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          Abstract:
          Techniques are introduced to help decide whether roundoff errors
          will abrogate the monotonicity properties of a function when it is 
          computed.  Those techniques are applied to several expressions, 
          among them
          z/(1+z),  z + z/(1+z),  2y - y2,  w + 1/w,  t - t/(1+4/t2),  ... ,
          that have turned up during the calculation of certain elementary
          transcendental functions.  Within appropriate ranges of their
          variables,  the expressions are shown to remain monotonic when
          computed in binary arithmetic rounded as specified in proposed 
          IEEE standards  p754  and  p854 .  Because these standards are
          being adopted so widely,  the conclusions from this error-analysis
          will be appreciated widely enough to justify its propagation.
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                    ON THE MONOTONICITY OF SOME COMPUTED FUNCTIONS
          
                                       W. Kahan
          
          Introduction
          A program  F(x)  intended to compute some elementary function  f(x)
          might well be expected to do so fairly accurately.  And then should
          f(x)  be monotonic,  say  f(x) _< f(y)  whenever  x < y ,  contrary
          accidents  F(x) > F(y)  will occasion surprise.  In the face of 
          roundoff such aberrations are hard to extirpate.  Fortunately some 
          elementary functions  can  be calculated accurately,  economically
          and monotonically despite roundoff provided arithmetic is carried
          out carefully enough.  Specifically,  when computed in  Binary
          arithmetic rounded according to the proposed  IEEE  standards p754
          and p854 (1),  the following expressions will be proved monotonic:
                       z/(1+z)      for  -1 _< z _< 0  and  1/2 _< z _< 1 , 
                       z + z/(1+z)  for  -1 _< z < ∞ ,
                       (z-1)/(z+1)  for  |z| <_ 3 ,
                       2y - y2      for  -∞ _< y _< 1/2  ,
                       w + 1/w      for  1/2 _< |w| < 1/√2  and  1 _< |w| ,
                       t - t/(1+4/t2)   for  |t| _< 2/(1+√2) ,   and
                       3/4 + ((1-2q) + q/4)/(4+q)   for  4/15 < q < 5/7 .
          These deserve attention because they arise during the calculation
          of diverse elementary transcendental functions (2).  The ranges of
          values are significant too;  for instance,  roundoff destroys the
          monotonicity of  w + 1/w  at many values  w  between  0  and  1 , 
          so this expression has to be avoided as a means of computing
                     sin(-0) = 2/(w + 1/w)   from   w = tan(-0/2) .
          
          Notation:
                  I, J, K, L, M, N, i, j, k, l, m, n  are integers.
                  N = number of significant bits carried during arithmetic;
                          N = 24  for IEEE single,  53 for double, ... .
                  u, v, w, x, y, z  are real variables.
                  [x] = x rounded to  N  significant bits (explained below).
                  1ulp(x) = one unit in the last place of  [x]
                          = 2k+1-N  if  2k _< |x| < 2k+1 ,  normally.
                  x’ = Nextafter(x, +∞)  if  x  is representable exactly,
                     = x + 1ulp(x)  if  x > 0  too.
          Every number  x  representable exactly as a floating-point number
          with  N  significant bits has a value  x = _+2nM  where  0 _< M < 2N .
          Except when  x = 0  or when  x is  Subnormal  ( n  has the minimum 
          value allowed for the chosen floating-point format),  the  Normal
          representation of  x  is determined uniquely by  2N-1 _< M _< 2N-1 .
          And  [x] = x .  But when  x  is not representable exactly,  when 
          [x] /= x ,  then  [x]  is an exactly representable value closest to
          x  and so  |[x] - x| _< 1ulp(x)/2 .  To fix  [x]  uniquely when  x  
          lies just midway between two exactly representable values,  a tie- 
          breaking rule must be invoked.  The  IEEE  standard breaks the tie 
          by  "rounding to nearest even";  this means that  x = 2n(M + 1/2) ,
          with  2N-1 _< M _< 2N-1 ,  rounds to  [x] = 2nM  when  M  is even,  to
          [x] = 2n(M+1)  when  M  is odd.  (This tie-breaking rule avoids the
          statistical bias inherent in another rule,  widely used by earlier 
          computers like the  DEC VAX (3),  that always rounds midway cases
          up in magnitude to  [x] = 2n(M+1) .)  Whether monotonicity might be
          affected by the choice of tie-breaking rule,  or by the choice of
          radix  (we have chosen binary,  radix 2 ,  instead of decimal, 
          radix 10 ),  are interesting questions not to be answered here.
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          Easy Decisions:
          Obviously  x < y  implies  [x] _< [y] ,  so  [z]  is a monotonic
          function of  z .  It soon follows that examples like  [1/[1+[1/z]]]
          and  [z/[√[1-[z2]]]]  are monotonic functions of  z  too,  though
          ostensibly algebraically equivalent expressions  [z/[1+z]]  and 
          [z/[√[[1-z][1+z]]]]  respectively fail to be monotonic at a host
          of valid values  z  despite that the latter two expressions may be
          more accurate in the face of roundoff.  The connection between
          monotonicity and accuracy is weak,  but valuable none the less as
          an important consequence of the discrete nature of representable
          numbers;  it  amounts to this: 
          
