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A Demonstration of Presubstitution for  ∞/∞

What Is It ?
Presubstitution  supplies a value or a simple procedure to cope with floating-point exceptions

Invalid Operation,   Overflow,   Division-by-Zero,   Underflow   and   Inexact
in a way better than aborting execution of a program when an exception occurs.  The  IEEE 754 
(1985)  standard specifies  default  presubstitutions when a programmer specifies no others:

“Division-by-Zero”  really means  “Infinite Result Exactly from Finite Operands”.  An  Invalid 
Operation  creates a new  NaN  (Not-a-Number)  just when any other finite or infinite result would 
most likely be more confusing;  examples are  0/0 ,  ∞/∞ .  0·∞ ,  ∞ – ∞ ,  real √… < 0 , …  among 
many others.  Gradual Underflow  ensures that the gap between adjacent floating-point numbers 
is a monotone non-decreasing function of their magnitudes instead of jumping by too many orders 
of magnitude as the numbers pass through  0 ,  which is what happens if underflows flush to  0.0 .  
All but a few esoteric programs,  most concerned with exact integers,  ignore  Inexact  exceptions.

The default presubstitutions specified by  IEEE 754  were chosen carefully to maximize the 
likelihood that programmers could either ignore the exceptions or postpone their detection and 
handling to convenient places in their programs.  To this end,  each exception  raises  its own  
sticky  flag that can be  reset  (put down)  only by an explicit command in the program,  which 
may also test,  save or restore a flag.  All that should be a long story for another day.

Alternatives
What alternative to an  IEEE 754  default might a programmer choose?  One alternative aborts or 
at least pauses when a subprogram being debugged generates an unanticipated exception.  
Aborting should never be the choice for a subprogram released to users lest control be wrested 
from a user’s main program and sent into Limbo.  (This is where innocent but unbaptized souls 
languish forever between  Heaven  and  Hell.)  Another alternative filters out exceptions by testing 
operands in advance and branching to special fix-up code whenever necessary.  This can degrade 
performance when the exception would occur so rarely that the branch would almost never be 
taken but the test levies a tax upon performance all the time.  More important,  tests-and-branches 
complicate a program’s structure and enlarge its capture-cross-section for mistakes.

Exception IEEE 754  Default  Presubstitution

Invalid Operation NaN

Overflow ±∞  with the appropriate sign

Division-by-Zero ±∞

Underflow Gradual,  to a Subnormal number  or zero

Inexact Rounded  (or infinite Overflowed)  Result
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Ideal Language
Ideally a subprogram’s text should depart minimally from the simplest subprogram that handles 
all the normal cases well.  Ideally,  rare exceptions generated within a subprogram’s inner loop 
should be handled by a footnote  (like a flag-test-and-branch)  appended after the loop or by a 
preface  (like an invocation of a non-default presubstitution)  prefixed before the loop.

In a block-structured programming language,  an invocation of a non-default presubstitution acts 
like a declaration of local variables at the beginning of a block.  These variables are irrelevant 
outside the block’s scope,  as is the non-default presubstitution.  Depending upon a language’s 
conventions,  local variables may or may not be inherited by nested sub-blocks;  the same goes for 
presubstitution.  In a programming language whose variables are all global,  so is presubstitution.

Designers and implementors of programming languages tend to regard presubstitution as a 
nuisance,  at best a form of  “syntactic sugar”  for other programming locutions,  at worst an 
invitation to engage in the arcana of floating-point hardware traps.  Actually,  presubstitution is the  
only portable  way found so far by which applications programmers may state how they wish to 
handle certain kinds of transgressions,  corner cases and other exceptions generated sometimes by 
extreme data and often by accidents incidental to an otherwise auspicious algorithm.

“… the  only portable  way ”  ?  

Readers who balk at this extravagant assertion are invited to test their programming prowess on an 
example whereon non-default presubstitution works better than almost everything else.

