop because, despite roundoff, the computed k(x) is a nondecreasing function as expected.
(This is hard to prove even after the observation that, when finite, ∂ƒ/∂x ≤ –1 and ∂ß/∂x ≤ –1 .)

Thus has the context of the loops been established: By means external to the loops, a sequence of
real samples x will be generated converging to a value zm at which k(x) jumps up from m–1
to m and, ideally, ƒ(x) and ß(x) decrease through zero as x increases.

Here are the loops:
Forward loop: Backward loop:
 k := 0 ; y := –x ; k := 0 ; y := D(n) – x ;
{ Presubstitute 1.0 for ∞/∞ ; { Presubstitute 1.0 for ∞/∞ ;
 For j = 1 up to n do For j = n–1 down to 0 do
 { ƒ := D(j) + y ; { ß := LLD(j) + y ;
 y := (y/ƒ)·LLD(j) – x ; y := (y/ß)·D(j) – x ;
 k := k + SignBit(ƒ) ; k := k + SignBit(ß) ;
 };}… Now ƒ = ƒ(x) and k = k(x) . };}… Now ß = ß(x) and k = k(x) .

Function SignBit(ƒ) returns a copy 1 or 0 of its argument’s sign bit even if the argument is ±0 .
The statement “Presubstitute 1.0 for ∞/∞ ” affects only the division (y/ƒ) or (y/ß) and only
when it would be (∞/∞) , in which case 1.0 is substituted for a quotient that would otherwise
create a NaN , raise the Invalid Operation flag, and destroy the validity of subsequent passes
around the loop. Before discussing alternatives to the “Presubstitute …” statement we must
introduce one more complication: The variables x, k, y, ƒ and ß need not be simply scalars.

Most computers nowadays divide too slowly. Each pass through the loop is spent mostly waiting
for its division to finish even if it overlaps the signbit(…) function and anticipatory fetches of
elements from the arrays D(…) and LLD(…) into registers. Many computers pipeline divisions
so that they can be overlapped. These computers can interleave a loop’s computations for several
samples of x perhaps all estimates of one eigenvalue zm or else simultaneous estimates for, say,
zm–1 , zm and zm+1 . Consequently the variables x, k, y, ƒ and ß will be arrays upon which
Prof. W. Kahan, E.E.& C.S.Dept., Univ. of Calif. @ Berkeley WORK IN PROGRESS Page 3/10

Filename: Grail version of July 5, 2005 5:51 am Presubstitution in the Loops

arithmetic is performed elementwise to obtain results for several samples of x simultaneously,
thus speeding up computation by exploiting more fully a processor’s capacity for concurrency
and, incidentally, reducing cache misses during accesses to huge arrays D(…) and LLD(…) .

Presubstitution in the Loops
How does their non-default presubstitution work? It will take effect if (an element of array) ƒ or
ß vanishes during some pass other than the last through the loop. Then y becomes ±∞ , as does
ƒ or ß in the next pass, wherein (y/ƒ) or (y/ß) is changed from (∞/∞) to the correct limit 1
that would have been obtained if the earlier ƒ or ß had merely become infinitesimal instead of
vanishing. And the same non-default presubstitution 1 works if, instead of vanishing, ƒ or ß
becomes so tiny that y overflows to ±∞ in some pass other than the last (where it won’t matter).

Now let us consider alternatives to non-default presubstitution. How must the loops change if
“Presubstitute 1.0 for ∞/∞ ” is unavailable and thus deleted from the foregoing loops’ texts?

An Obvious Alternative
An obvious alternative leaves the loop bodies unchanged and lets ∞/∞ create a NaN that will
propagate to a final value of ƒ or ß . Then tests appended after the loop can branch to recompute
the spoiled value(s) of ƒ or ß in a slower loop devised to prevent division-by-zero or overflow
from creating ∞ . This obvious alternative works too slowly on hardware that traps whenever it
encounters a NaN and then takes an order of magnitude longer than a division to propagate the
NaN through arithmetic operations. The slowdown is intolerable if one processor in a distributed
system creates a NaN during an early pass through the loop, forcing other processors to wait
while the unlucky one copes with its NaNs. Such NaNs are very improbable if the given data is
chosen at random, but occur often if the given huge matrix has many tight clusters of eigenvalues,
which is the the situation that motivated the Holy Grail’s development. Therefore this obvious
alternative is unacceptable to a programmer who intends his program to be portable (not much
slower than competing programs) to hardware that handles NaNs too slowly.