          Suppose that  f(x)  is a monotone function of  x ;  for the sake
          of definiteness suppose  f(x)  is increasing.  And suppose  F(x) 
          is an approximation to  f(x) .  Finally,  suppose the uncertainty  
          in  F(x)  is a known function  ε(x) _> |F(x)-f(x)| .  We do not
          assume that either  F(x)  or  ε(x)  is representable;  their
          provenance is irrelevant.  How small must  ε(x)  be to imply that 
          F(x)  is a monotonic function when its argument  x  is restricted
          to representable values?  If,  for any consecutive representable
          numbers  x  and  x’,  we find  ε(x)+ε(x’) _< f(x’)-f(x) ,  then
                   F(x’)-F(x) _> (f(x’)-ε(x’)) - (f(x)+ε(x)) _> 0 ,
          so the monotonicity of  f  will not be violated by  F  nor by its
          rounded value  [F] .  In effect,  so long as  f  increases fast
          enough compared with the uncertainty  ε  in its approximation  F , 
          then  F  will be nondecreasing too.
          
          Values that differ by less than  1ulp  round to values that differ 
          by no more than  1ulp ;  i. e.,  if   0 < v _< w < v + 1ulp(v) , 
          then  [v] _< [w] _< [v]’ .  Similarly,  if  0 < v _< w < v + 2ulp(v) 
          then  [v] _< [w] _< [v]" .  These inferences are somewhat delicate; 
          a slight weakening of their hypotheses can vitiate them.  For
          instance,  when  v  and  w  are consecutive midway cases we can
          find  [v] < v < [v]’ < w = v + 1ulp(v) < [w] = [v]"  because of
          the way the  IEEE  standard rounds midway cases to nearest even. 
          ( On a  DEC VAX  consecutive midway cases that do not straddle
          powers of  2  satisfy  v < [v] < w = v + 1ulp(v) < [w] = [v]’ .) 
          Another instance:  if  v  and  w  straddle the negative of a power
          of  2  then   [v] < v < [v]’ < [v]" = [w] < w < v + 1ulp(v) < 0  
          can happen.  The reader should check the tedious details in this
          paragraph if only to confirm that the notation is understood.
          
          
          Monotonicity of  z/(1+z) :
          This function  f(z) := z/(1+z) = 1/(1+1/z)  is increasing at all 
          z  except  z = -1 .  The computed value of  f(z) is  [F(z)] 
          where  F(z) := z/[1+z] ;  these functions decrease at representable 
          arguments  z  distributed in a surprisingly complicated way for so 
          ostensibly simple a function as  f(z) .  Here is the picture:
          
          -∞ < z _< -2N+1 :  [1+z] = z  in this range so  F(z) = [F(z)] = 1 .
          ~~~~~~~~~~~~~~~
          -2N+1 < z < -2N :  For  z = -2N+1+2, -2N+1+4, -2N+1+6, -2N+1+8, ...,
          ~~~~~~~~~~~~~~~~~  -2N-8, -2N-6, -2N-4,  -2N-2  in turn,  [1+z]
          takes the values  -2N+1+4, -2N+1+4, -2N+1+8, -2N+1+8, ..., -2N-8,
          -2N-4, -2N-4, -2N  respectively.  Consequently  [F(z)] = [z/[1+z]] 
          takes respectively the values  1’, 1, 1’, 1, ..., 1, 1’, 1, 1’ ,
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          where  1’ = 1 + 21-N .  Monotonicity is lost on this interval. 
          (On a DEC VAX,  which rounds midway cases up,  [1+z] = z  in this
          interval,  so  [F(z)] = 1 ,  which is less accurate on average but 
          still monotonic.)
          
