

File: NeeDebug

Needed Remedies for the Undebuggability …

 Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 1/68

Needed Remedies for the Undebuggability of
Large-Scale Floating-Point Computations

in Science and Engineering

for Computer Science Dept. Colloquia at …
Univ. of Calif. @ Berkeley, 7 Oct 2009
Univ. of Calif. @ Davis, 17 Nov. 2009

Southern Methodist University, Dallas, 18 Oct. 2010
Lawrence Berkeley National Laboratory, 15 Feb. 2011

by
W. Kahan, Prof. Emeritus,

Math. Dept., and E.E. & C. S. Dept., Univ. of Calif. @ Berkeley

to be posted at

<www.cs.berkeley.edu/~wkahan/NeeDebug.pdf>

Collateral Reading:

<www.cs.berkeley.edu/~wkahan/Mindless.pdf>

, especially section 14

<www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf>

, only a little outdated

File: NeeDebug

Needed Remedies for the Undebuggability …

 Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 2/68

Contents
 Page to be supplied later

File: NeeDebug

Needed Remedies for the Undebuggability …

 Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 3/68

Needed Remedies for the Undebuggability of Large-Scale
Floating-Point Computations in Science and Engineering

Abstract:

Despite almost universal conformity to IEEE Standard 754, Floating-Point Arithmetic still
teems with mysteries and misconceptions, some still enshrined in programming languages.
Roundoff, invisible in programs’ texts, occasionally causes the worst anomalies:—

Results unobviously wrong enough to mislead and almost always misdiagnosed.
Also misdiagnosed more often than not is misbehavior precipitated by arithmetic Exceptions,
like over/underflow and division-by-zero, treated as programmers’ errors deserving disruption
of the program's intended path of control. Ample instances of misdiagnoses will be presented.

Must computing professionals acquiesce to a resurgent superstition that
numerical software is inevitably buggy, like Microsoft’s

Windows

 ?

Developers and users of numerical software must demand but cannot by themselves produce the
peculiar tools needed to debug floating-point anomalies whenever these are suspected. The
tools must come from Computer Science departments; nobody else in industry and academia
has motive and opportunity. Help is needed from designers and implementers of hardware, of
programming languages, and of the debuggers in software development environments to
collaborate on features that will help to localize an anomaly’s cause to a comparatively short
segment of code, when possible. These features will be explained. Some have existed in
hardware for decades but are atrophying for lack of employment.

Collateral reading:

<www.cs.berkeley.edu/~wkahan/Mindless.pdf>

 and

 <…/JAVAhurt.pdf>

File: NeeDebug

Needed Remedies for the Undebuggability …

 Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 4/68

Most Software is already Hard Enough to Debug.

How does Floating-Point arithmetic make it Harder?

• Roundoff:

 …absent from strictly integer and character computation

What you see is Not Entirely what you get.
What you get is Not Exactly what you wanted or expected.
“Not Exactly” can be “Far From” and yet Not Wrong

!

Single-Stepping through or past Gigaflops is usually Futile.

• Floating-Point Exceptions:

 …unlike other exceptions

Invalid Op’n, “Div’n-by-Zero”, Overflow, Underflow,

Inexact Op’n

They are not Errors unless they are handled badly.
To handle them well requires the Option to Defer Judgement.
Deferred Judgement is Too Dangerous without well-supported
 Presubstitutions, Flags, NaNs, & Retrospective Diagnostics.

Has Floating-Point become Too Hard to Debug?

File: NeeDebug

Needed Remedies for the Undebuggability …

 Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 5/68

Questions to be addressed in what follows:

Nobody is keeping score of incorrect numerical results, so …

• What evidence exposes extraordinarily inadequate
 debugging of software engaged in floating-point?

• Who should care enough about it to do something?

• Who can do something helpful about it?

• What can be done about it that will adequately
repay the substantial efforts expended?

 You deserve to be warned of certain dangers …

File: NeeDebug

Needed Remedies for the Undebuggability …

 Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 6/68

DANGER

!

