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Abstract:

Techni ques are introduced to hel p deci de whet her roundoff errors.
wi ||l abrogate the nonotonicity properties of a function when it is
conputed. = Those techni ques are applie

among them

z[(1+z), z + z/(1+z), 2y - y2, w+ _ Cee
t hat have turned up during the calculation of certain elenmentary
transcendental functions. Wthin appropriate ranges of their

vari abl es, the expressions are shown to remain nbnotoni c when
conmputed I n blﬂ&f% arithmetic rounded as specified in proposed

| EEE standards p754 and 854 . Because these standards are
bei ng adopted so widely, the conclusions fromthis error-analysis
wi || "be appreciated w dely enough to justify its propagati on.

d to several expressions,
Uw t - t/(1+4/t2),
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| EEE single, 53 for double :
are real varlables

to N significant blts (ex | ai ned bel ow).
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ry nunber x ntable exactly as a floating-point number
h N S|gn|f|c s has a value® x = +2M where 0 < M< 2N,
ept whe = when x is Subnormal’ ( n has the m ni num
ue allomed f or th chosen floating-point format), the Nornal
resentation of x is determ ned uniquely 281 < M< 2n 1

= X . But_when x is not representable exactly,” when

[ x]
E x, then [xl is an exactly representabl e val ue ciosest to

(e

dso |[x] - x| <2lulp(x)/2 .° To fix [x] uniquely when  x
ust m dway between two exactly representable values, a tie-

OODd —TaQT—O0O—~T0D

ul e nust be invoked. The |EEE standard breaks the tie

ing to nearest even'; this neans that x = 2n(M+ 1/2)

< . rounds to_[x] = 2M when M is even,  to
when M is odd. This tie-breaking rule avoids the

s inherent in another rule, wdely used by earlier

t he DEC VAX NL that al ways rounds m dway cases
to [x] = 2n 1) . Whet her nmonotonicity “'m ght be
choi ce of tie- breaklng rule, or by the choice of

chosen binary, radix 2, instead of decimal,

re interesting questions not to be answered here.
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Easy Deci si ons:

Qoviously x <y inplies ] YL I S a nonot oni
function"of z . 1t soon foI owWs at exanp es like [1/[21+]1/ A]]
[z2]]]]  are monotonic functions of z too,_  thoug

and [z/[V[1

ostenglb[y[algebralcally equi val ent expressi ons z/[1+z?] and
[z/[V{[l z]{1+z]]]] respectively fail to be nDno onic at” a host

of valid values "z despite that the latter two exPreSS|ons may be

nore accurate in the face of roundoff. The connection between
nonotoni city and accuracy is weak, but valuable none the less as
an i mportant consequence’ of the discrete nature of representable
nunbers; it amounts to this:

Suppose that f(x) is a nDnotone function of x ; for the sake
of definiteness suppose f(Xx |s |ncrea5|ng And suppose F(x%
is an approximation to f(Xx) aIIy, su ose the uncertainty
in F(XF is a known function e(x) > [F(x)-f(x)|] . W do not
assune that either F( x% or ¢g(x) Ts representable; their
rovenance is irrel evan How smal | nust €(x) be to inply that
(x) is a nmonotonic function when its argunment. X is restricted
to representable val ues? |If, f or any consecutlve representable
number s and _ x’ we find ¢g(x +s(x ) < -f(x) t hen
F(x)-FKx) >(f§x’)-ﬁx ) (f(X7+ex >0,
so the nonotonicity of W | be violated by F nor by its
rounded value [F] . In effect, so long as. f increases fast
enough conpared with the uncertainty € in its approximtion F
then- F wll be nondecreasing too.
Val ues that differ by less than 1lulp round to values that differ
b% no nore than lulp ; 1. e, | f O<v<w<yv+ ulpgv? ,
then [v] < <[v]' . Simiarl if 0T v<wc< V)
then [v] < ‘2 [v]" . These inferences are sonemhat dellcate
a slight” weakening of their hypotheses can vitiate them For
i nstance, when V. and w are consecutive m dway cases we can
find [vl <v <[v]' <w=v + lulp(v) <[w = [vf" because of
t he way the IEEE standard rounds m dway cases to nearest even.
( On a DEC VAX nsecutlve m dway cases that do not_ straddle
power s of sati sf <[ ] < W=V + 1ulﬁ(v) < {mﬂ = #v ’
Anot her |ns ance;: and” w _straddl e the negative of a power
of 2 then Lv < [v]’ < [v]" = Lmﬂ <w<v + 1lulp(v) <0
can happen. The reader shoul d check the tedious details in this
paragraph if only to confirmthat the notation is understood.

