
 MONOT1 Preliminary ... Subject to Change. 1

 ON THE MONOTONICITY OF SOME COMPUTED FUNCTIONS

 W. Kahan

 Mathematics Dept. and
 Elect. Eng. and Computer Science Dept.,
 University of California at Berkeley.

 Mar. 21, 1985

 Abstract:
 Techniques are introduced to help decide whether roundoff errors
 will abrogate the monotonicity properties of a function when it is
 computed. Those techniques are applied to several expressions,
 among them
 z/(1+z), z + z/(1+z), 2y - y2, w + 1/w, t - t/(1+4/t2), ... ,
 that have turned up during the calculation of certain elementary
 transcendental functions. Within appropriate ranges of their
 variables, the expressions are shown to remain monotonic when
 computed in binary arithmetic rounded as specified in proposed
 IEEE standards p754 and p854 . Because these standards are
 being adopted so widely, the conclusions from this error-analysis
 will be appreciated widely enough to justify its propagation.

 MONOT1 Preliminary ... Subject to Change. 2

 ON THE MONOTONICITY OF SOME COMPUTED FUNCTIONS

 W. Kahan

 Introduction
 A program F(x) intended to compute some elementary function f(x)
 might well be expected to do so fairly accurately. And then should
 f(x) be monotonic, say f(x) _< f(y) whenever x < y , contrary
 accidents F(x) > F(y) will occasion surprise. In the face of
 roundoff such aberrations are hard to extirpate. Fortunately some
 elementary functions can be calculated accurately, economically
 and monotonically despite roundoff provided arithmetic is carried
 out carefully enough. Specifically, when computed in Binary
 arithmetic rounded according to the proposed IEEE standards p754
 and p854 (1), the following expressions will be proved monotonic:
 z/(1+z) for -1 _< z _< 0 and 1/2 _< z _< 1 ,
 z + z/(1+z) for -1 _< z < ∞ ,
 (z-1)/(z+1) for |z| <_ 3 ,
 2y - y2 for -∞ _< y _< 1/2 ,
 w + 1/w for 1/2 _< |w| < 1/√2 and 1 _< |w| ,
 t - t/(1+4/t2) for |t| _< 2/(1+√2) , and
 3/4 + ((1-2q) + q/4)/(4+q) for 4/15 < q < 5/7 .
 These deserve attention because they arise during the calculation
 of diverse elementary transcendental functions (2). The ranges of
 values are significant too; for instance, roundoff destroys the
 monotonicity of w + 1/w at many values w between 0 and 1 ,
 so this expression has to be avoided as a means of computing
 sin(-0) = 2/(w + 1/w) from w = tan(-0/2) .

 Notation:
 I, J, K, L, M, N, i, j, k, l, m, n are integers.
 N = number of significant bits carried during arithmetic;
 N = 24 for IEEE single, 53 for double,
 u, v, w, x, y, z are real variables.
 [x] = x rounded to N significant bits (explained below).
 1ulp(x) = one unit in the last place of [x]
 = 2k+1-N if 2k _< |x| < 2k+1 , normally.
 x’ = Nextafter(x, +∞) if x is representable exactly,
 = x + 1ulp(x) if x > 0 too.
 Every number x representable exactly as a floating-point number
 with N significant bits has a value x = _+2nM where 0 _< M < 2N .
 Except when x = 0 or when x is Subnormal (n has the minimum
 value allowed for the chosen floating-point format), the Normal
 representation of x is determined uniquely by 2N-1 _< M _< 2N-1 .
 And [x] = x . But when x is not representable exactly, when
 [x] /= x , then [x] is an exactly representable value closest to
 x and so |[x] - x| _< 1ulp(x)/2 . To fix [x] uniquely when x
 lies just midway between two exactly representable values, a tie-
 breaking rule must be invoked. The IEEE standard breaks the tie
 by "rounding to nearest even"; this means that x = 2n(M + 1/2) ,
 with 2N-1 _< M _< 2N-1 , rounds to [x] = 2nM when M is even, to
 [x] = 2n(M+1) when M is odd. (This tie-breaking rule avoids the
 statistical bias inherent in another rule, widely used by earlier
 computers like the DEC VAX (3), that always rounds midway cases
 up in magnitude to [x] = 2n(M+1) .) Whether monotonicity might be
 affected by the choice of tie-breaking rule, or by the choice of
 radix (we have chosen binary, radix 2 , instead of decimal,
 radix 10), are interesting questions not to be answered here.