“ A fanatic is one who can’t change his mind
and won’t change the subject. ”

 … Winston S. Churchill

Am I a fanatic?
Can you trust what I’ll say? … the Whole Truth and Nothing But?
How much of my concerns should you share?

Perhaps some history will help to stimulate a timely judgement …

File: NeeDebug

Needed Remedies for the Undebuggability …

 Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 7/68

Some History:

I started programming electronic computers in 1953.
Then their

raison d’être

 was still Scientific and Engineering computation.

Despite disparagement by John von Neumann, floating-point was used widely;
but it was regarded as refractory to error-analysis and intrinsically “fuzzy”.

Why disparagement? See pp. 3 - 4 of <www.eecs.berkeley.edu/~wkahan/SIAMjvnl.pdf>

Computed results were prudently distrusted unless corroborated by experiment,
by independent recomputation, or by extra computation of tests or residuals.

For every numerical task, several methods were proffered, each named after
someone hoping for immortality: Jordan, Milne, Graeffe, Danilewski, … .

As an old Alka-Seltzer ad on TV said, “Try it

!

 You’ll like it.” And if not, you
could try another method. Picked at random, it was as likely as not to fail.

A

Polyalgorithm

 assembled several algorithms, all for the same numerical task,
intended to be tried one after the other until enough of them agreed closely

enough with what was presumed to be nearly enough the desired result.

Anomalies suspected due to roundoff were rarely diagnosed correctly. Instead, a
desperate or haphazard change to the program moved them away sometimes.

File: NeeDebug

Needed Remedies for the Undebuggability …

 Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 8/68

Some History, continued …

By 1957 a few of us — W. Givens, J.H.Wilkinson, F.L.Bauer, myself — had
tumbled to a hint dropped by A.M. Turing in 1949 that spawned what has

been mislabelled “Backward Error-Analysis”, which works for many
(not all) floating-point computations, especially with matrices.

In the 1960s and 1970s, successful error-analyses spurred a proliferation of
numerical algorithms that worked at least almost always on at least almost

all commercially significant computers. Maybe not Seymour Cray’s.

J. Sethian’s example of an expression that would malfunction only on CRAYs
in the 1980s is on p. 30 of

<www.eecs.berkeley.edu/~wkahan/CS279/CrayUG.pdf>

 .
Its validity on every other computer required a different proof for each.

Hardware’s near ubiquitous adoption of IEEE Standard 754 (1985) for Binary
Floating-Point greatly enhanced the reliability and portability of numerical

software even though programming languages have been disinclined to
support also the diagnostic capabilities mandated by the standard.

Blame Microsoft’s Bill Gates (1982), Apple’s John Scully (1994), Sun’s Bill Joy (1997)

Those unsupported capabilities of IEEE 754 have been atrophying in hardware.

File: NeeDebug

Needed Remedies for the Undebuggability …

 Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 9/68

Some History, brought up to date:

Over the span of my computing career the population of computers, their speeds
and their storage capacities at every level have grown by several orders of

magnitude. Also grown by orders of magnitude are the speeds of some
 numerical methods, the productivity of programming environments,

 and the ratio

(

Random memory-access time

)

/

(

Fltg. Pt. Arith. time

)

 .

“

Quantity

 has a

Quality

 all of its own.”

 Attributed to V.I. Lenin, later to J. Stalin.

The foregoing massive increases should have been enough to instigate profound
reassessments and reforms in the way the computing “profession” conducts

its practice. But human habits change far slower than our technology;
the computing industry cites

Compatibility

 to justify its way of

“… visiting the iniquity of the fathers upon the children unto the third and fourth generation …”

Exodus 20:5

Two further massive changes have immediate and overwhelming consequences:

• Computers have become several orders of magnitude cheaper than they were.

• Massive Parallelism is becoming ubiquitous in computer hardware. …

File: NeeDebug

Needed Remedies for the Undebuggability …

 Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 10/68

Massive Parallelism is becoming ubiquitous in computer hardware.