Example:  The Holy Grail
Let us consider inner loops from a program designed to compute a few hundred eigenvalues and 
eigenvectors of a real symmetric  n-by-n  matrix of huge dimensions  n > 20000  on a distributed 
computer system with many processors working in parallel.  Such computations arise in  physics,  
chemistry and structural mechanics,  among other areas.  This program succeeds in establishing 
the required orthogonality among eigenvectors computed on different processors without slowing 
them down with intercommunication that would consume rather more time than the arithmetic 
takes.  This program has been called  “The Holy Grail”  because it has been sought for decades.  
Currently it is the only program that can guarantee orthogonal eigenvectors for matrices too many 
of whose eigenvalues are clustered tightly,  as occurs for structures with many  (near-)symmetries.

Details can be found in papers by  B.N. Parlett  and others in  Acta Numerica (1995),  Linear 
Algebra and Applications (1997 and 2000),  and  SIAM J. on Matrix Analysis and Applications 
(2004),  with more to come.  But those details won’t matter here.

Very little about the loops’ context need be known to appreciate how they 
benefit from presubstitution,  and that little will be supplied forthwith.

Input data are a positive integer index  m ,  a real  x   and two real arrays  D(0:n)  and  LLD(0:n)  
of finite nonzero numbers except  D(0) := LLD(0) := LLD(n) := 0 .  Otherwise  LLD(j)·D(j) > 0 .  
The arrays determine the matrix’s eigenvalues   z1 < z2 < z3 < … < zn–1 < zn   as the  n  zeros of 
two rational functions  ƒ(x)  and  ß(x)  generated by the loops.  The loop running forward through 
the arrays generates  ƒ(x) ;  running backwards generates  ß(x) ;  both have the same zeros  zj .  
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Unfortunately each rational function has  n  poles too,  one between every pair of adjacent zeros  
zj ,  and another pole at  x = ∞ .  The  n–1  finite poles of  ƒ  usually differ at least slightly from 
those of  ß .  These slight differences will make all the difference when an eigenvector is to be 
computed after its eigenvalue  zm  has been found,  but the eigenvector is a detail that won’t matter 
here.  What will matter here is the computation of  zm  by a zero-finding process that generates a 
sequence of values of  x  intended to converge to  zm .  In principle,  zm  is a value of  x  at which  
ƒ(x)  and  ß(x)  reverse sign by descending through zero.

In practice  zm  can lie arbitrarily close to a neighbor  zm±1  and,  worse,  so close to a pole of  ƒ(x)  
and/or  ß(x)  that their graphs,  plotted at discrete floating-point numbers,  may fail to reveal  zm  
by crossing the  x-axis  there.  In such a case  zm  will be revealed as a discontinuity of an integer 
index  k(x)  computed in the same loops as compute  ƒ(x)  and  ß(x) .  This index has the property 
that  zk(x) < x ≤ zk(x)+1  provided we adopt conventions   z0 := –∞  and  zn+1 := +∞ .  Then  zm  is 
the value of  x  at which  k(x)  jumps from  m–1  to  m ;  this jump can be found easily by binary 
chop because,  despite roundoff,  the computed  k(x)  is a nondecreasing function as expected.  
(This is hard to prove even after the observation that,  when finite,  ∂ƒ/∂x ≤ –1  and  ∂ß/∂x ≤ –1 .)

Thus has the context of the loops been established:  By means external to the loops,  a sequence of 
real samples  x  will be generated converging to a value  zm  at which  k(x)  jumps up from  m–1  
to  m  and,  ideally,  ƒ(x)  and  ß(x)  decrease through zero as  x  increases.

Here are the loops:
Forward loop: Backward loop:  
  k := 0 ;    y := –x ;   k := 0 ;    y := D(n) – x ;
{  Presubstitute  1.0  for  ∞/∞ ; {  Presubstitute  1.0  for  ∞/∞ ; 
    For  j = 1  up to  n  do       For  j = n–1  down to  0  do  
     {  ƒ := D(j) + y ;         {  ß := LLD(j) + y ; 
         y := (y/ƒ)·LLD(j) – x ;           y := (y/ß)·D(j) – x ; 
         k := k + SignBit(ƒ) ;           k := k + SignBit(ß) ;  
      };}…  Now  ƒ = ƒ(x)  and  k = k(x) .       };}…  Now  ß = ß(x)  and  k = k(x) .