 MONOT1 Preliminary ... Subject to Change. 3

 Easy Decisions:
 Obviously x < y implies [x] _< [y] , so [z] is a monotonic
 function of z . It soon follows that examples like [1/[1+[1/z]]]
 and [z/[√[1-[z2]]]] are monotonic functions of z too, though
 ostensibly algebraically equivalent expressions [z/[1+z]] and
 [z/[√[[1-z][1+z]]]] respectively fail to be monotonic at a host
 of valid values z despite that the latter two expressions may be
 more accurate in the face of roundoff. The connection between
 monotonicity and accuracy is weak, but valuable none the less as
 an important consequence of the discrete nature of representable
 numbers; it amounts to this:

 Suppose that f(x) is a monotone function of x ; for the sake
 of definiteness suppose f(x) is increasing. And suppose F(x)
 is an approximation to f(x) . Finally, suppose the uncertainty
 in F(x) is a known function ε(x) _> |F(x)-f(x)| . We do not
 assume that either F(x) or ε(x) is representable; their
 provenance is irrelevant. How small must ε(x) be to imply that
 F(x) is a monotonic function when its argument x is restricted
 to representable values? If, for any consecutive representable
 numbers x and x’, we find ε(x)+ε(x’) _< f(x’)-f(x) , then
 F(x’)-F(x) _> (f(x’)-ε(x’)) - (f(x)+ε(x)) _> 0 ,
 so the monotonicity of f will not be violated by F nor by its
 rounded value [F] . In effect, so long as f increases fast
 enough compared with the uncertainty ε in its approximation F ,
 then F will be nondecreasing too.

 Values that differ by less than 1ulp round to values that differ
 by no more than 1ulp ; i. e., if 0 < v _< w < v + 1ulp(v) ,
 then [v] _< [w] _< [v]’ . Similarly, if 0 < v _< w < v + 2ulp(v)
 then [v] _< [w] _< [v]" . These inferences are somewhat delicate;
 a slight weakening of their hypotheses can vitiate them. For
 instance, when v and w are consecutive midway cases we can
 find [v] < v < [v]’ < w = v + 1ulp(v) < [w] = [v]" because of
 the way the IEEE standard rounds midway cases to nearest even.
 (On a DEC VAX consecutive midway cases that do not straddle
 powers of 2 satisfy v < [v] < w = v + 1ulp(v) < [w] = [v]’ .)
 Another instance: if v and w straddle the negative of a power
 of 2 then [v] < v < [v]’ < [v]" = [w] < w < v + 1ulp(v) < 0
 can happen. The reader should check the tedious details in this
 paragraph if only to confirm that the notation is understood.

 Monotonicity of z/(1+z) :
 This function f(z) := z/(1+z) = 1/(1+1/z) is increasing at all
 z except z = -1 . The computed value of f(z) is [F(z)]
 where F(z) := z/[1+z] ; these functions decrease at representable
 arguments z distributed in a surprisingly complicated way for so
 ostensibly simple a function as f(z) . Here is the picture:

 -∞ < z _< -2N+1 : [1+z] = z in this range so F(z) = [F(z)] = 1 .
          ~~~~~~~~~~~~~~~
          -2N+1 < z < -2N :  For  z = -2N+1+2, -2N+1+4, -2N+1+6, -2N+1+8, ...,
          ~~~~~~~~~~~~~~~~~  -2N-8, -2N-6, -2N-4,  -2N-2  in turn,  [1+z]
 takes the values -2N+1+4, -2N+1+4, -2N+1+8, -2N+1+8, ..., -2N-8,
 -2N-4, -2N-4, -2N respectively. Consequently [F(z)] = [z/[1+z]]
 takes respectively the values 1’, 1, 1’, 1, ..., 1, 1’, 1, 1’ ,

 MONOT1 Preliminary ... Subject to Change. 4

 where 1’ = 1 + 21-N . Monotonicity is lost on this interval.
 (On a DEC VAX, which rounds midway cases up, [1+z] = z in this
 interval, so [F(z)] = 1 , which is less accurate on average but
 still monotonic.)