No other way is available to speed up computation a lot.

My colleagues are fully engaged in attempts to redevelop numerical algorithms
that will exploit parallelism as fully as possible. Like the Red Queen,

we have to run as fast as we can to keep up. In consequence …

• Error-analysis has not yet caught up with these algorithms. They may have
yet unrevealed numerical instabilities and failure modes.

For example, B.N. Parlett’s “Holy Grail” scheme to compute orthogonal eigenvectors independently.

• Scant resources are left for my colleagues to devise debugging techniques
enhanced enough to meet the challenges of massively parallel methods.

Computers have become amazingly cheap.

They are so cheap, their most ubiquitous and remunerative uses are for

Entertainment, Companionship, and Embedded Controllers.

Computers are so cheap, they can be and are used to compute results of which no
one is worth very much.

File: NeeDebug

Needed Remedies for the Undebuggability …

 Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 11/68

Computers are now so cheap that most computers’
floating-point results are worth less than today’s
probable cost of attempting and perhaps failing to
assess each suspicious result’s reliability.

Therefore suspicions about floating-point results are
likely to remain unexplored without easy availability
of software debugging tools so well suited to that task
as to bring its cost down by orders of magnitude.

Is the demand for such debugging tools so ample as to
offer their developers attractive profits? Not yet.

File: NeeDebug

Needed Remedies for the Undebuggability …

 Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 12/68

The scientists and engineers and statisticians

etc. who would
use and benefit from tools peculiarly suited to debug floating-
point have failed to demand them for lack of awareness that
such tools are feasible, helpful and have all existed in at least
rudimentary forms, though never all together.

The development and promulgation of such peculiar tools would require the
aggregation of Computer Science expertise capable of modifying everything, …

Hardware and Operating Systems
Programming Languages and Compilers
Linkers and Loaders
Debuggers and Program Development Environments

It’s a lot to ask, especially now that Computer Science and Numerical Analysis
are so nearly everywhere separated if not divorced.

Why?

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 13/68

Why do most Computer Scientists regard Numerical
Analysis as if it were a sliver under the fingernail?

Besides its difficulty to debug, Floating-Point computation seems so perverse.

A program whose text is punctiliously correct can produce utterly wrong results
though its every operation was performed correctly. Worse, results are often too
wrong to tolerate but not wrong enough to be obvious.

Floating-Point can go utterly wrong though none of “the usual suspects” have
occurred: No subtractions (no cancellation), no divisions (no tiny divisors), few
arithmetic operations (no horde of rounding errors); see

<www.cs.berkeley.edu/~wkahan/WrongR.pdf>

 “Once you acquiesce to rounding errors, you place yourself into a state of sin.”
D.H. Lehmer, ~ 1971

And floating-point error-analysis is so ugly. Consider backward error-analyses:

Not all of them are useful. And when one is useful, it may be only for a norm
(way of gauging error) that does not suit your data. When is one useful?

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 14/68

A useful backward error-analysis says when, despite roundoff, a program’s
computed result differs from the desired mathematically correct result

negligibly (as measured by a suitable gauge)
more than that correct result differs from all other mathematically correct results

obtainable from perturbed input data differing from the actual input data
negligibly (as measured by a suitable gauge). Not every program admits one.

What is “a Suitable Gauge” ?
It suits the analyst and/or the programmer. If not the program’s user too then he
 must find another program with a more suitable gauge. It might not exist yet.

A hot area of research is the development of algorithms for mathematical problems whose structures
the usual gauges serve badly. See work at U.C. B. by J.W. Demmel, M. Gu, J.R. Shewchuk, … ,
and Plamen Koev at San Jose State Univ.

DATA

===>

e.g. Matrix Inversion,
but inappropriate for log, acos, …

Our chosen gauge
may exaggerate
uncertainties in

whose correlations
the gauge disregards.