Function  SignBit(ƒ)  returns a copy  1  or  0  of its argument’s sign bit even if the argument is  ±0 .  
The statement  “Presubstitute  1.0  for  ∞/∞ ”  affects only the division  (y/ƒ)  or  (y/ß)  and only 
when it would be  (∞/∞) ,  in which case  1.0  is substituted for a quotient that would otherwise 
create a  NaN ,  raise the  Invalid Operation  flag,  and destroy the validity of subsequent passes 
around the loop.  Before discussing alternatives to the  “Presubstitute …”  statement we must 
introduce one more complication:  The variables  x, k, y, ƒ  and  ß  need not be simply scalars.

Most computers nowadays divide too slowly.  Each pass through the loop is spent mostly waiting 
for its division to finish even if it overlaps the  signbit(…)  function and anticipatory fetches of 
elements from the arrays  D(…)  and  LLD(…)  into registers.  Many computers pipeline divisions 
so that they can be overlapped.  These computers can interleave a loop’s computations for several 
samples of  x  perhaps all estimates of one eigenvalue  zm  or else simultaneous estimates for,  say,  
zm–1 ,  zm  and  zm+1 .  Consequently the variables  x,  k,  y,  ƒ  and  ß  will be arrays upon which 
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arithmetic is performed elementwise to obtain results for several samples of  x  simultaneously,  
thus speeding up computation by exploiting more fully a processor’s capacity for concurrency 
and,  incidentally,  reducing cache misses during accesses to huge arrays  D(…)  and  LLD(…) .

Presubstitution in the Loops
How does their non-default presubstitution work?  It will take effect if  (an element of array)  ƒ  or  
ß  vanishes during some pass other than the last through the loop.  Then  y  becomes  ±∞ ,  as does  
ƒ  or  ß  in the next pass,  wherein  (y/ƒ)  or  (y/ß)  is changed from  (∞/∞)   to the correct limit  1  
that would have been obtained if the earlier  ƒ  or  ß  had merely become infinitesimal instead of 
vanishing.  And the same non-default presubstitution  1  works if,  instead of vanishing,  ƒ  or  ß  
becomes so tiny that  y  overflows to  ±∞  in some pass other than the last  (where it won’t matter).

Now let us consider alternatives to non-default presubstitution.  How must the loops change if  
“Presubstitute  1.0  for  ∞/∞ ”  is unavailable and thus deleted from the foregoing loops’ texts?

An Obvious Alternative
An obvious alternative leaves the loop bodies unchanged and lets  ∞/∞  create a  NaN  that will 
propagate to a final value of  ƒ  or  ß .  Then tests appended after the loop can branch to recompute 
the spoiled value(s) of  ƒ  or  ß  in a slower loop devised to prevent division-by-zero or overflow 
from creating  ∞ .  This obvious alternative works too slowly on hardware that traps whenever it 
encounters a  NaN  and then takes an order of magnitude longer than a division to propagate the  
NaN  through arithmetic operations.  The slowdown is intolerable if one processor in a distributed 
system creates a  NaN  during an early pass through the loop,  forcing other processors to wait 
while the unlucky one copes with its  NaNs.  Such  NaNs  are very improbable if the given data is 
chosen at random,  but occur often if the given huge matrix has many tight clusters of eigenvalues,  
which is the the situation that motivated the  Holy Grail’s  development.  Therefore this obvious 
alternative is unacceptable to a programmer who intends his program to be  portable  (not much 
slower than competing programs)  to hardware that handles  NaNs  too slowly.