 -2N _< z _< 0 : [1+z] = 1+z exactly when z _< -1/2 in this
          ~~~~~~~~~~~~~  range,  so  F(z) = f(z) ,  and therefore  F(z)  and
          [F(z)] are,  like  f(z) ,   monotonic except at  z = -1 .  And
          when  -1/2 < z _< 0  then  F(z) = -|z|/[1-|z|]  is obviously
          monotonic,  as is  [F(z)] .
          
          In subsequent intervals the essential observation is that no 
          failure of monotonicity,  i. e.  [F(z)] > [F(z’)] ,  can occur
          unless  0 < [1+z] < [1+z’]  occurs too.
          
          0 < z < 1/2 :  Within this interval exist scatterings of points  z
          ~~~~~~~~~~~~~  at which  [F(z)]  decreases instead of increasing as
 f(z) does. The least such z is z = 21-N+2-N-22-2N , for which
 z’ = 21-N+2-N and [F(z)] = 21-N+2-N-23-2N = [F(z’)]’ . (On a DEC
 VAX the least point of decrease is z = 2-N-2-2N .) The largest
 z at which [F(z)] = [F(z’)]’ > [F(z’)] turns out to be
 z = 1/2 - 3/4integer part of (N+1)/2 .
 The details are tedious. Other such places z are confined
 within certain subintervals zk < z < 21-k , where zk = [1/(2k-1)]
 for k = 2, 3, 4, ..., N ; also z must satisfy [1+z’] = [1+z]’ .

 1/2 _< z _< 1 : F(z) , and therefore also [F(z)] , is monotonic
          ~~~~~~~~~~~~~  throughout this interval.  To see why,  first let 
          ψ := 1ulp(z) ;  and classify  z  as even or odd according as its
          least significant bit is  0  or  1 .  If  z  is even,  [1+z] = 1+z ;
          if odd,   [1+z]  =  1 + z _+ ψ ,  depending upon whether the
          second-last bit of  z  is  1  or  0  in accordance with the way
          the  IEEE  standard rounds the midway cases.  Since  1/2 _< z < z’
          = z+ψ _< 1 ,  we find when  z  is even that
            F(z) = z/[1+z] = z/(1+z) < (z+ψ)/(1+z+2ψ) = z’/(1+z’+ψ) _< z’/[1+z’] = F(z’) .
          And when  z  is odd,
            F(z) = z/[1+z] _< z/(1+z-ψ) _< (z+ψ)/(1+z+ψ) = z’/(1+z’) = z’/[1+z’] = F(z’) .
          
          1 < z < 2N :  [F(z)]  fails to be monotonic at many of the points
          ~~~~~~~~~~~~  z  where  [1+z’] > [1+z] ;  these points all lie in
 subintervals of the form 2k-1 < z < 2k for k = 1, 2, 3,
 Abundant though these points may be, yet they are too rare to be
 found by random sampling. An economical way to find all of them
 in the range 1 < z < 2 will be described but not explained:
 Let ζ = 1ulp(z) = 21-N , and let n run through small odd
 integers 1, 3, 5, 7, 9, ... in succession. Whenever
 (n - 4 + √(n(n+8/ζ)))/8 < integer m < (n - 2 + √((n-2)2+8n/z))/8 ,
 then z = 1 + (4m+1)ζ satisfies [F(z)] > [F(z’)] . Whenever
 (n - 2 + √((n+2)2+8n/ζ))/4 < integer j < (n + √(n(n+8/ζ)))/4 ,
 then z = 1 + 2jζ satisfies [F(z)] > [F(z’)] provided j is
 odd. (Monotonicity fails for DEC VAX rounding when j is even.)

 2N _< z < 2N+1 : Successive values of [F(z)] oscillate between
          ~~~~~~~~~~~~~~~   1  and  1 - 21-N  or  1 - 2-N .  (  [F(z)] 
          remains monotonic on a  DEC VAX  but less accurate on average.)
          