          -2N _< z _< 0 :  [1+z] = 1+z  exactly when  z _< -1/2  in this
          ~~~~~~~~~~~~~  range,  so  F(z) = f(z) ,  and therefore  F(z)  and
          [F(z)] are,  like  f(z) ,   monotonic except at  z = -1 .  And
          when  -1/2 < z _< 0  then  F(z) = -|z|/[1-|z|]  is obviously
          monotonic,  as is  [F(z)] .
          
          In subsequent intervals the essential observation is that no 
          failure of monotonicity,  i. e.  [F(z)] > [F(z’)] ,  can occur
          unless  0 < [1+z] < [1+z’]  occurs too.
          
          0 < z < 1/2 :  Within this interval exist scatterings of points  z
          ~~~~~~~~~~~~~  at which  [F(z)]  decreases instead of increasing as
          f(z)  does.  The least such  z  is  z = 21-N+2-N-22-2N ,  for which 
          z’ = 21-N+2-N  and  [F(z)] = 21-N+2-N-23-2N = [F(z’)]’ .  (On a  DEC
          VAX  the least point of decrease is  z = 2-N-2-2N .)  The largest 
          z  at which   [F(z)] = [F(z’)]’ > [F(z’)]   turns out to be
                      z  =  1/2  -  3/4integer part of (N+1)/2 .
          The details are tedious.  Other such places  z  are confined
          within certain subintervals  zk < z < 21-k ,  where  zk = [1/(2k-1)]
          for  k = 2, 3, 4, ..., N ;  also  z  must satisfy  [1+z’] = [1+z]’ .
          
          1/2 _< z _< 1 :  F(z) ,  and therefore also  [F(z)] ,  is monotonic
          ~~~~~~~~~~~~~  throughout this interval.  To see why,  first let 
          ψ := 1ulp(z) ;  and classify  z  as even or odd according as its
          least significant bit is  0  or  1 .  If  z  is even,  [1+z] = 1+z ;
          if odd,   [1+z]  =  1 + z _+ ψ ,  depending upon whether the
          second-last bit of  z  is  1  or  0  in accordance with the way
          the  IEEE  standard rounds the midway cases.  Since  1/2 _< z < z’
          = z+ψ _< 1 ,  we find when  z  is even that
            F(z) = z/[1+z] = z/(1+z) < (z+ψ)/(1+z+2ψ) = z’/(1+z’+ψ) _< z’/[1+z’] = F(z’) .
          And when  z  is odd,
            F(z) = z/[1+z] _< z/(1+z-ψ) _< (z+ψ)/(1+z+ψ) = z’/(1+z’) = z’/[1+z’] = F(z’) .
          
          1 < z < 2N :  [F(z)]  fails to be monotonic at many of the points
          ~~~~~~~~~~~~  z  where  [1+z’] > [1+z] ;  these points all lie in
          subintervals of the form  2k-1 < z < 2k  for  k = 1, 2, 3, ... . 
          Abundant though these points may be,  yet they are too rare to be
          found by random sampling.  An economical way to find all of them 
          in the range  1 < z < 2  will be described but not explained:
          Let  ζ = 1ulp(z) = 21-N ,  and let  n  run through small odd
          integers  1, 3, 5, 7, 9, ...  in succession.  Whenever
               (n - 4 + √(n(n+8/ζ)) )/8  <  integer m  <  (n - 2 + √((n-2)2+8n/z) )/8 ,
          then  z = 1 + (4m+1)ζ  satisfies  [F(z)] > [F(z’)] .  Whenever
                (n - 2 + √((n+2)2+8n/ζ) )/4  <  integer j  <  (n + √(n(n+8/ζ)) )/4  ,
          then  z = 1 + 2jζ  satisfies  [F(z)] > [F(z’)]  provided  j  is
          odd.  (Monotonicity fails for  DEC VAX  rounding when  j  is even.)
          