An obvious fix-up for the obvious alternative is to turn the trap on  NaN  into a  break  out of the 
loop,  abandoning whatever it has computed and beginning anew with a slower loop devised to 
prevent division-by-zero or overflow from creating  ∞ .  For hardware that does not trap,  the 
break has to be inserted into the loop as a  test-isNaN(y)-and-branch.  Only an unusually clever 
optimizing compiler will plant the test somewhere overlapped by a division logically subsequent 
to the test;  otherwise the test-and-branch will slow down the loop when no  NaN  occurs.  This 
fix-up also increases the likelihood that all the elements of arrays  k(x)  and  ƒ(x)  or  ß(x)  will be 
computed in the slower loop though only one element would have been contaminated by  NaNs.  
So,  this obvious fix-up is unacceptable to a programmer who intends his program to be  portable  
(not much slower than competing programs)  regardless of how slowly hardware handles  NaNs.

A less obvious way to fix up the obvious alternative partitions each loop’s execution into   n/N   
batches for some suitable positive integer  N  rather less than  n .  Each batch runs through the 
original loop at most  N  times and then tests  isNaN(y)  to determine whether the batch should be 
repeated with the loop body modified to preclude  NaNs,  albeit slowly,  starting from the data 
saved at the end of the previous successful batch.  The batched forward loop might look like this: 
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  k := 0 ;    y := –x ;  
  For  i = 0  up to  floor(n/N)  do  …  a batch of loops:
   {  ko := k ;   yo := y ;  
       For  j = 1 + i·N  up to  min(n, (1+i)·N)  do  … the faster loop: 

{  ƒ := D(j) + y ; 
    y := (y/ƒ)·LLD(j) – x ; 
    k := k + SignBit(ƒ) ;  
  } ;

       If  any(isNaN(y))  then  do   ... a batch of slower loops: 
{  k := ko ;  y := yo ; 
    For  j = 1 + i·N  up to  min(n, (i+1)·N)  do 
      { ƒ := D(j) + y ; 

q := if  isInfinite(y)  then  1.0  else  y/ƒ ; 
y := q·LLD(j) – x ; 
k := k + SignBit(ƒ) ;  

        };};}…  Now  ƒ = ƒ(x)  and  k = k(x) . 

The batched loop appears twice-nested;  actually it is thrice-nested because  x,  y,  k  and  ƒ  are 
generally arrays upon which arithmetic is performed elementwise.  Predicate  any(isNaN(y))  
turns true when any one element of  y  becomes  NaN ,  in which case the slower loop is executed.  
An alternative that may run faster on big arrays  y  is to test whether the  Invalid Operation Flag  
has been raised,  and then lower it and execute the slower loop.  Therein the predicate  isInfinite(y)  
acts elementwise to put either  1.0  or the appropriate element of the elementwise quotient-array  
y/ƒ  into a temporary array  q .  Ideally,  any unused quotient in the array  y/ƒ  should not be 
computed;  if it is,  the  NaN  created thereby will also raise an  Invalid Operation Flag  that should 
be lowered lest it distract the program(mer) later.  Perhaps this ideal is too much to ask.

Omitted from the text of  The Batched Forward Loop  is any indication of how  N  was chosen.  
If too small,  too much time will be wasted saving arrays  ko := k  and  yo := y  and either 
scanning  y  for  any(isNaN(y))  or else testing a flag to which access is typically slow.

If  N  is too big,  too much time will be wasted when an element of  ƒ  vanishes,  spawning an  ∞  
which spawns a  NaN  in the next pass through the loop,  which  NaN  then retards subsequent 
passes through the faster loop.  This can happen only when an element of  x  is so unlucky as to 

fall upon one of fewer than  n2/2  arguments;  these are all the poles of the loop’s sequence of 
values  ƒ .  When the array of values  x  all approximate eigenvalues in a tight cluster  (the  Holy 
Grail’s  raison d’être)  more than one of  x’s  elements may be unlucky,  most likely in different 
batches.  So,  if  N  is too big and  x  too unlucky,  too much time may be wasted more than once.