Useful computed
results lie inside
 this circle :

RESULTSactual input data
and computed results

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 15/68

A useful backward error-analysis is an explanation, not an excuse, for what may turn out
to be an extremely incorrect result. The explanation seems at times merely a way to blame
a bad result upon the data regardless of whether the data “deserves” a good result.

Floating-Point error-analysis is too ugly for inclusion in the syllabus for Computational
Engineering;— no rôle for N.J. Higham’s book Accuracy & Stability of Numerical
Algorithms 2nd ed., 700 pp., S.I.A.M Philadelphia.

“…numerical analysis… There’s a credibility gap:
We don’t know how much of the computer’s answers to believe.”
in §4.2.2 of D.E. Knuth’s The Art of Computer Programming Vol. 2 Seminumerical Algorithms 3rd ed. (1998) Addison-Wesley

Perhaps what most offends Computer Scientists about Numerical Analysis is its defeat
of the way they compose ever more elaborate software from aggregates of well-regarded
and/or well-tested correct modules. Unfortunately, though correctness is transitive,

Floating-point Accuracy is not Transitive . …

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 16/68

Floating-Point Accuracy is not Transitive :

 Suppose g(y) is a program that computes a mathematical function G(y) accurately,
and h(x) is a program that computes a mathematical function H(x) accurately,

each as accurately as possible in floating-point arithmetic.

Nevertheless, f(x) := g(h(x)) may compute F(x) := G(H(x))
utterly inaccurately !

Here is an example contrived to be stark:

• G(y) := 1/
4√ –log(y) for 0 < y < 1 . g(y) := (-log(y)) -1/4

• H(x) := exp(–1/x4) for x > 1 . h(x) := exp(-x -4)

• F(x) := G(H(x)) = x for x > 1 . f(x) := g(h(x))

Therefore f(x) = (-log(exp(-x –4))) -1/4 for x > 1 .

Each of g(y) and h(x) is accurate in every digit but its last delivered.
How accurate is f(x) := g(h(x)) ? Let’s see …

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 17/68

F(x) = x vs. f(x) = (-log(exp(-x –4))) -1/4

This is explained in pp. 24 - 25 of my posting <www.cs.berkeley.edu/~wkahan/MxMulEps.pdf> .

4000 5000 6000 7000 8000 9000 10000 11000 12000
4000

5000

6000

7000

8000

9000

10000

11000

12000

X = [4000 : 10 : 12000]

g p

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 18/68

Only rarely is accuracy lost so severely to intransitivity; otherwise numerical software
would be impossible. Some kinds of accuracy are more vulnerable than others to this kind
of loss; most matrix operations fall into the more vulnerable category for subtle reasons.

. .

In conscientiously tested numerical software,
the rarity of roundoff-induced anomalies makes them
extremely difficult to find by analysis and/or testing.

Worse, the anomalies can be simultaneously
rare, hard to find, and dense in the data.

An instance that stayed hidden from 1949 to 1951 is arccos on the computer EDSAC
at Cambridge. The program had passed tests on at least a hundred arguments, so it was
trusted fully until A. van Wijngaarden noticed and explained its anomalous results. See
pp. 36-41 of <www.cs.berkeley.edu/~wkahan/MktgMath.pdf> for the ingenious
short algorithm that computed EDSAC’s arccos erroneously as plotted below:

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 19/68

Of 24 Sig. Bits Carried, how Many are Correct in EDSAC’s arccos(x) ?

Accuracy spikes downward wherever arccos(x) /π is very near (but not exactly) a small
odd integer multiple of a power of 1/2 . The smaller that integer, the wider and deeper the
spike, down to nearly half the sig. bits carried. Such arguments x are common in practice.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
12

14

16

18

20

22

24

C
or

re
ct

 S
ig

. B
its

 in
 B

(x
)

<- Ideal B(x) = arccos(x)/pi for 1 > x > -1 ->

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 20/68

Inadequate accuracy can be ubiquitous and yet so sparse as hardly likely to be found by
random testing! A recent instance is the 1994 Pentium FDIV bug; lots of stories about it
are on the WWW. Anomalous losses of accuracy can defy detection for far too long :

• PATRIOT Anti-Missile missiles missed a SCUD that fell on a barracks in the Gulf War.
The miss was traced to several hours’ accumulation of roundoff. A hit would not have helped!