          2N _< z < 2N+1 :   Successive values of  [F(z)]  oscillate between
          ~~~~~~~~~~~~~~~   1  and  1 - 21-N  or  1 - 2-N .  (  [F(z)] 
          remains monotonic on a  DEC VAX  but less accurate on average.)
          
          2N+1 _< z < ∞ :   F(z) = 1 .
          ~~~~~~~~~~~~~~



          MONOT1      Preliminary   ...   Subject to Change.             5

          Monotonicity of  z + z/(1+z) :
          This function  g(z) := z + z/(1+z)  is interesting because it is
          used to calculate  sinh(x) = sign(x) g( e|X|-1 )/2  accurately from
          a subroutine that calculates  exp(x)-1  relatively accurately. 
          And if that latter subroutine is monotonic,  then so is the
          computed value of  sinh(x) ,  as we shall see when we verify for
          all  z _> 0  that  G(z) := z + [z/[1+z]]  and  [G(z)]  are both
          monotonic.  The function  F(z)  above will figure in the proof:
          
          Since  G(z) = z + [F(z)] ,  any interval on which  F(z)  is non-
          decreasing is an interval on which  G(z)  is increasing;  among 
          such intervals are  -1 < z _< 0  and  1/2 _< z _< 1 .  Elsewhere the 
          proof is more complicated;  there we shall deduce  G(z) _< G(z’) 
          from  [F(z)] - [F(z’)] _< 1ulp(z) = z’ - z ,  which will follow
          from two facts:  First,  0 < F(z) _< z ,  so  1ulp(z)/1ulp(F(z)) is
          a positive integer  (a power of 2).  Second,  we shall demonstrate 
          that  F(z) - F(z’) < 1ulp(z) ,  so  [F(z)] - [F(z’)] _< 1ulp(z) .
          
          0 < z < 1/2 :  In this range let  u := 1ulp(z)  and  ψ := 2-N . 
          ~~~~~~~~~~~~~  Then  u > ψz ;  and if  F(z) > F(z’)  then,  as we
          have observed above,  [1+z’] = [1+z]’ = [1+z] + 2ψ .  Consequently 
          0 < F(z) - F(z’) = z/[1+z] - z’/[1+z’] = z/[1+z] - (z+u)/([1+z]+2ψ)
                           = (2ψz - u[1+z])/([1+z]([1+z]+2ψ))
                           < (2 - [1+z])u/[1+z]2 _< u  as claimed.
          
          1 < z < ∞ :  In this range let  u := 1ulp(z)  and  v := 1ulp([1+z])
          ~~~~~~~~~~~  so that  u _< v _< 2u .  Now  F(z) > F(z’)  implies that
          [1+z] < [1+z’] _< [1+z] + 2v ,  whereupon
          0 < F(z) - F(z’) = z/[1+z] - z’/[1+z’] _< z/[1+z] - (z+u)/([1+z]+2v)
                           = (2vz - [1+z]u)/([1+z]([1+z]+2v))
                           _< (4z - [1+z])u/([1+z]([1+z]+2v)) < (9/16)u .
          
          This completes the proof that  G(z)  and  [G(z)]  are monotonic.
          
          
          Monotonicity of  (z-1)/(z+1) :
          Let   b(z) := (z-1)/(z+1) = 1/b(-z)   and   B(z) := [z-1]/[z+1] = 1/B(-z) .
          These functions arise during argument reduction for the function 
          arctan.  Given a subprogram that calculates  arctan(x)  accurately
          enough and monotonically for  |x| < √2-1 = tan(π/8) ,  we can use 
          it to calculate
            arctan(x) := sign(x)π/2 - arctan(1/x)   for   |x| > √2+1 ,    but
                      := sign(x)( π/4 + arctan(b(|x|)) )   for   √2-1 < |x| < √2+1 .
          Of course,  monotonicity must be checked as  |x|  passes the
          thresholds  √2+_1  since it may fail if  arctan(√2-1)  is computed
          too big.  Monotonicity need not be checked for other arguments  x 
          since  [B(z)] ,  the computed value of  b(z) ,  is monotonic for
          all pertinent  z = |x| ;  a proof is outlined below.
          