An optimal choice for  N  is roughly  √2s·n/p  in which  p  is the probability of an unlucky  x  and 
small factor  s  is very roughly the ratio of two times,  first the time to store arrays  k  and  y ,  and 
second the time taken to pass once through the faster loop when  y  is  NaN .  The second time 
varies by orders of magnitude over diverse machines.  How shall a conscientious programmer 
weigh these imponderables when designing a single program to be portable  (competitive in speed  
etc. with other programs)  to diverse machines some of them not yet built?
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The batched fix-up for the obvious alternative to non-default presubstitution imposes,  upon our 
conscientious programmers,  burdens that many of them are perversely proud to bear,  but also 
imposes something worse upon the rest of us:  An elegant and short loop has been turned into a 
monster with a bloated capture-cross-section for unreliable and unpredictable performance.

An Unobvious Alternative
An unobvious alternative to non-default presubstitution modifies the loops to prevent division-by-
zero or overflow from creating  ∞ .  One modification follows the statement  “ ƒ := D(j) + y ; ”  in 
the forward loop by an insertion  “ ƒ := ƒ + µ ; ”  wherein  µ  is smaller than uncertainty inherited 
by  ƒ  from roundoff,  and yet big enough that the next expression  “ (y/ƒ)·LLD(j) ”  cannot 
overflow.  A suitable constant  µ ,  if one exists,  must satisfy inequalities like 

 æ·minj{|D(j)|}/4 ≥ µ ≥ 2·maxj{|D(j)·LLD(j)|}/Ω 
wherein 

 æ := 1.0 – NextAfter(1.0, 0.0)   is a rounding error threshold and  
 Ω := NextAfter(+∞, 0.0)   is the biggest finite floating-point number.  

For  IEEE 754 Single Precision   æ = 1/224 ≈ 6/108  and  Ω ≈ 3.4·1038 .  For  IEEE 754 Double 

Precision   æ = 1/253 ≈ 1.1/1016  and  Ω ≈ 1.8·10308 .

In the backward loop the analogous modification follows the statement  “ ß := LLD(j) + y ; ”  by  
“ ß := ß + µ ; ”  where

 æ·minj{|LLD(j)|}/4 ≥ µ ≥ 2·maxj{|LLD(j)·D(j)|}/Ω .

These inequalities that constrain  µ  also restrict the range of data  D(…)  and  LLD(…)  that the 
program can accept to less than half the exponent range that an unmodified program can accept.  
This range restriction,  clearly unacceptable in single precision,  is probably acceptable in double 
precision though it puts the modified program at a competitive disadvantage when displayed in 
the program’s documentation.  The range restriction could be relaxed if  µ  were recomputed in 
every pass through the loops,  but only at the cost of further slowing down the loops on every 
machine as a result of catering to those machines bogged down by infinities and  NaNs.

Presubstitution as  “Syntactic Sugar” 
A clever optimizing compiler could translate the loops’ command  “Presubstitute  1.0  for  ∞/∞ ”  
into a replacement of the assignment   “ y := (y/ƒ)·LLD(j) – x ”  in the forward loop by

“ q := if (isInfinite(y) & isInfinite(ƒ))  then  1.0  else  y/f ;
  y := q·LLD(j) – x ”.

An analogous modification could be compiled for the backward loop.  The predicate  isInfinite(ƒ)  
is redundant,  but a compiler is unlikely to be clever enough to know that.  The time spent upon 
the two predicates  isInfinite(…)  might be overlapped by the division  y/ƒ  executed speculatively 
and superseded by a conditional move of  1.0  when the unwanted quotient would be  NaN.  If 
raised,   the  Invalid Operation  flag would have to be adjusted too.  And if a compiler can insert 
the two assignments that de-sugar the presubstitution command,  why can’t the programmer do it?

Both tests in  “ q := if … ”  are redundant since the hardware performs them in the course of every 
division.  If the hardware can trap on an  Invalid Operation  to a lightweight handler that can set 
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the quotient to  1.0  quickly,  the programmer will prefer this handling provided it runs faster than 
the tests when no trap occurs.  Then the programmer will wish the compiler was clever enough to 
translate his two assignments  “ q := …;  y := …; ”  back to the original single assignment plus a 
command that enables the trap-handler and tells it outside the loop what to do inside.