• Over a weekend in Nov. 1983 the Vancouver Stock Exchange index of mostly mining
stocks jumped from 524.811 to a more accurate 1098.892 after a years-long
roundoff bug was “repaired” in a way likely to inflate the index very slowly.

• From 1988 to 1998, MATLAB ’s built-in function round(x) that rounds x to a
nearest integer-valued floating-point number malfunctioned in 386-MATLAB 3.5
and PC-MATLAB 4.2 by rounding every sufficiently big odd integer to the next
bigger even integer. Mac MATLAB was O.K. thanks to Apple’s S.A.N.E. on the M68040.

• For more than a decade, MATLAB has been miscomputing gcd(3, 2^80) = 3 ,
 gcd(28059810762433, 2^15) = 28059810762433 , lcm(3, 2^80) = 2^80 ,
 lcm(28059810762433, 2^15) = 2^15 , and many others with no warning. See
 <www.cs.berkeley.edu/~wkahan/MathH110/GCD5.pdf> for corrected programs
 and <.../HilbMats.pdf> for their application to the exact construction of Hilbert
 matrices and their inverses that are used to test numerical linear algebra software.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 21/68

When roundoff corrupts a computation badly enough to mislead,
its error is hardly ever obvious.

Here is an incident more nearly typical than those cited so far:

In the 1990s, engineers at NASA Ames in Mountain View, Calif., were developing a
program to predict the deflections under loads of the structures of proposed super-sonic
transports intended to compete with the French-British Concorde. (None proposed were built.)

Though designed to run on CRAY-1 and CRAY-2 supercomputers, the program was first
debugged on SGI workstations used as terminals for the expensive supercomputers.

For a structure about as big as would fit in the workstation, it and the two CRAYs got
three sets of results each disagreeing with both others in the third sig. dec. despite that all
machines’ floating-pt. arithmetics carried at least 48 sig. bits,— worth at least 14 sig. dec.

Could either CRAY’s results for far bigger realistic structures be trusted?

In very slow doubled precision on the CRAY-2, the program got results that agreed to
several more sig. dec. with the workstation’s, whose arithmetic conforms to IEEE 754.

I traced the CRAYs’ aberration to bias in their idiosyncratic roundings. Today’s CRAYs conform to IEEE 754.

After the program was revised to use Iterative Refinement it got good results on CRAYs.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 22/68

Additional relevant postings on <www.cs.berkeley.edu/~wkahan/...>

Textbook formulas withstand, not pass, the Test of Time: <.../Triangle.pdf>

Simple geometrical miscalculations with cross-products: <.../MathH110/Cross.pdf>

Bad solutions for good equations <.../Math128/FailMode.pdf>

Lots about Iterative Refinement <.../p325-demmel.pdf>

Eigensystem refinement <.../Math128/Refineig.pdf>

General symmetric eigensystem refinement <.../Math128/GnSymEig.pdf>

Refine finite-differenced boundary-value problem <.../Math128/FloTrik.pdf>
<.../Cantilever.pdf>

Discriminants of quadratics <.../Qdrtc.pdf>

Roundoff creates spurious roots <.../Math128/SOLVEkey.pdf>

MATLAB ’s loss is nobody’s gain <.../MxMulEps.pdf>

“Business Decisions” can undermine numerical integrity <.../ARITH_17.pdf>

The improbability of probabilistic assessments of roundoff <.../improber.pdf>

The futility of mindlessly automatic error-analysis <.../Mindless.pdf>

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 23/68

How severe are the consequences of roundoff-induced numerical anomalies?