          In fact,  B(z)  is monotone increasing at every  z  except  -1  in
          |z| <_ 3 .  This is obvious for  -1 < z <_ 1 ,  and becomes obvious 
          for  2 <_ |z| <_ 3  when it is realized that  [z+_1] = z+_1  exactly 
          in this range.  For  1 < |z| <_ 2  we find that at least one of
          [z+_1] = z+_1  exactly,  and the rounding error in the other is
          easily proved incapable of reversing monotonicity.  (  B(z)  fails 
          to be monotonic at many  z  in  3 < |z| < 4 ,  beyond our concern.)
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          Monotonicity of  2y - y2 :
          Given a subprogram that calculates  arctan(z)  monotonically and
          accurately enough for  -∞ _< z _< +∞ ,  we may then calculate both
                        arccos(x) = 2 arctan √( (1-x)/(1+x) )   and
                        arcsin(x) = arctan( x/√(1 - x2) )
          monotonically for  -1 _< x _< 1 .  But the last formula for  arcsin 
          is not so accurate as we might like;  when  |x|  is slightly less
          than  1  the expression  1 - [x2]  suffers cancellation and comes
          out accurate to as few as  N/2  significant bits,  which leads to
          a calculated  arcsin  accurate to as few as  3N/4  significant
          bits.  A better procedure for  arcsin  is as follows:
                  If  |x| < 1/2  then     r := 1 - x2
                                 else  {  y := 1 - |x|  ... exactly ;
                                          r := 2y - y2  };
                  arcsin(x) := arctan( x/√r ) .
          Computed this way,  r  matches  1 - x2  accurately to within 
          _+(5/8)ulp(r) ;  consequently  arcsin(x)  is accurate to within
          less than  2.5 ulps  for all  |x| _< 1 .  And this computation
          preserves monotonicity,  as shall now be proved.
          
          Monotonicity is obvious for  |x| _< 1/2 ,  so suppose  |x| > 1/2 ,
          whence  0 _< y = 1-|x| < 1/2 .  Indeed  2-n-1 _< y < y+2-nψ = y’ _< 2-n
          for some  n = 1, 2, 3, ...  and  ψ := 2-N .  Let  R(y) := 2y - y2
          so that  [R(y)]  is the value calculated for  r .  Since  y2 < 2-2n
          so  |[y2] - y2| < 2-2n-1ψ ,  and similarly for  [(y’)2] .  Then
                R(y’) - R(y)  =  2(y’ - y)  +  [y2] - [(y’)2]
                              >  21-nψ  +  y2 - 2-2n-1ψ  -  (y’)2 - 2-2n-1ψ
                              =  21-nψ(1 - y - 2-n)
                              >  0 ,  confirming monotonicity.
          
          Monotonicity of  w + 1/w :
          This function  c(w) := w + 1/w  is increasing for all  w > 1 .  It 
          is interesting because it provides both  cosh(x) = c(e|X|)/2  and   
          sin(-O) = 2/c(cot(-O/2)) ,  for  |-O| _< π/2 ,  as functions that
          inherit their monotonicity from subprograms that evaluate  eX  and
          cot(-O/2)  monotonically.  That inheritance is not jeopardized by
          roundoff because,  as we shall show,  both  C(w) := w + [1/w]  and 
          [C(w)]  are nondecreasing for all representable  w _> 1 .  However,
          the formula  sin(-O) = 2/c(tan(-O/2))  does jeopardize monotonicity
          because  [C(w)]  increases at some arguments  w  in the interval 
          0 < w < 1  whereas  c(w)  is decreasing therein.  Proofs follow:
          
          2 _< w _< ∞ :  In this range we may assume  2n _< w < 2n+1  for some
          ~~~~~~~~~~~   n = 1, 2, 3, ... .  Then  u := 1ulp(w) = 2n+1-N  and
          2-n _> 1/w > 1/w’ = 1/(w+u) _> 2-1-n ,  so  2v := 1ulp(1/w’) = 2-n-N .
          Now  C(w’)-C(w) = w’+[1/w’] - w-[1/w] = u + [1/(w+u)] - [1/w]
                          > u + (1/(w+u) - v) - (1/w + v) = u-2v - u/(w2+wu) 
                          > u - 2v - u/4  >  0  as claimed.
          