An obvious fix-up for the obvious alternative is to turn the trap on NaN into a break out of the
loop, abandoning whatever it has computed and beginning anew with a slower loop devised to
prevent division-by-zero or overflow from creating ∞ . For hardware that does not trap, the
break has to be inserted into the loop as a test-isNaN(y)-and-branch. Only an unusually clever
optimizing compiler will plant the test somewhere overlapped by a division logically subsequent
to the test; otherwise the test-and-branch will slow down the loop when no NaN occurs. This
fix-up also increases the likelihood that all the elements of arrays k(x) and ƒ(x) or ß(x) will be
computed in the slower loop though only one element would have been contaminated by NaNs.
So, this obvious fix-up is unacceptable to a programmer who intends his program to be portable
(not much slower than competing programs) regardless of how slowly hardware handles NaNs.

A less obvious way to fix up the obvious alternative partitions each loop’s execution into n/N
batches for some suitable positive integer N rather less than n . Each batch runs through the
original loop at most N times and then tests isNaN(y) to determine whether the batch should be
repeated with the loop body modified to preclude NaNs, albeit slowly, starting from the data
saved at the end of the previous successful batch. The batched forward loop might look like this:
Prof. W. Kahan, E.E.& C.S.Dept., Univ. of Calif. @ Berkeley WORK IN PROGRESS Page 4/10

Filename: Grail version of July 5, 2005 5:51 am The Batched Forward Loop:
The Batched Forward Loop:
 k := 0 ; y := –x ;
 For i = 0 up to floor(n/N) do … a batch of loops:
 { ko := k ; yo := y ;
 For j = 1 + i·N up to min(n, (1+i)·N) do … the faster loop:

{ ƒ := D(j) + y ;
 y := (y/ƒ)·LLD(j) – x ;
 k := k + SignBit(ƒ) ;
 } ;

 If any(isNaN(y)) then do ... a batch of slower loops:
{ k := ko ; y := yo ;
 For j = 1 + i·N up to min(n, (i+1)·N) do
 { ƒ := D(j) + y ;

q := if isInfinite(y) then 1.0 else y/ƒ ;
y := q·LLD(j) – x ;
k := k + SignBit(ƒ) ;

 };};}… Now ƒ = ƒ(x) and k = k(x) .

The batched loop appears twice-nested; actually it is thrice-nested because x, y, k and ƒ are
generally arrays upon which arithmetic is performed elementwise. Predicate any(isNaN(y))
turns true when any one element of y becomes NaN , in which case the slower loop is executed.
An alternative that may run faster on big arrays y is to test whether the Invalid Operation Flag
has been raised, and then lower it and execute the slower loop. Therein the predicate isInfinite(y)
acts elementwise to put either 1.0 or the appropriate element of the elementwise quotient-array
y/ƒ into a temporary array q . Ideally, any unused quotient in the array y/ƒ should not be
computed; if it is, the NaN created thereby will also raise an Invalid Operation Flag that should
be lowered lest it distract the program(mer) later. Perhaps this ideal is too much to ask.

Omitted from the text of The Batched Forward Loop is any indication of how N was chosen.
If too small, too much time will be wasted saving arrays ko := k and yo := y and either
scanning y for any(isNaN(y)) or else testing a flag to which access is typically slow.

If N is too big, too much time will be wasted when an element of ƒ vanishes, spawning an ∞
which spawns a NaN in the next pass through the loop, which NaN then retards subsequent
passes through the faster loop. This can happen only when an element of x is so unlucky as to

fall upon one of fewer than n2/2 arguments; these are all the poles of the loop’s sequence of
values ƒ . When the array of values x all approximate eigenvalues in a tight cluster (the Holy
Grail’s raison d’être) more than one of x’s elements may be unlucky, most likely in different
batches. So, if N is too big and x too unlucky, too much time may be wasted more than once.