Monotonicity of z/(1+z) . .

Thi s functlon f&z) = z/(1+z) = 1/(1+1/z¥ IS increasing at al

z exceE -1 .  The conputed value of f(z) is [F(2)]

wher e (z) : z/[1+z] ;  these functions decrease at representable

argunents z distributed in a sur r|S|ngL% onpl i cated way for so
ensi bly sinpl : re the picture:

S
e a function as
-0 <z < -2n1: [1+4z] =z inthis range so F(z) =[F(2z)] =1 .

-2NL < 7 < -2N 0 FOr Z = -2Nw142 0 S 2Nl - QNwL4G - 21480
~~~~~~~~~~~~~~~~~ S2N8 -2M6, -28 4 -2N2 in turn, [1+z
takes the values -2N1+d, -2nN+I4d - 2Nw148 - 2Ne148 - 2N
-2N4, -2n 4, -2N respectivel y. Cbnsequently [F(z)] [z/[1+z]]
t akes’ respectlvely the values " 1", 1, , 1, , 1, T
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where 1' =1 + 21-~ . Monotonicity is lost on this interval.

(On a DEC VAX, which rounds mdway cases up, [1+z] =z in this
interval, so [F(z)] =1, which is [ess accurate on average but
still rnonotonic.)

-2

N<z<0: [1l+z] = 1+4z exactl¥ when z < -1/2 in this
~~~~~~~~~~~~~ _range, so =1(2) o) and therefore F(z)

|z|/[1-|z|] s obV|oust
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n subsequent interv
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<z <12: Wthin't
~~~~~~~~~~~~~ at which
y4

21-n42-~ and [ F(
AX the Ieast[EO|nt gf

at which
I Nt eger part of (N+1)/2

The details are “tedious. Other such pl aces z are confined
within certain subrntervals Zx < z < 21-x  whe Zx = 1 (2%- 1)]
for k=2, 3, 4, ..., N; also z nust satlsfy [1+Z2’ ] = [1+z]
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ion is that no
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s interval exist scatterings of points z

[F(z)] . decreases instead of |ncreaS|ng as

ch 7z is z = 21-™N2-N22-2N for which
= 21-N+2-N-23-2N =[F(z' )]’ (On a DEC

? ?se Z = 2-N-2-2N7 The' [ar gest

N<N—

> [F(z')] turns out to be
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1/2 <z <1: F(z) , and therefore also [F(z)] IS nonotonic

~~~~~~~~~~~~~ t hroughout this interval. To see why, first |et

P ;= 1ul p(. 2_; and classify z as even or odd accordln% as its

east significant bit is 0 or 1. If z 1is even +z] = 1l+z ;

f odd, 1+z] = 1 + z + ¢, depending upon mhether th

econd-| ast bit of z s "1 or 0O in accordance with the way
IEEE standard rou

h
1 we find
F( ) = z/[1+z] = z/(1+z) <
when z~  is o
( ) = z/[1+z] < z/(1+z-y) <
f

the ntdnay c%ses Since 1/2 <z <7
w)/(1+z+2w) =z (1+2’+)) <2’ /[1+2'] = K(zZ") .
(z+Q)/ (1+z+Q) =z [(1+2') =2’ 1[1+2'] = F(zZ") .