          2N+1 _< z < ∞ :   F(z) = 1 .
          ~~~~~~~~~~~~~~


 MONOT1 Preliminary ... Subject to Change. 5

 Monotonicity of z + z/(1+z) :
 This function g(z) := z + z/(1+z) is interesting because it is
 used to calculate sinh(x) = sign(x) g(e|X|-1)/2 accurately from
 a subroutine that calculates exp(x)-1 relatively accurately.
 And if that latter subroutine is monotonic, then so is the
 computed value of sinh(x) , as we shall see when we verify for
 all z _> 0 that G(z) := z + [z/[1+z]] and [G(z)] are both
 monotonic. The function F(z) above will figure in the proof:

 Since G(z) = z + [F(z)] , any interval on which F(z) is non-
 decreasing is an interval on which G(z) is increasing; among
 such intervals are -1 < z _< 0 and 1/2 _< z _< 1 . Elsewhere the
 proof is more complicated; there we shall deduce G(z) _< G(z’)
 from [F(z)] - [F(z’)] _< 1ulp(z) = z’ - z , which will follow
 from two facts: First, 0 < F(z) _< z , so 1ulp(z)/1ulp(F(z)) is
 a positive integer (a power of 2). Second, we shall demonstrate
 that F(z) - F(z’) < 1ulp(z) , so [F(z)] - [F(z’)] _< 1ulp(z) .

 0 < z < 1/2 : In this range let u := 1ulp(z) and ψ := 2-N .
          ~~~~~~~~~~~~~  Then  u > ψz ;  and if  F(z) > F(z’)  then,  as we
          have observed above,  [1+z’] = [1+z]’ = [1+z] + 2ψ .  Consequently 
          0 < F(z) - F(z’) = z/[1+z] - z’/[1+z’] = z/[1+z] - (z+u)/([1+z]+2ψ)
                           = (2ψz - u[1+z])/([1+z]([1+z]+2ψ))
                           < (2 - [1+z])u/[1+z]2 _< u  as claimed.
          
          1 < z < ∞ :  In this range let  u := 1ulp(z)  and  v := 1ulp([1+z])
          ~~~~~~~~~~~  so that  u _< v _< 2u .  Now  F(z) > F(z’)  implies that
 [1+z] < [1+z’] _< [1+z] + 2v , whereupon
 0 < F(z) - F(z’) = z/[1+z] - z’/[1+z’] _< z/[1+z] - (z+u)/([1+z]+2v)
 = (2vz - [1+z]u)/([1+z]([1+z]+2v))
 _< (4z - [1+z])u/([1+z]([1+z]+2v)) < (9/16)u .

 This completes the proof that G(z) and [G(z)] are monotonic.

 Monotonicity of (z-1)/(z+1) :
 Let b(z) := (z-1)/(z+1) = 1/b(-z) and B(z) := [z-1]/[z+1] = 1/B(-z) .
 These functions arise during argument reduction for the function
 arctan. Given a subprogram that calculates arctan(x) accurately
 enough and monotonically for |x| < √2-1 = tan(π/8) , we can use
 it to calculate
 arctan(x) := sign(x)π/2 - arctan(1/x) for |x| > √2+1 , but
 := sign(x)(π/4 + arctan(b(|x|))) for √2-1 < |x| < √2+1 .
 Of course, monotonicity must be checked as |x| passes the
 thresholds √2+_1 since it may fail if arctan(√2-1) is computed
 too big. Monotonicity need not be checked for other arguments x
 since [B(z)] , the computed value of b(z) , is monotonic for
 all pertinent z = |x| ; a proof is outlined below.

 In fact, B(z) is monotone increasing at every z except -1 in
 |z| <_ 3 . This is obvious for -1 < z <_ 1 , and becomes obvious
 for 2 <_ |z| <_ 3 when it is realized that [z+_1] = z+_1 exactly
 in this range. For 1 < |z| <_ 2 we find that at least one of
 [z+_1] = z+_1 exactly, and the rounding error in the other is
 easily proved incapable of reversing monotonicity. (B(z) fails
 to be monotonic at many z in 3 < |z| < 4 , beyond our concern.)