An optimal choice for N is roughly √2s·n/p in which p is the probability of an unlucky x and
small factor s is very roughly the ratio of two times, first the time to store arrays k and y , and
second the time taken to pass once through the faster loop when y is NaN . The second time
varies by orders of magnitude over diverse machines. How shall a conscientious programmer
weigh these imponderables when designing a single program to be portable (competitive in speed
etc. with other programs) to diverse machines some of them not yet built?
Prof. W. Kahan, E.E.& C.S.Dept., Univ. of Calif. @ Berkeley WORK IN PROGRESS Page 5/10

Filename: Grail version of July 5, 2005 5:51 am An Unobvious Alternative
The batched fix-up for the obvious alternative to non-default presubstitution imposes, upon our
conscientious programmers, burdens that many of them are perversely proud to bear, but also
imposes something worse upon the rest of us: An elegant and short loop has been turned into a
monster with a bloated capture-cross-section for unreliable and unpredictable performance.

An Unobvious Alternative
An unobvious alternative to non-default presubstitution modifies the loops to prevent division-by-
zero or overflow from creating ∞ . One modification follows the statement “ ƒ := D(j) + y ; ” in
the forward loop by an insertion “ ƒ := ƒ + µ ; ” wherein µ is smaller than uncertainty inherited
by ƒ from roundoff, and yet big enough that the next expression “ (y/ƒ)·LLD(j) ” cannot
overflow. A suitable constant µ , if one exists, must satisfy inequalities like

 æ·minj{|D(j)|}/4 ≥ µ ≥ 2·maxj{|D(j)·LLD(j)|}/Ω
wherein

 æ := 1.0 – NextAfter(1.0, 0.0) is a rounding error threshold and
 Ω := NextAfter(+∞, 0.0) is the biggest finite floating-point number.

For IEEE 754 Single Precision æ = 1/224 ≈ 6/108 and Ω ≈ 3.4·1038 . For IEEE 754 Double

Precision æ = 1/253 ≈ 1.1/1016 and Ω ≈ 1.8·10308 .

In the backward loop the analogous modification follows the statement “ ß := LLD(j) + y ; ” by
“ ß := ß + µ ; ” where

 æ·minj{|LLD(j)|}/4 ≥ µ ≥ 2·maxj{|LLD(j)·D(j)|}/Ω .

These inequalities that constrain µ also restrict the range of data D(…) and LLD(…) that the
program can accept to less than half the exponent range that an unmodified program can accept.
This range restriction, clearly unacceptable in single precision, is probably acceptable in double
precision though it puts the modified program at a competitive disadvantage when displayed in
the program’s documentation. The range restriction could be relaxed if µ were recomputed in
every pass through the loops, but only at the cost of further slowing down the loops on every
machine as a result of catering to those machines bogged down by infinities and NaNs.

Presubstitution as “Syntactic Sugar”
A clever optimizing compiler could translate the loops’ command “Presubstitute 1.0 for ∞/∞ ”
into a replacement of the assignment “ y := (y/ƒ)·LLD(j) – x ” in the forward loop by

“ q := if (isInfinite(y) & isInfinite(ƒ)) then 1.0 else y/f ;
 y := q·LLD(j) – x ”.

An analogous modification could be compiled for the backward loop. The predicate isInfinite(ƒ)
is redundant, but a compiler is unlikely to be clever enough to know that. The time spent upon
the two predicates isInfinite(…) might be overlapped by the division y/ƒ executed speculatively
and superseded by a conditional move of 1.0 when the unwanted quotient would be NaN. If
raised, the Invalid Operation flag would have to be adjusted too. And if a compiler can insert
the two assignments that de-sugar the presubstitution command, why can’t the programmer do it?

Both tests in “ q := if … ” are redundant since the hardware performs them in the course of every
division. If the hardware can trap on an Invalid Operation to a lightweight handler that can set
Prof. W. Kahan, E.E.& C.S.Dept., Univ. of Calif. @ Berkeley WORK IN PROGRESS Page 6/10

Filename: Grail version of July 5, 2005 5:51 am A Very Unobvious Alternative
the quotient to 1.0 quickly, the programmer will prefer this handling provided it runs faster than
the tests when no trap occurs. Then the programmer will wish the compiler was clever enough to
translate his two assignments “ q := …; y := …; ” back to the original single assignment plus a
command that enables the trap-handler and tells it outside the loop what to do inside.