I
|
S
t

1<z < 2NV [F(a% ails to be monotonic at many of the points

~~~~~~~~~~~~ ere [1+z2'] > [1+z£ these p0|nts all Tiein

subi nterval s of the fornt 2x-1 < , 3,

Abundant though these points may be, yet theY are too rare to be
0

found by random sanpling. An econoni cal % of them
in the range 1<z <2 wll be described ut not explarned
Let ¢ = 1lul p(2) 21-N - and let n run th h smal | odd
Integers 1 , 5, 7, 9, ... in succession. enever

(n- 4 +(n(n+8/7Y)) )/8 < ‘integer m < (n - +r( 2) 2+ /z) )/8 ,
then z =1+ (4mtl sat i f es [F(z)] > J never

(n - 2 + J((n+2)248n/ {) /4 < intege < (n(n+8/ { %P )/ 4 <
then z =1 + 2] satrs I es E%I? > [F(z )] provi de
odd. (Mnotonicity fails for roundi ng when |j |s even )
2N < 7z < 2n1 Successi ve values of EF(Z)] oscillate between
~~~~~~~~~~~~~~~ 1 and 1 - F(z

remai ns nonotonic on a DEC VAX but Iess accurate on average )

2N < 7 < 00 F(z) = 1.
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Monotonicity of z + z/(1+z) : o
This function (z) :=z + z/(1+z) is in

teresting because it is
used to cal cul ate S|nh§ % = sign(x) g( et>~-1)/2 "accurately from
a subroutine that calcu es exp(x)-1 relatively accurately.
And if that latter subroutine is nonotonic, then so is the
comput ed val ue of S|nh(x) )’ as we shall see when we verify for
all z >0 that z) :=z + [z/[1+z]] and [CXZ)] are both
nonotonic. The function F(z) above w Il figure 1h the proof:
Since z) =z +[F(2)] , am% interval on which F(z) is non-
decreasing is an interval on ic E I S increasing; anong
such intervals are -1 <2z <0 and [2 <z <1. Is where the
roof is nore conplicated; “there we shallT deduce CXz? < C?
rom [F(z)] - [EEZ’)l < 1u|p£z) =z z, which wll Tollow
fromtwo facts: irst,” 0 < §z£ <z, SO 1u|p(z)/1u|p(F(z%) S
a p05|t|ve integer (a Pomer of 2)7 Second, we shall denonsirate
that F(z) - F(z') < 1ulp(z) , so [F(z)] - [F(z')] < lulp(z)
0<z<1l/2: Inthisrange let u :=1ulp(z) and ¢ := 2-N,
~~~~~~~~~~~~~ Then u > gz ; andif F z? > F(z') then, as we
have observed above, £1+z’] = ;1+z]’ = 1+z£ + 2y . Consequently
< F(z) - F(z') = z/[1+z] - z'[[1+2'] = z/[1+z] - (z+u)/([1+z]+2Q)
= (20z - u 1+2) F([1+z] ([ 1+z] +20))
< (2 - [1+4z])u/[1+z]2 <'u aS clained
1<z<ow In this range let u := 1u|p&z) and v := 1u|p([1+z]?
~~~~~~~~~~~ sothat u<v<2u. Now F(z) >F(z') inplies tha
Bl+zL [1+z'] < [1+z] +2v ;7 whereupon
(z) F(z) = z/ 1+ z] z'/ 1+z’f < z/[1+z] - (z+u)/([1l+z]+2v)
= (2vz 147 uy/ ([1+z 1+z] +2v
< 4z - [ +z])ul (| 1+z] +z]+2v)) < (9/16)u .
This conpletes the proof that G z) and [Gz)] are nonotonic.