 MONOT1 Preliminary ... Subject to Change. 6

 Monotonicity of 2y - y2 :
 Given a subprogram that calculates arctan(z) monotonically and
 accurately enough for -∞ _< z _< +∞ , we may then calculate both
 arccos(x) = 2 arctan √((1-x)/(1+x)) and
 arcsin(x) = arctan(x/√(1 - x2))
 monotonically for -1 _< x _< 1 . But the last formula for arcsin
 is not so accurate as we might like; when |x| is slightly less
 than 1 the expression 1 - [x2] suffers cancellation and comes
 out accurate to as few as N/2 significant bits, which leads to
 a calculated arcsin accurate to as few as 3N/4 significant
 bits. A better procedure for arcsin is as follows:
 If |x| < 1/2 then r := 1 - x2
 else { y := 1 - |x| ... exactly ;
 r := 2y - y2 };
 arcsin(x) := arctan(x/√r) .
 Computed this way, r matches 1 - x2 accurately to within
 _+(5/8)ulp(r) ; consequently arcsin(x) is accurate to within
 less than 2.5 ulps for all |x| _< 1 . And this computation
 preserves monotonicity, as shall now be proved.

 Monotonicity is obvious for |x| _< 1/2 , so suppose |x| > 1/2 ,
 whence 0 _< y = 1-|x| < 1/2 . Indeed 2-n-1 _< y < y+2-nψ = y’ _< 2-n
 for some n = 1, 2, 3, ... and ψ := 2-N . Let R(y) := 2y - y2
 so that [R(y)] is the value calculated for r . Since y2 < 2-2n
 so |[y2] - y2| < 2-2n-1ψ , and similarly for [(y’)2] . Then
 R(y’) - R(y) = 2(y’ - y) + [y2] - [(y’)2]
 > 21-nψ + y2 - 2-2n-1ψ - (y’)2 - 2-2n-1ψ
 = 21-nψ(1 - y - 2-n)
 > 0 , confirming monotonicity.

 Monotonicity of w + 1/w :
 This function c(w) := w + 1/w is increasing for all w > 1 . It
 is interesting because it provides both cosh(x) = c(e|X|)/2 and
 sin(-O) = 2/c(cot(-O/2)) , for |-O| _< π/2 , as functions that
 inherit their monotonicity from subprograms that evaluate eX and
 cot(-O/2) monotonically. That inheritance is not jeopardized by
 roundoff because, as we shall show, both C(w) := w + [1/w] and
 [C(w)] are nondecreasing for all representable w _> 1 . However,
 the formula sin(-O) = 2/c(tan(-O/2)) does jeopardize monotonicity
 because [C(w)] increases at some arguments w in the interval
 0 < w < 1 whereas c(w) is decreasing therein. Proofs follow:

 2 _< w _< ∞ : In this range we may assume 2n _< w < 2n+1 for some
          ~~~~~~~~~~~   n = 1, 2, 3, ... .  Then  u := 1ulp(w) = 2n+1-N  and
          2-n _> 1/w > 1/w’ = 1/(w+u) _> 2-1-n ,  so  2v := 1ulp(1/w’) = 2-n-N .
          Now  C(w’)-C(w) = w’+[1/w’] - w-[1/w] = u + [1/(w+u)] - [1/w]
                          > u + (1/(w+u) - v) - (1/w + v) = u-2v - u/(w2+wu) 
                          > u - 2v - u/4  >  0  as claimed.
          
          1 _< w < 2 :  For use in this interval we introduce temporarily 
          ~~~~~~~~~~~  {x} := x rounded to  N+1  significant bits,  just as  
 [x] = x rounded to N significant bits. Then set D(w) := {c(w)-1}
 and observe that, because 1 _< D(w) _< 3/2 , the rounded value
 D(w) is obtained by rounding off bits past the Nth after the
 binary point. Because 0 _< w-1 < 1 , the fraction w-1 is
 representable exactly in N-1 bits after the point, and so the
 bits rounded off w-1 + 1/w to get D(w) are just the bits of
 1/w lying beyond the Nth . And 1/2 < 1/w _< 1 . Evidently

 MONOT2 Preliminary ... Subject to Change. 7

 D(w) = w-1 + [1/w] = C(w)-1 . As the rounded value of a monotonic
 function, D(w) must be monotonic too, and therefore so must be
 C(w) = 1 + D(w) , as claimed. (Proofs this easy are unusual.)