Alas,  no compilers are that clever today.  Moreover older hardware cannot speculate;  and 
hardware that can speculate does so by invading resources that could otherwise be devoted to 
concurrency.  Concurrency is needed to cope with arrays  x,  k,  y,  ƒ,  ß  and now  q  speedily.

Is there a limit to the size of these arrays compatible with
speculative execution without performance degradation?

If anybody can answer this question it is the compiler,  not the applications programmer trying to 
write a program portable to as wide as possible a range of today’s and tomorrow’s computers.  
Here  “portable”  means at least competitive with other software in speed,  robustness,  range,  
accuracy and ease of use.  And the program should be written once albeit tested everywhere.

The programmer’s intent is expressed more transparently by a  “ Presubstitute … ”  statement 
than by assignments like  “ q := … ;  y := … ”  which introduce a new array variable  q  and raise 
that question about array sizes.  The arrays entail either implicit or  (in most languages today)  
explicit looping on two indices,  one the loops’ explicit index  j  and another running over the 
arrays.  Which loop should be innermost?  Are the arrays  x,  k,  y,  ƒ,  ß  best broken into smaller 
blocks?  How small?  These are the questions a programmer wishes the optimizing compiler to 
answer perhaps differently on different hardware.  Substituting the two assignments  “ q := … ;  
y := … ”  for  “ Presubstitute … ”  cannot make the questions easier for the compiler.  This is why 
the compiler,  not the programmer,  should de-sugar non-default presubstitution if anyone must.

A Very Unobvious Alternative
Non-default presubstitution is unavailable in today’s programming languages.  Maybe next 
year’s?  In the meantime,  what should a conscientious programmer do to implement the  Holy 
Grail  as efficiently as possible in just one portable code?  Here are some suggestions:

   Forward loop: Backward loop:  
     k := 0 ;    y := –x ;   k := 0 ;    y := D(n) – x ;
   { Presubst.  ±Ω  for Overflow and Div-by-0 ; { Presubst.  ±Ω  for Overflow and Div-by-0 ;
      For  j = 1  up to  n  do      For  j = n–1  down to  0  do  
       {  ƒ := D(j) + y ;        {  ß := LLD(j) + y ; 
           y := (y/ƒ)·LLD(j) – x ;          y := (y/ß)·D(j) – x ; 
           k := k + SignBit(ƒ) ;          k := k + SignBit(ß) ;  
         };}…  Now  ƒ = ƒ(x)  and  k = k(x) .       };}…  Now  ß = ß(x)  and  k = k(x) .

Oh dear,  non-default presubstitution again!  But this one is easy for a programmer to de-sugar:  
Remove the  “ Presubst. … ”  statement and insert the conditional assignment

  “ If  isInfinite(y)  then  y := CopySign(Ω, y) ; ”
at the loops’ beginning just ahead of   “ ƒ := D(j) + y ”   and   ” ß := LLD(j) + y ”.  Doing so 
replaces any infinite  y  by the biggest finite floating-point number  ±Ω  with the same sign.  It also 
reduces slightly the range of inputs acceptable to the program since the suggested presubstitution 
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works only if every  |D(j)| < æ·Ω  and every  |LLD(j)| < æ·Ω .  (Recall that  æ  is the roundoff 
threshold.)  If the computer takes too long to decide the predicate  “ isInfinite(y) ”  replace it by  
“(|y| > Ω ) ”.  Verifying the validity of the foregoing suggestions is left to the diligent reader.

There is one more detail to consider.  The foregoing suggestions perform well only if  Overflow  
or  Division-by-Zero  can generate an infinite  y  at most a few times in either loop for any single 
unlucky scalar  x  that approximates an eigenvalue  zm .  There are good reasons to believe that 
such is the case,  but no proof.  If our belief is wrong then machines that generate and/or handle 
infinities too slowly may also run these loops too slowly on rare occasions.