Monotonicity of (z-1)/(z+1)
Let b(z) :=(z-1)/(z+1) = 1/b(-z) and B(z) :=[z-1]/[z+]l] = 1/B(-2) .
These functions arlse during argument reduction for the function
arctan. Gven subprogramthat cal cul ates arctan(x) accurately
enough and nDnotonlcaIIy for |x| <v2-1 =tan(wW8) ,  we can use
it to calculate
arctan(x) :=sign(x)w2 - arctan(1/x) for |x| > v2+1 , b

c=sign(x)( W4 + arctan(b(|x])) ) for v2-1 < |x| < V241
O course, nonotonicity nmust be checked as | x| asses the
thresholds v2+1 since’it may fail if arctan(v2-1) is conputed
too big. Mnotonicity need not be checked for other arguments x
si nce [B(z)l , the conputed value of Db(z) , is nmonotonic for
all pertinen | x] ; a proof is outlined bel ow
In fact, % i s nmonot one |ncrea5|ng at every except -1 in
}z| < hIS |s obvious for -1 <2z <1, and becones obvi ous

of 2 < |z| < when it is reallzed that [z+1l] = z+1 exactly

in this™ range. For 1 <|z|] <2 we find that at |eaSt one_ of
[zill = z+1 exactly and the rounding error in the other is
eaSily proved incap able of rever3|ng nmonotonicity. ( B(z) fails
to be  nonotonic at nany z in <|z|] <4, beyond our concern.)
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Monotonicity of 2y Y _
G ven a subprogranttha cal cul ates arctan(z) nonotonically and
accurately enough fo -0 < Z < 400 we nmay then cal cul ate both
arccos X Zarc‘tan\/;\/(l xX) ! (C1+x) ) and
ar csi n(x arctan( X gl - X2)
nmonotonically for - . . But t
IS not so accurate as we ntght i ke; when |
than 1 the expression Exz suffers ca
out accurate to as feM/as significant b
a calculated arcsin accurate to as fewas 3
bits. A better procedure for arcsin is as f
If |x] <1/2 then r:=1- x2
el se { y =1 - |x| ... exactly ;

o 2y - y2 };

csi ) 1= arctan% x/Vr .

his way, r matches 1 - X2 accurately to wthi

r consequent | arcsin(x) is accurate to wit
ulps. for al | x| < And this conputati

tonicity, as shall now be proved.
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XE <1/2 . ndeed ntl <y < y+2-ny =y <

| 2-

, . and = 2-N 'Let =2y - y2
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w =wl+[1l/w =Cw-1. As the rounded value of a nonotonic

function, must be monot oni c too, and therefore so nust_ be
=1+ , as clained. (Proofs this easy are unusual.)

0O <w<1l: c¢(w.__is decreasing throughout this interval, but
e~ [C(W)] increases at a scatterln? of argunents w in
the interval. W’ shall see that they are scaftered unevenly. For
each n =1 2, 3, ... suppose 2 n"< w < = Wu < 21-n ‘where
u:= lulp(w) = 2-n-~n" Then 2n-1 <TI/W < 1/m1< 2n~ and
v := 1lulp(l/w) = 2n-N> 2u ., If now C‘ W) _then
0 < [1/mf - [1/wW] <wW=-w=u < , 1np ylng 1/m4 = [1/w]
Consequently v > 1/w - 1/w = u/(mmi) whence foll ows
(W)2 > ww "> u/v = 21-2n  which neans W > 2-nv2 . Therefore
nmonotonicity can fail only in subintervals where 2-nV2 < w. < 21-n |
Further detailed analysis reveals that successive failures in
t hose subintervals are separated on average by roughIY 22-N for
1<n<N2. Mreover, [2/[CW]] >[2 EC(W)] at many of
those Tailures, so calculating sin(9) = 2/c(tan 0/%)) w il not
i nherit nonotonicity from tan?O/Z? for all |9 < W4 ; sone
other way has to be found to calculate sin(9) .

Tri gononetric functions:
Suppose a subprogramis avail ab
c

cal culate T(0) 2tan(0/2)
accurately enough and nonot on

0
for all |9 <W4. Pr ogr ans
ncti ons everywhere can be built
a

i I
that calculate all trigononetric f
out of calls upon this one subprogram T O% uch prograns are
readily portable fromone conputer er provi ded both have

bi nary floating-point arithne

i
much altered to accommodate dif .
her e |s a procedure to cal cul at tan for all |9 <12
g < mw8 then tan(0) := T(20)/2 ;
W8 Z|0] <3w8 then'{ 't := T(2/0] - W2)
tan(0) := S|gn 9 ;2+t)/(2