 0 < w < 1 : c(w) is decreasing throughout this interval, but
          ~~~~~~~~~~~  [C(w)]  increases at a scattering of arguments  w  in 
          the interval.  We shall see that they are scattered unevenly.  For
          each  n = 1, 2, 3, ...  suppose  2-n _< w < w’ = w+u _< 21-n  where 
          u := 1ulp(w) = 21-n-N .  Then  2n-1 _< 1/w’ < 1/w _< 2n  and 
          v := 1ulp(1/w’) = 2n-N _> 2u .  If now  C(w) < C(w’)  then
          0 _< [1/w] - [1/w’] < w’-w = u < v ,  implying  [1/w] = [1/w’] . 
          Consequently  v > 1/w - 1/w’ = u/(ww’) ,  whence follows
          (w’)2 > ww’ > u/v = 21-2n ,  which means  w’ > 2-n√2 .  Therefore 
          monotonicity can fail only in subintervals where  2-n√2 < w < 21-n .
          Further detailed analysis reveals that successive failures in
          those subintervals are separated on average by roughly  22-N  for
          1 _< n _< N/2 .  Moreover,  [2/[C(w)]] > [2/[C(w’)]]  at many of
          those failures,  so calculating  sin(-0) = 2/c(tan(-0/2))  will not
          inherit monotonicity from  tan(-0/2)  for all  |-0| < π/4 ;  some
          other way has to be found to calculate  sin(-0) .
          
          
          Trigonometric functions:
          Suppose a subprogram is available to calculate  T(-0) := 2 tan(-0/2)  
          accurately enough and monotonically for all  |-0| _< π/4 .  Programs
          that calculate all trigonometric functions everywhere can be built 
          out of calls upon this one subprogram  T(-0) .  Such programs are
          readily portable from one computer to another provided both have
          binary floating-point arithmetic;  only subprogram  T(-0)  need be
          much altered to accommodate different precisions.  For instance, 
          here is a procedure to calculate  tan(-0)  for all  |-0| _< π/2 :
                If  |-0| _< π/8  then  tan(-0) := T(2-0)/2 ;
                if  π/8 _< |-0| _< 3π/8  then { t := T(2|-0| - π/2) ; 
                                             tan(-0) := sign(-0)(2+t)/(2-t) };
                if  3π/8 _< |-0| _< π/2  then  tan(-0) := 2sign(-0)/T(π - 2|-0|) .
          This procedure’s  tan(-0)  inherits from  T(-0)  its accuracy and
          its monotonicity except possibly when  -0  crosses one of the
          thresholds  _+π/8  and  _+3π/8,  where some adjustments may be
          necessary to preserve monotonicity.  Those adjustments can be 
          sometimes as simple as deciding which of the procedure’s  "_<" 
          signs to replace with  "<"  signs;  but if  T(π/4)  is much too
          big the necessary adjustments may entail replacing  T(-0)  by a
          more accurate subprogram.
          
          sin(-0)  and  cos(-0)  can be calculated from  t := T(-0)  fairly
          accurately for all |-0| _< π/4  by using the following procedure:
              t := T(-0) ;   q := t2 ;   sin(-0) := t - t/(1+4/q) ;
              if  q _< 4/15  then  cos(-0) := 1 - 2/(1+4/q)   ...  _> 7/8  ...
                            else  cos(-0) := 3/4 + ((1-2q) + q/4)/(4+q) .
          These expressions would be monotonic functions of  t ,  and hence
          of  -0 ,  for all  |t| _< T(π/4) = 2/(1 + √2)  if roundoff did not
          intervene.  Does roundoff destroy their monotonicity?  No.  ...
          