Alas, no compilers are that clever today. Moreover older hardware cannot speculate; and
hardware that can speculate does so by invading resources that could otherwise be devoted to
concurrency. Concurrency is needed to cope with arrays x, k, y, ƒ, ß and now q speedily.

Is there a limit to the size of these arrays compatible with
speculative execution without performance degradation?

If anybody can answer this question it is the compiler, not the applications programmer trying to
write a program portable to as wide as possible a range of today’s and tomorrow’s computers.
Here “portable” means at least competitive with other software in speed, robustness, range,
accuracy and ease of use. And the program should be written once albeit tested everywhere.

The programmer’s intent is expressed more transparently by a “ Presubstitute … ” statement
than by assignments like “ q := … ; y := … ” which introduce a new array variable q and raise
that question about array sizes. The arrays entail either implicit or (in most languages today)
explicit looping on two indices, one the loops’ explicit index j and another running over the
arrays. Which loop should be innermost? Are the arrays x, k, y, ƒ, ß best broken into smaller
blocks? How small? These are the questions a programmer wishes the optimizing compiler to
answer perhaps differently on different hardware. Substituting the two assignments “ q := … ;
y := … ” for “ Presubstitute … ” cannot make the questions easier for the compiler. This is why
the compiler, not the programmer, should de-sugar non-default presubstitution if anyone must.

A Very Unobvious Alternative
Non-default presubstitution is unavailable in today’s programming languages. Maybe next
year’s? In the meantime, what should a conscientious programmer do to implement the Holy
Grail as efficiently as possible in just one portable code? Here are some suggestions:

 Forward loop: Backward loop:
 k := 0 ; y := –x ; k := 0 ; y := D(n) – x ;
 { Presubst. ±Ω for Overflow and Div-by-0 ; { Presubst. ±Ω for Overflow and Div-by-0 ;
 For j = 1 up to n do For j = n–1 down to 0 do
 { ƒ := D(j) + y ; { ß := LLD(j) + y ;
 y := (y/ƒ)·LLD(j) – x ; y := (y/ß)·D(j) – x ;
 k := k + SignBit(ƒ) ; k := k + SignBit(ß) ;
 };}… Now ƒ = ƒ(x) and k = k(x) . };}… Now ß = ß(x) and k = k(x) .

Oh dear, non-default presubstitution again! But this one is easy for a programmer to de-sugar:
Remove the “ Presubst. … ” statement and insert the conditional assignment

 “ If isInfinite(y) then y := CopySign(Ω, y) ; ”
at the loops’ beginning just ahead of “ ƒ := D(j) + y ” and ” ß := LLD(j) + y ”. Doing so
replaces any infinite y by the biggest finite floating-point number ±Ω with the same sign. It also
reduces slightly the range of inputs acceptable to the program since the suggested presubstitution
Prof. W. Kahan, E.E.& C.S.Dept., Univ. of Calif. @ Berkeley WORK IN PROGRESS Page 7/10

Filename: Grail version of July 5, 2005 5:51 am How Presubstitution Should Work
works only if every |D(j)| < æ·Ω and every |LLD(j)| < æ·Ω . (Recall that æ is the roundoff
threshold.) If the computer takes too long to decide the predicate “ isInfinite(y) ” replace it by
“(|y| > Ω) ”. Verifying the validity of the foregoing suggestions is left to the diligent reader.

There is one more detail to consider. The foregoing suggestions perform well only if Overflow
or Division-by-Zero can generate an infinite y at most a few times in either loop for any single
unlucky scalar x that approximates an eigenvalue zm . There are good reasons to believe that
such is the case, but no proof. If our belief is wrong then machines that generate and/or handle
infinities too slowly may also run these loops too slowly on rare occasions.