_ if 38 < |0 <12 then tan(0) := 2sign(0)/T(m - g
This procedure’s tan(0O) inherits fron1 T(0) |ts accuraCK an
its nmonotonicity except possibly when © crosses one of e
thresholds +1 and +31 8, Wwhere sone adj ustments may be

necessary to preserve nnnoton|C|&% Those adjustnments can be
sonetimes as sinple as deC|d|ng ich of the procedure’s "<t
signs to replace with "<" igns; but if T(mwW4) is nuch too
bi g the necessar adjustnents may entail replacing T(©) by a
nore accurate subprogram

sin(©®) and cost) can be calculated from t := T(0) fairly
accuratel¥ for all |O] < w4 by using the follow ng procedure:

t :=T(9) q iz ; sin(@) "=t - t/(1+4/Qq) ;

if q < 4/15 then cos(@) := 1 - 2/ 1+4/ g ... >17/8

else cos(0) :=3/4 + ((1-2q9) + q/4)/(4+8)

These expressions woul d be monotonic functions of 't , and hence
of ©, for all |[|t] <T(W4) = 2/%1 + v2) if roundoff did not
i ntervene. Does roundoff destroy their nmonotonicity? No. ...

Monot oni city of t
This function s(t) - t/(1+4/t2) = 4t/24+t2) I's |ncrea5|ng
when 0 <t < 2/ 1+V2) because s’ (t) = 4(4-t= /ﬁ4+t2)2 > 0.6 ,
al though™ s"Tt) < 0 . Anpbng sinple expressions al gebraically
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equivalent to s(t) , including t-t3/(4+t2) and t-t2/(t+4/t)
too, the particular expression chosen above and below for $§(t)
suftfers I'ess fromroundoff than the others and is i n consequence
provably nonotoni c despite roundoff, whereas the others are not.
Let S(t =t - [t/[1+[4/[t=2 , . SO that S(t is the value
calculgted for s!n(B) L s{tz]l]] e 2-N [ ( éhd wite, say,
t2] = t2(1+y) " to nean that [t2] I'i es bef ween t2(1-{) and
t2(1+y) , as is the case for binary arithnetic rounded to N sig.
bits.  This notation will facilitate an error-anal ysis whose goal
is toinfer that $(t) s nonotonic fronrrnequalr ies of the form
As(t) > es(t)+es(t’) ‘where As(t) : sgt ) s(t) > s’ (t) (t’ t)
and ss(tg i's a bound for the contribution of roundoff to S(t)
es(t) > | S(t)-s(t)] Ternms of order (2 be ignored durin
t he error analysrs because t hey don’t natter hbgatrve val ues o
t can e sk IPﬁe over ecause S(-t) = (t) So_the proo
deal s onl inthe interval "0 < 2] (1+J2) = 0.82843