How Presubstitution Should Work
Except for  C99  and  Fortran 2003,  and despite helpful capabilities latent for over two decades in 
hardware conforming to  IEEE 754,  programming languages offer little help to programmers 
trying to handle floating-point exceptions conscientiously.  The subject can hardly be discussed 
without arguments at cross-purposes.  For example take the word  “exception”:

To programming languages like  C,  C++  and  Java,  an exception is the trap or transfer of control 
precipitated by some unusual or untoward event discovered by the program or signalled to it from 
without.  The exception is the response to the event;  and a jump is the only response allowed.

To  IEEE Standard 754  a floating-point exception is an event,  a transgression that need not be 
unusual nor undesired though transgressions demanding a program’s attention may well be both 
unusual and undesired.  The word  “exception”  is used sometimes for a single event,  sometimes 
for a class of similar events.  The standard’s default response to every exception is presubstitution 
and a side-effect  (the raising of a flag if it has not already been raised),  not a jump.

Of course,  a programmer may have a good reason to override  IEEE 754’s  default by requesting 
a jump in response to an exception,  especially while debugging.  But computing environments 
that superimpose jumps as their default responses to certain exceptions —  typically the  Invalid 
Operations,  Overflows  and Divides-by-Zero  declared to be  Errors  in older computer systems 
—  violate the standard and expose software users to serious hazards.  Here are two examples:

In  June 1996  the  Ariane V  rocket turned cartwheels and blew up half a billion dollars worth of instruments intended 
for  European  science in space.  The proximate cause was the programming language  ADA’s  policy of aborting 
computation when an  Arithmetic Error,  in this case an irrelevant  Floating-Point → Integer Overflow,  occurred.  See  
 http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html  and  p. 22  of  
 http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf .

In  Sept. 1997  the  Aegis  missile-cruiser  Yorktown  spent almost three hours adrift off  Cape Charles VA,  its 
software-controlled propulsion and steering disabled,  waiting for  Microsoft Windows NT 4.0  to be rebooted after a 
division-by-zero unexpectedly trapped into it from a data-base program that had interpreted an accidentally blank 
field as zero.  See  http://www.gcn.com/archives/gcn/1998/july13/cov2.htm .

Exceptions become Errors only when mishandled.

Results incorrect because of ignored exceptions are hazardous too.  Computing environments can 
offset this hazard by attaching annoying little warnings to results displayed while a flag still raised 
signifies that some serious exception remains  unrequited.  Protests against such warnings will 
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come from the spiritual descendants of people who tied down noisy pressure-relief valves on 
steam boilers,  disabled smoke alarms in kitchens,  or disdained seat-belts while driving.  How to 
redirect their protests tactfully towards a programmer who neglected a duty to reset the flag or else 
augment dubious results with an intelligible explanation is a story for another day.

No flag need be raised by a non-default presubstitution’s treatment of an exception since this 
treatment reflects a programmer’s intentions no differently than do non-exceptional assignments.  
When applicable,  presubstitution takes effect without cluttering a program’s source-text with 
tests-and-branches;  this feature alone should rally language aesthetes to its support.

We can model the effect of presubstitution by imagining a table built into the hardware.  Let’s call 
it the  P-Table.  Its entries are indexed by the kind of exception served and,  if relevant,  the 
direction of rounding.  One entry is for divide-by-zero;  four are for overflow,  one for each of the 
four rounding modes;   one is for  ∞/∞ ,  another for  0/0 ,  and so on.  All entries contain a 
numerical value or  NaN ,  a bit to enable or disable flag raising,  and a bit that enables or inhibits 
copying of a sign bit.  For example,  the entry for  ∞/∞  is a  NaN  by default but may be replaced 
by a number like  1.0,  and a bit set to inhibit copying of its sign from the exclusive  OR  of the 
operands’ signs.  The entries for division-by-zero and for overflow rounded to nearest  (the 
default)  are   ∞  by default with a bit set to enable copying of its sign from a penultimate result 
not yet delivered to its ultimate destination.  Each  ∞  can be replaced by any other number 
including  Ω ,  which is the default entry for  Overflow  rounded towards zero.  And so on.  The  P-
Table’s  entries for  Underflow  are complicated;  see  <http://www.cs.berkeley.edu/ARITH_17U.pdf> .