          1 _< w < 2 :  For use in this interval we introduce temporarily 
          ~~~~~~~~~~~  {x} := x rounded to  N+1  significant bits,  just as  
          [x] = x rounded to  N significant bits.  Then set  D(w) := {c(w)-1}
          and observe that,  because  1 _< D(w) _< 3/2 ,  the rounded value
          D(w)  is obtained by rounding off bits past the  Nth  after the
          binary point.  Because  0 _< w-1 < 1 ,  the fraction  w-1  is
          representable exactly in  N-1  bits after the point,  and so the
          bits rounded off  w-1 + 1/w  to get  D(w)  are just the bits of 
          1/w  lying beyond the  Nth .  And  1/2 < 1/w _< 1 .  Evidently 
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          D(w) = w-1 + [1/w] = C(w)-1 .  As the rounded value of a monotonic 
          function,  D(w)  must be monotonic too,  and therefore so must be
          C(w) = 1 + D(w) ,  as claimed.  (Proofs this easy are unusual.)
          
          0 < w < 1 :  c(w)  is decreasing throughout this interval,  but 
          ~~~~~~~~~~~  [C(w)]  increases at a scattering of arguments  w  in 
          the interval.  We shall see that they are scattered unevenly.  For
          each  n = 1, 2, 3, ...  suppose  2-n _< w < w’ = w+u _< 21-n  where 
          u := 1ulp(w) = 21-n-N .  Then  2n-1 _< 1/w’ < 1/w _< 2n  and 
          v := 1ulp(1/w’) = 2n-N _> 2u .  If now  C(w) < C(w’)  then
          0 _< [1/w] - [1/w’] < w’-w = u < v ,  implying  [1/w] = [1/w’] . 
          Consequently  v > 1/w - 1/w’ = u/(ww’) ,  whence follows
          (w’)2 > ww’ > u/v = 21-2n ,  which means  w’ > 2-n√2 .  Therefore 
          monotonicity can fail only in subintervals where  2-n√2 < w < 21-n .
          Further detailed analysis reveals that successive failures in
          those subintervals are separated on average by roughly  22-N  for
          1 _< n _< N/2 .  Moreover,  [2/[C(w)]] > [2/[C(w’)]]  at many of
          those failures,  so calculating  sin(-0) = 2/c(tan(-0/2))  will not
          inherit monotonicity from  tan(-0/2)  for all  |-0| < π/4 ;  some
          other way has to be found to calculate  sin(-0) .
          
          
          Trigonometric functions:
          Suppose a subprogram is available to calculate  T(-0) := 2 tan(-0/2)  
          accurately enough and monotonically for all  |-0| _< π/4 .  Programs
          that calculate all trigonometric functions everywhere can be built 
          out of calls upon this one subprogram  T(-0) .  Such programs are
          readily portable from one computer to another provided both have
          binary floating-point arithmetic;  only subprogram  T(-0)  need be
          much altered to accommodate different precisions.  For instance, 
          here is a procedure to calculate  tan(-0)  for all  |-0| _< π/2 :
                If  |-0| _< π/8  then  tan(-0) := T(2-0)/2 ;
                if  π/8 _< |-0| _< 3π/8  then { t := T(2|-0| - π/2) ; 
                                             tan(-0) := sign(-0)(2+t)/(2-t) };
                if  3π/8 _< |-0| _< π/2  then  tan(-0) := 2sign(-0)/T(π - 2|-0|) .
          This procedure’s  tan(-0)  inherits from  T(-0)  its accuracy and
          its monotonicity except possibly when  -0  crosses one of the
          thresholds  _+π/8  and  _+3π/8,  where some adjustments may be
          necessary to preserve monotonicity.  Those adjustments can be 
          sometimes as simple as deciding which of the procedure’s  "_<" 
          signs to replace with  "<"  signs;  but if  T(π/4)  is much too
          big the necessary adjustments may entail replacing  T(-0)  by a
          more accurate subprogram.
          
          sin(-0)  and  cos(-0)  can be calculated from  t := T(-0)  fairly
          accurately for all |-0| _< π/4  by using the following procedure:
              t := T(-0) ;   q := t2 ;   sin(-0) := t - t/(1+4/q) ;
              if  q _< 4/15  then  cos(-0) := 1 - 2/(1+4/q)   ...  _> 7/8  ...
                            else  cos(-0) := 3/4 + ((1-2q) + q/4)/(4+q) .
          These expressions would be monotonic functions of  t ,  and hence
          of  -0 ,  for all  |t| _< T(π/4) = 2/(1 + √2)  if roundoff did not
          intervene.  Does roundoff destroy their monotonicity?  No.  ...
          