How Presubstitution Should Work
Except for C99 and Fortran 2003, and despite helpful capabilities latent for over two decades in
hardware conforming to IEEE 754, programming languages offer little help to programmers
trying to handle floating-point exceptions conscientiously. The subject can hardly be discussed
without arguments at cross-purposes. For example take the word “exception”:

To programming languages like C, C++ and Java, an exception is the trap or transfer of control
precipitated by some unusual or untoward event discovered by the program or signalled to it from
without. The exception is the response to the event; and a jump is the only response allowed.

To IEEE Standard 754 a floating-point exception is an event, a transgression that need not be
unusual nor undesired though transgressions demanding a program’s attention may well be both
unusual and undesired. The word “exception” is used sometimes for a single event, sometimes
for a class of similar events. The standard’s default response to every exception is presubstitution
and a side-effect (the raising of a flag if it has not already been raised), not a jump.

Of course, a programmer may have a good reason to override IEEE 754’s default by requesting
a jump in response to an exception, especially while debugging. But computing environments
that superimpose jumps as their default responses to certain exceptions — typically the Invalid
Operations, Overflows and Divides-by-Zero declared to be Errors in older computer systems
— violate the standard and expose software users to serious hazards. Here are two examples:

In June 1996 the Ariane V rocket turned cartwheels and blew up half a billion dollars worth of instruments intended
for European science in space. The proximate cause was the programming language ADA’s policy of aborting
computation when an Arithmetic Error, in this case an irrelevant Floating-Point → Integer Overflow, occurred. See
 http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html and p. 22 of
 http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf .

In Sept. 1997 the Aegis missile-cruiser Yorktown spent almost three hours adrift off Cape Charles VA, its
software-controlled propulsion and steering disabled, waiting for Microsoft Windows NT 4.0 to be rebooted after a
division-by-zero unexpectedly trapped into it from a data-base program that had interpreted an accidentally blank
field as zero. See http://www.gcn.com/archives/gcn/1998/july13/cov2.htm .

Exceptions become Errors only when mishandled.

Results incorrect because of ignored exceptions are hazardous too. Computing environments can
offset this hazard by attaching annoying little warnings to results displayed while a flag still raised
signifies that some serious exception remains unrequited. Protests against such warnings will
Prof. W. Kahan, E.E.& C.S.Dept., Univ. of Calif. @ Berkeley WORK IN PROGRESS Page 8/10

Filename: Grail version of July 5, 2005 5:51 am How Presubstitution Should Work
come from the spiritual descendants of people who tied down noisy pressure-relief valves on
steam boilers, disabled smoke alarms in kitchens, or disdained seat-belts while driving. How to
redirect their protests tactfully towards a programmer who neglected a duty to reset the flag or else
augment dubious results with an intelligible explanation is a story for another day.

No flag need be raised by a non-default presubstitution’s treatment of an exception since this
treatment reflects a programmer’s intentions no differently than do non-exceptional assignments.
When applicable, presubstitution takes effect without cluttering a program’s source-text with
tests-and-branches; this feature alone should rally language aesthetes to its support.

We can model the effect of presubstitution by imagining a table built into the hardware. Let’s call
it the P-Table. Its entries are indexed by the kind of exception served and, if relevant, the
direction of rounding. One entry is for divide-by-zero; four are for overflow, one for each of the
four rounding modes; one is for ∞/∞ , another for 0/0 , and so on. All entries contain a
numerical value or NaN , a bit to enable or disable flag raising, and a bit that enables or inhibits
copying of a sign bit. For example, the entry for ∞/∞ is a NaN by default but may be replaced
by a number like 1.0, and a bit set to inhibit copying of its sign from the exclusive OR of the
operands’ signs. The entries for division-by-zero and for overflow rounded to nearest (the
default) are ∞ by default with a bit set to enable copying of its sign from a penultimate result
not yet delivered to its ultimate destination. Each ∞ can be replaced by any other number
including Ω , which is the default entry for Overflow rounded towards zero. And so on. The P-
Table’s entries for Underflow are complicated; see <http://www.cs.berkeley.edu/ARITH_17U.pdf> .