A presubstitution command behaves as if it wrote its operand(s) over one or more entries in the  P-
table.  If this table exists in the hardware,  the operand(s) enter(s) the floating-point pipeline like 
any other floating-point operation’s operand(s) but the destination is the  P-Table.  If this table 
exists in memory to be accessed by a trap-handler or a math. library subprogram,  the compiler 
has to treat the command like a floating-point instruction not to be  “optimized”  by motion past 
other floating-point instructions,  and may have to allow the floating-point pipeline to empty 
before continuing execution.  This implies that presubstitution commands are best used sparingly.  
The system must also provide facilities to save and restore the  P-table  when entering and leaving 
the scope of a non-default presubstitution.

To treat a non-default presubstitution command as if the  P-Table  were in hardware when it isn’t,  
the compiler will have to de-sugar the command by planting tests and branches in the program.  
These will slow the program down,  but not much more than if the programmer had to plant such 
tests and branches in the source-code’s text.  Still,  the programmer should limit the scope of non-
default presubstitution as narrowly as possible to avoid unnecessary degradation of performance.

Language support for non-default presubstitution,  where it is applicable,  does more than allow 
the programmer to express intentions transparently.  This support enhances portability by hiding 
from the programmer architectural vagaries handled better by a cleverly optimizing compiler.  
Moreover,  supplying this linguistic support offers also an opportunity for hardware designers to 
simplify floating-point traps and provide only the few capabilities actually found worthwhile for 
floating-point exception-handling,  instead of catering to all conceivable generalities,  like jumps 
anywhere and accesses to variables everywhere,  that can never be used in portable codes.
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Conclusion
Floating-point exceptions resemble migratory songbirds;  they are seen only rarely in most places 
but,  when seen,  they are seen in flocks.  Whatever brings one usually brings others.  This is the 
flaw in arguments that would justify excessively slow handling of exceptions by their rarity.

Diverse approaches to floating-point exception handling are necessitated by the diversity of 
mathematical singularities;  these have defied classification.  Programmers will always have to 
choose from among preemption  (testing to filter out exceptions),  non-default presubstitution,  
checking after every potentially dubious result,  or testing a summary flag afterwards.  Languages 
inhospitable to modes like non-default presubstitution,  and to side-effects like flags,  must let 
programmers choose other ways to handle exceptions,  typically ways that divert control and thus 
invite more mistakes.  Examples include  ADA’s  drop-through to a handler  (if one exists)  for an  
“Arithmetic Error”,  and  BASIC’s  “On ERROR go to …”  and  “On ERROR gosub …”.  Imposing a 
discipline upon such jumps restrictive enough to enable necessary compiler optimizations but not 
so restrictive as to vitiate the jumps’ usefulness raises questions about scope,  visibility and 
inheritance similar to questions raised by modes and flags.  These questions cannot be addressed 
adequately solely by language designers and implementors with today’s advanced  Computer 
Science  degrees but with inadequate exposure to the range of numerically exceptional situations.

Each of the aforementioned exception-handling modalities has a natural rôle in various numerical 
algorithms even if one modality can be simulated by another for a price.  When linguistic lacunae 
in a programming environment deny a programmer the natural choice,  the robustness of the 
programmers’s software is jeopardized.  And then it becomes our software.

More important,  linguistic support for apt locutions like presubstitution enhances the productivity 
of conscientious applications programmers,  the ones who worry about exceptions,  with less risk 
of burning them out.

CAVEAT:   THIS DOCUMENT IS A WORK IN PROGRESS CONTINUALLY SUBJECT TO 
CHANGES IN RESPONSE TO CONSTRUCTIVE SUGGESTIONS FROM READERS.
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