          
          Monotonicity of   t - t/(1+4/t2) :
          This function  s(t) := t - t/(1+4/t2) = 4t/(4+t2)  is increasing
          when  0 _< t _< 2/(1+√2)  because  s’(t) = 4(4-t2)/(4+t2)2 > 0.6 ,
          although  s"(t) _< 0 .  Among simple expressions algebraically



          MONOT2      Preliminary   ...   Subject to Change.             8

          equivalent to  s(t) ,  including  t-t3/(4+t2)  and  t-t2/(t+4/t)
          too,  the particular expression chosen above and below for  S(t) 
          suffers less from roundoff than the others and is in consequence
          provably monotonic despite roundoff,  whereas the others are not.
          
          Let  S(t) := t - [t/[1+[4/[t2]]]] ,  so that  [S(t)]  is the value
          calculated for  sin(-0) = s(t) .  Let  ψ := 2-N ;  and write,  say,
          " [t2] = t2(1_+ψ) "  to mean that  [t2]  lies between  t2(1-ψ) and
          t2(1+ψ) ,  as is the case for binary arithmetic rounded to  N  sig.
          bits.  This notation will facilitate an error-analysis whose goal
          is to infer that  S(t)  is monotonic from inequalities of the form 
          ∆s(t) > εs(t)+εs(t’)  where  ∆s(t) := s(t’) - s(t) > s’(t) (t’-t)
          and  εs(t)  is a bound for the contribution of roundoff to  S(t) ;
          εs(t) > |S(t)-s(t)| .  Terms of order  ψ2  will be ignored during
          the error-analysis because they don’t matter.  Negative values of  
          t  can be skipped over because  S(-t) = -S(t) ,  so the proof
          deals only with  t  in the interval  0 < t _< 2/(1+√2) = 0.82843 ,
          and that  interval is dealt with in three overlapping pieces:
          
          0 < t < 0.55 :  Now  [t2] = t2(1_+ψ)  and  [4/[t2]] = (4/t2)(1_+ψ)2
          ~~~~~~~~~~~~~~  and  [t/[1+[4/[t2]]]] = (t/(1+[4/[t2]]))(1_+ψ)2 ,
 whence S(t) = s(t) _+ εs(t) with εs(t) = 2ψt3(8+t2)/(4+t2)2 .
 And ∆s(t) > s’(t) ψt ; therefore ∆s(t) > 2εs(t) whenever
 4ψt(4-t2)/(4+t2)2 > 4ψt3(8+t2)/(4+t2)2 , which is true for all
 t under consideration now.

 0.54 < t < 0.78 : [4/[t2]] = (4/t2)(1_+ψ)2 again; moreover
          ~~~~~~~~~~~~~~~~~   [1 + [4/[t2]]]  =  1 + [4/[t2]] _+ 8ψ  <  15 ,
          and   [ t/[1 + [4/[t2]]] ]  =  t/[1 + [4/[t2]]] _+ ψ/16  <  0.11 .
          Therefore  εs(t) = (ψ/16)t3(132 + 129t2)/(4+t2)2  this time.  And
          ∆s(t) > s’(t)ψ  now,  so  ∆s(t) > 2εs(t)  whenever 
          4ψ(4-t2)/(4+t2)2 > (ψ/8)t3(132+129t2)/(4+t2)2 ,  which is true for
          all t under consideration now.
          
          0.77 < t < 0.83 :  Now   0.59  <  [t2] = t2 _+ ψ/2  <  0.69 ,   and
          ~~~~~~~~~~~~~~~~~  5.8  <  [4/[t2]] = 4/[t2] _+ 4ψ  <  6.8 .   Then
 [1 + [4/[t2]]] = 1 + [4/[t2]] exactly because it lies between 6.8
 and 7.8 ; the absence of a rounding error here is what makes the
 proof work. The third rounding error is committed when we find
 0.09 < [t/(1+[4/[t2]])] = t/(1+[4/[t2]]) _+ ψ/16 < 0.122 ,
 and then |S(t)-s(t)| < εs(t) = 2ψt(1+2t4)/(4+t2)2+ ψ/16 . Since
 ∆s(t) > s’(t)ψ again, ∆s(t) > 2εs(t) for all t in question
 because 4ψ(4-t2)/(4+t2)2 > 4ψt(1+2t4)/(4+t2)2 + ψ/8 . Here ends
 the proof that S(t) is monotonic.