A presubstitution command behaves as if it wrote its operand(s) over one or more entries in the P-
table. If this table exists in the hardware, the operand(s) enter(s) the floating-point pipeline like
any other floating-point operation’s operand(s) but the destination is the P-Table. If this table
exists in memory to be accessed by a trap-handler or a math. library subprogram, the compiler
has to treat the command like a floating-point instruction not to be “optimized” by motion past
other floating-point instructions, and may have to allow the floating-point pipeline to empty
before continuing execution. This implies that presubstitution commands are best used sparingly.
The system must also provide facilities to save and restore the P-table when entering and leaving
the scope of a non-default presubstitution.

To treat a non-default presubstitution command as if the P-Table were in hardware when it isn’t,
the compiler will have to de-sugar the command by planting tests and branches in the program.
These will slow the program down, but not much more than if the programmer had to plant such
tests and branches in the source-code’s text. Still, the programmer should limit the scope of non-
default presubstitution as narrowly as possible to avoid unnecessary degradation of performance.

Language support for non-default presubstitution, where it is applicable, does more than allow
the programmer to express intentions transparently. This support enhances portability by hiding
from the programmer architectural vagaries handled better by a cleverly optimizing compiler.
Moreover, supplying this linguistic support offers also an opportunity for hardware designers to
simplify floating-point traps and provide only the few capabilities actually found worthwhile for
floating-point exception-handling, instead of catering to all conceivable generalities, like jumps
anywhere and accesses to variables everywhere, that can never be used in portable codes.
Prof. W. Kahan, E.E.& C.S.Dept., Univ. of Calif. @ Berkeley WORK IN PROGRESS Page 9/10

Filename: Grail version of July 5, 2005 5:51 am Conclusion
Conclusion
Floating-point exceptions resemble migratory songbirds; they are seen only rarely in most places
but, when seen, they are seen in flocks. Whatever brings one usually brings others. This is the
flaw in arguments that would justify excessively slow handling of exceptions by their rarity.

Diverse approaches to floating-point exception handling are necessitated by the diversity of
mathematical singularities; these have defied classification. Programmers will always have to
choose from among preemption (testing to filter out exceptions), non-default presubstitution,
checking after every potentially dubious result, or testing a summary flag afterwards. Languages
inhospitable to modes like non-default presubstitution, and to side-effects like flags, must let
programmers choose other ways to handle exceptions, typically ways that divert control and thus
invite more mistakes. Examples include ADA’s drop-through to a handler (if one exists) for an
“Arithmetic Error”, and BASIC’s “On ERROR go to …” and “On ERROR gosub …”. Imposing a
discipline upon such jumps restrictive enough to enable necessary compiler optimizations but not
so restrictive as to vitiate the jumps’ usefulness raises questions about scope, visibility and
inheritance similar to questions raised by modes and flags. These questions cannot be addressed
adequately solely by language designers and implementors with today’s advanced Computer
Science degrees but with inadequate exposure to the range of numerically exceptional situations.

Each of the aforementioned exception-handling modalities has a natural rôle in various numerical
algorithms even if one modality can be simulated by another for a price. When linguistic lacunae
in a programming environment deny a programmer the natural choice, the robustness of the
programmers’s software is jeopardized. And then it becomes our software.

More important, linguistic support for apt locutions like presubstitution enhances the productivity
of conscientious applications programmers, the ones who worry about exceptions, with less risk
of burning them out.

CAVEAT: THIS DOCUMENT IS A WORK IN PROGRESS CONTINUALLY SUBJECT TO
CHANGES IN RESPONSE TO CONSTRUCTIVE SUGGESTIONS FROM READERS.
Prof. W. Kahan, E.E.& C.S.Dept., Univ. of Calif. @ Berkeley WORK IN PROGRESS Page 10/10

	What Is It�?
	Alternatives
	Ideal Language
	Example: The Holy Grail
	Here are the loops:
	Presubstitution in the Loops
	An Obvious Alternative
	The Batched Forward Loop:
	An Unobvious Alternative
	Presubstitution as “Syntactic Sugar”
	A Very Unobvious Alternative
	How Presubstitution Should Work
	Conclusion
	CAVEAT: THIS DOCUMENT IS A WORK IN PROGRESS CONTIN...