          
          Monotonicity of   t - t/(1+4/t2) :
          This function  s(t) := t - t/(1+4/t2) = 4t/(4+t2)  is increasing
          when  0 _< t _< 2/(1+√2)  because  s’(t) = 4(4-t2)/(4+t2)2 > 0.6 ,
          although  s"(t) _< 0 .  Among simple expressions algebraically



          MONOT2      Preliminary   ...   Subject to Change.             8

          equivalent to  s(t) ,  including  t-t3/(4+t2)  and  t-t2/(t+4/t)
          too,  the particular expression chosen above and below for  S(t) 
          suffers less from roundoff than the others and is in consequence
          provably monotonic despite roundoff,  whereas the others are not.
          
          Let  S(t) := t - [t/[1+[4/[t2]]]] ,  so that  [S(t)]  is the value
          calculated for  sin(-0) = s(t) .  Let  ψ := 2-N ;  and write,  say,
          " [t2] = t2(1_+ψ) "  to mean that  [t2]  lies between  t2(1-ψ) and
          t2(1+ψ) ,  as is the case for binary arithmetic rounded to  N  sig.
          bits.  This notation will facilitate an error-analysis whose goal
          is to infer that  S(t)  is monotonic from inequalities of the form 
          ∆s(t) > εs(t)+εs(t’)  where  ∆s(t) := s(t’) - s(t) > s’(t) (t’-t)
          and  εs(t)  is a bound for the contribution of roundoff to  S(t) ;
          εs(t) > |S(t)-s(t)| .  Terms of order  ψ2  will be ignored during
          the error-analysis because they don’t matter.  Negative values of  
          t  can be skipped over because  S(-t) = -S(t) ,  so the proof
          deals only with  t  in the interval  0 < t _< 2/(1+√2) = 0.82843 ,
          and that  interval is dealt with in three overlapping pieces:
          
          0 < t < 0.55 :  Now  [t2] = t2(1_+ψ)  and  [4/[t2]] = (4/t2)(1_+ψ)2
          ~~~~~~~~~~~~~~  and  [t/[1+[4/[t2]]]] = (t/(1+[4/[t2]]))(1_+ψ)2 ,
          whence  S(t) = s(t) _+ εs(t)  with  εs(t) = 2ψt3(8+t2)/(4+t2)2 .
          And  ∆s(t) > s’(t) ψt ;  therefore  ∆s(t) > 2εs(t)  whenever
          4ψt(4-t2)/(4+t2)2 > 4ψt3(8+t2)/(4+t2)2 ,  which is true for all
          t  under consideration now.
          
          0.54 < t < 0.78 :   [4/[t2]] = (4/t2)(1_+ψ)2  again;  moreover
          ~~~~~~~~~~~~~~~~~   [1 + [4/[t2]]]  =  1 + [4/[t2]] _+ 8ψ  <  15 ,
          and   [ t/[1 + [4/[t2]]] ]  =  t/[1 + [4/[t2]]] _+ ψ/16  <  0.11 .
          Therefore  εs(t) = (ψ/16)t3(132 + 129t2)/(4+t2)2  this time.  And
          ∆s(t) > s’(t)ψ  now,  so  ∆s(t) > 2εs(t)  whenever 
          4ψ(4-t2)/(4+t2)2 > (ψ/8)t3(132+129t2)/(4+t2)2 ,  which is true for
          all t under consideration now.
          