 As a byproduct of the proof we find that εs(t) < 0.29 ulp(S(t)) .

 Monotonicity of 3/4 + ((1-2t2) + t2/4)/(4+t2) :
 Let h(t) := (4-t2)/(4+t2) . This formula could be used to compute
 cos(-0) = h(2 tan -0/2) , but it is not quite accurate enough. The
 error [[4-[t2]]/[4+[t2]]] - h(t) can approach 1.5 ulps, and it
 destroys the identity arccos(cos(arccos x)) = arccos x when x
 is slightly less than 1 (2). A better procedure to compute cos -0
 was given above. It rearranges h(t) = 1 - 2/(1+4/t2) to retain
 monotonicity and achieve better accuracy, within 0.86 ulps when
 |t| < 2/√15 and better than that when |t| is very tiny. (Other
 rearrangements, like 1 - 2t/(t+4/t) and 1 - 2t2/(4+t2) , are

 MONOT2 Preliminary ... Subject to Change. 9

 comparably accurate and faster, but not monotonic.) And when
 2/√15 < |t| < 2/(1+√2) the procedure uses another rearrangement
 h(t) = 3/4 + ((1-2t2) + t2/4)/(4+t2) to achieve accuracy within
 0.84 ulps and monotonicity. Here is the proof of monotonicity:

 Let q := [t2] ; it increases monotonically between roughly
 4/15 = 0.2666 and 4/(3+2√2) = 0.6863 . Throughout that range
 [[1-[2q]] + [q/4]] = [1 - 7q/4] because q/4, 2q and 1-2q are
 all computed exactly. Therefore only [1 - 7q/4]/[4+q] need be
 proved monotonic. It is obviously monotone nonincreasing while
 q < 4/7 = 0.5714... . Otherwise, while 4/7 < q < 0.6863 , the
 numerator [1 - 7q/4] decreases through 0 > [1-7q/4] > -0.2011
 in steps of at least 6 ulps, whereas the denominator [4+q]
 can increase by at most an ulp when q increases by an ulp.
 Therefore monotonicity is confirmed again.

 Acknowledgements:
 The foregoing work was undertaken as part of an ongoing informal
 Elementary Functions Project in which the other participants are
 currently Alex Z.-S. Liu, Stuart MCDonald, Peter P. Tang and
 Dr. Kwok Choi Ng. Their work has been supported respectively by
 Motorola, Zilog, ELXSI and National Semiconductor Corporations.
 This author’s work has been supported in part by the U. S. Office
 of Naval Research and the U. S. Air Force Office of Scientific
 Research. I am deeply grateful to all of them for their help.

 Footnotes:
 (1) Draft 1.0 of p854 has been published, to invite public
 comment, in the IEEE magazine MICRO 4 no. 4 (Aug. 1984)
 pp.86-100. It contains specifications for both Decimal and Binary
 arithmetic, with precisions determined by the implementer subject
 to mild constraints; in Binary the number N of significant bits
 must exceed 17 . Draft 10.1 of p754 specifies only Binary
 arithmetic, and further restricts N . An earlier draft 8.0 of
 p754, published in IEEE magazine COMPUTER in March of 1981,
 has been superseded by draft 10.1, which is expected to be
 adopted officially in mid 1985.

 (2) "Elementary Functions from Kernels", by W. Kahan, will,
 when it appears, contain formulas that derive economically all of
 the elementary transcendental functions each via several algebraic
 operations upon just a few programs that deliver exp, log, tan
 and arctan within restricted domains.

 (3) "VAX" is a trademark of Digital Equipment Corp. The VAX
 line provides Binary floating-point arithmetic in four formats:
 F has N=24 ; D has N=56 ; G has N=53 ; H has N=113 .
 __

 Author’s address: Prof. W. Kahan,
 Elect. Eng. and Computer Science Dept.,
 University of California,
 Berkeley, California 94720

 This manuscript was prepared on an IBM PC and printed from a special character font downloaded on an EPSON FX-80.