and t hat |nterval Is dealt with in three overlapprng pleces

~~~~~~~~~~~~~~ and [t/
whence S(t) = s(t) + es tL Wi 8+t 2) +2)2 |
And As(t; > s’(t) Yt ; theref As(t) es(t) 'whenever
APt (4-12)] (4+t2)2"> 4Pt 3(8+t2)/ (4+t2)2 mhrch IS true for al
t under consideration now.

0<t <0.55: Now [tz &
1+[

Ny s
e

0.54 <t <0.78 : 4/ [t2]] = (4/t2)(1+y)2 again; noreover
~~~~~~~~~~~~~~~~~ 1 + [4][t= } = 1'% [4/]t2]] + 8y < 15,
and [ t/[1 + [4/[t2}££ = 1 + [4] t2!] + P16 < 0.11
Therefore es(t) = (y ) 3(132 + 129t2)/(4+t2)2"this tine. And
As(t) > s’ tgw now, As(t) > 2£s(tl whenever
4w 4-12)/ (4+12)=2 > (w/8)t3(132+129t2)/( +t2)2 | which is true for
all t under consideration now.
0.77 <t <0.83: Now 0.59 < [t2] =t=2+ @2 < 0.69, and
~~~~~~~~~~~~~~~~~ 5.8 < [4/[t2]] =4/[t2] +4y < 6.8 . Then
[1 + 94/[t2]{h 1 + [4/[t2]] “exactly because it |ies between 6.8
e absence of ‘a rounding error here is what nakes the

Broof mork The third rounding error is commtted when we find

t/ (14 /[tZ]]) ] = "t/(1+ 4/Et2 }) + P/ 16 < 0.122
and then S(t)-s(t)| < &s(t) = 20t(1+2t4)7(4¥t2)2+ Y/ 16 . Since
As(t) > t)w aParn, As(t) > 2es(t for all 't in question
because (4+t2)2 > t(1+2t4)/ (4+t2)2 + Y/ 8 re ends

t he proof thaf g(t) i's nonotonic.
As a byproduct of the proof we find that es(t) < 0.29 ul p(S(t))

((1- 2t2%h+ Lzl a)] (4+12) -

onicity 3/4 +

Let h(t) := t2)/ (4+t2) formul a coul d be used to conpute
cos(®) =h(2tan©/2) , but it is not quite accurate enough. he
error [[4-[t?]]/£4+[t2]]] - h(t) can approach 1.5 ulps,” and it
destroys the identity arccos(cos(arccos X)) = arccos x when X

is slightly less than 1 (2). A better procedure to conpute co0s©
was given above. It rearranges h(t) =1 - 2/(1+4/t2) o retain
nmonotoni city and achi eve better accuracy, wthin 0.86 ulps when
|t] < 2/VY15" and better than that when [t| IS very tiny (O her
rearrangenents, like 1 - 2t/(t+4/t) and 1 - (4+t2) , are
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con?arably accurate and faster, but not nonotonic.) And when
2/V15 < |[t| < 2/(1+V2) the procedure uses another fearrangenent
h(t) = 3/4 + ((1-2t2) + t2/4)/(4+t2) to achieve accuracy wthin
0.84 ulps and nonotonicity. re’is the proof of nonotonicity:
Let g .= LtZ] ; It increases nonotonically between roughly

4/ 15 = 0. 2666 and 4/&3+2V2) = 0.6863 . rou%hout t hat range
[[1-[2q]] + [a/4]] =[1 - 79/4] because q/4, 29 and 1-2q are
all conputed exac lY' _Therefore only 1 - 79/4]/[4+q] need be
proved _nonot oni c. t is obviously nbnotone nonlncrea5|n8 whi | e

g <47 =0.5714... . Qherwise, while 4/7 < q <0.6863 , the
numerator [1 - 7q9/4] decreases through 0 > [1-7q9/4] > -0.2011
in steps of at least™ 6 ul ps wher eas the denom nator [4+q]

can increase bY at nost_ an uIP_mhen g . increases by an ulp.
Therefore nonotonicity is confirnmed again.
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Foot not es:
(*) Draft 1.0 of p854 has been published, to invite public
conment, in the |1EEE nmagazine MCRO 4 no. 4 (Aug. 1984%_

i nar

pp. 86-100. It contains specifications for both Deci mal and [ Y
arithnetic, wth precisions determned by the inplenmenter subjec

to mld constraints; in Binary the nunber N of significant bits
must exceed 17 . Draft 10.1 of

e RF54 specifies only Binary
arithmetic, and further restricts . An earlier draft 8.0 of
754 published in |EEE magazine COWPUTER in March of 1981,
as been superseded by draft 10.1, which is expected to be
adopted officially in"md 1985.

(2) "Elenmentary Functions from Kernels", by W Kahan, wll

when it appears, contain formulas that derive economcally all of
the el enentary transcendental functions each via several algebraic
operations upon just a few prograns that deliver exp, log, tan
and arctan wthin restricted domains.

f?) "VAX" is a trademark of Digital Equipnment Corp. The VAX
I ne provides Binary floatlng-p0|nt arithnmetic in four formats:
F has N=24 ; D has Nsbo; G has N=53 ; H has N=113 .
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