          0.77 < t < 0.83 :  Now   0.59  <  [t2] = t2 _+ ψ/2  <  0.69 ,   and
          ~~~~~~~~~~~~~~~~~  5.8  <  [4/[t2]] = 4/[t2] _+ 4ψ  <  6.8 .   Then
          [1 + [4/[t2]]] = 1 + [4/[t2]]  exactly because it lies between  6.8
          and  7.8 ;  the absence of a rounding error here is what makes the 
          proof work.  The third rounding error is committed when we find 
          0.09 <  [ t/(1+[4/[t2]]) ]  =  t/(1+[4/[t2]]) _+ ψ/16  < 0.122 ,
          and then  |S(t)-s(t)| <  εs(t) = 2ψt(1+2t4)/(4+t2)2+ ψ/16 .  Since
          ∆s(t) > s’(t)ψ  again,  ∆s(t) > 2εs(t)  for all  t  in question
          because  4ψ(4-t2)/(4+t2)2 > 4ψt(1+2t4)/(4+t2)2 + ψ/8 .  Here ends
          the proof that  S(t)  is monotonic.
          
          As a byproduct of the proof we find that  εs(t) < 0.29 ulp(S(t)) .
          
          
          Monotonicity of  3/4 + ((1-2t2) + t2/4)/(4+t2) :
          Let  h(t) := (4-t2)/(4+t2) .  This formula could be used to compute
          cos(-0) = h(2 tan -0/2) ,  but it is not quite accurate enough.  The
          error  [[4-[t2]]/[4+[t2]]] - h(t)  can approach  1.5 ulps,  and it
          destroys the identity  arccos(cos(arccos x)) = arccos x  when  x
          is slightly less than  1 (2).  A better procedure to compute  cos -0
          was given above.  It rearranges  h(t) = 1 - 2/(1+4/t2)  to retain
          monotonicity and achieve better accuracy,  within  0.86 ulps when  
          |t| < 2/√15  and better than that when  |t|  is very tiny.  (Other
          rearrangements,  like  1 - 2t/(t+4/t)  and  1 - 2t2/(4+t2) ,  are
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          comparably accurate and faster,  but not monotonic.)   And when 
          2/√15 < |t| < 2/(1+√2)  the procedure uses another rearrangement 
          h(t) = 3/4 + ((1-2t2) + t2/4)/(4+t2)  to achieve accuracy within
          0.84 ulps  and monotonicity.  Here is the proof of monotonicity:
          
          Let  q := [t2] ;  it increases monotonically between roughly 
          4/15 = 0.2666  and  4/(3+2√2) = 0.6863 .  Throughout that range 
          [[1-[2q]] + [q/4]] = [1 - 7q/4]  because  q/4, 2q  and  1-2q  are
          all computed exactly.  Therefore only  [1 - 7q/4]/[4+q]  need be
          proved monotonic.  It is obviously monotone nonincreasing while
          q < 4/7 = 0.5714... .  Otherwise,  while  4/7 < q < 0.6863 ,  the 
          numerator  [1 - 7q/4]  decreases through  0 > [1-7q/4] > -0.2011
          in steps of at least  6 ulps,  whereas the denominator  [4+q] 
          can increase by at most an ulp when  q  increases by an ulp. 
          Therefore monotonicity is confirmed again.
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          Footnotes:
          (1)  Draft 1.0 of p854 has been published,  to invite public
          comment,  in the  IEEE  magazine  MICRO  4 no. 4  (Aug. 1984)
          pp.86-100.  It contains specifications for both Decimal and Binary 
          arithmetic,  with precisions determined by the implementer subject 
          to mild constraints;  in Binary the number  N  of significant bits 
          must exceed  17 .  Draft  10.1  of  p754  specifies only Binary
          arithmetic,  and further restricts  N .  An earlier draft 8.0 of
          p754,  published in  IEEE magazine  COMPUTER  in  March of 1981,
          has been superseded by draft 10.1,  which is expected to be
          adopted officially in mid 1985.
          
          (2)  "Elementary Functions from Kernels",  by W. Kahan,  will,
          when it appears,  contain formulas that derive economically all of
          the elementary transcendental functions each via several algebraic
          operations upon just a few programs that deliver  exp, log, tan
          and arctan  within restricted domains.
          
          (3)  "VAX"  is a trademark of  Digital Equipment Corp.  The  VAX
          line provides Binary floating-point arithmetic in four formats:
           F  has  N=24 ;  D  has  N=56 ;  G  has  N=53 ;  H  has  N=113 .
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