Nobody keeps score, so nobody knows how often scientific and
engineering computations in floating-point suffer embarrassing
(if noticed) anomalies due to roundoff. They can’t be negligible;
some known examples like those listed above make us uneasy.

Hereunder is an example to make graduate students uneasy:

In 1961, though an assistant professor at the Univ. of Toronto trying to solve differential
equations numerically, I was trusted enough to be allowed to alter IBM’s software on the
IBM 7090. SHARE (IBM mainframes users’ group) accepted most of my alterations.
My accounting system alterations were copied by the Univ. of Maryland among others.

IF KICKED(OFF) .… , Retrospective diagnostics, …

An ODE’s aberration was traced to an inaccurate LOG(X) in IBM’s math. library. I
replaced it with a faster and more accurate LOG(X). Before substituting it for IBM’s in
the math. library everyone used, I tested it on a few days’ of their batched jobs, just the
ones that used LOG, taken off tapes on the IBM 1401. In those days jobs’ outputs
included accounts of both time used and math. library functions (like DLLs) used.

Did IBM anticipate that royalties would be charged for DLLs’ use?

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 24/68

Of about two dozen jobs’ outputs, only two were affected noticeably by LOG’s revision.
One was a psychologist’s, angry because he had already sent results to be published.

“ Why couldn’t you get LOG right the first time ? ”

The second affected job belonged to a grad. student of Aeronautical Engineering who had
an idea for the wings of STOL aircraft. He proposed to expel air, bled off the turbo-prop
engine’s compressor, through slots in the wing to enhance lift for shorter take-offs and
landings. Achieving the same objective by slats in the front and flaps in the rear of a wing
imposes narrowed limits upon an aircraft’s attitude lest it stall. Worse, stall’s onset can be
so abrupt as to give pilots no warning. The student hoped his scheme would cure this.

 cf. model aircraft’s wing’s “Washout”

When I showed him his job’s two sets of results, the old set from IBM’s LOG and a new
set from my LOG, he said sadly

“Your new results show a gradual stall. I wish they were correct, but they cannot be.
 My old results, showing abrupt stall, have been corroborated in Double precision.”

Chastened, I re-examined my new LOG and ran it through more exhaustive tests. A
week or two later, IBM released new support software for the 7090, and abrupt stall
went away from both Double and Single precision, the latter with my new LOG. The
grad. student and his advisor were delighted to have an industrially significant thesis.

For a while.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 25/68

Abrupt Stall of Lift Enhanced by Blown Slots ?

Abrupt stall “caused” by inaccurate LOG in Single, by lack of guard digit in Double precision.

In 1963 the U. of Toronto’s 7090 was replaced by a faster IBM 7094 with Double
precision hardware, and abrupt stall came back only in Double precision. Abrupt stall
was traced to lack of a guard digit in the 7094’s double-precision hardware. Abrupt stall
went away when “ (X – 1.0) ” was replaced by “ ((X – 0.5) – 0.5) ”. Can you see why?

After graduation the student went to work for De Havilland of Canada where his program
encountered abrupt stall again when run on a Univac 1108. The cause turned out to be an
“optimizing” FORTRAN compiler that put “ ((X – 0.5) – 0.5) ” back to “ (X – 1.0) ”.

Lift /
Drag

Wing’s Angle
 of Attack

Intended — Gradual Stall

Single Precision
Abrupt Stall

Double Precision
Abrupt Stall

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 26/68

I took years after the abrupt stall episode to appreciate its relevance to a question:

What exposes a misjudgment due to rounding errors ?
• A calamity severe enough to bring about an investigation, and investigators thorough

and skilled enough to diagnose correctly that roundoff was the cause (if it was).
 Apparently this combination has been extremely rare, perhaps fortunately.

• Discordant results of recomputations using different arithmetics or different methods.
 What would induce someone to go to the expense of such a recomputation?

• Suspicions aroused by computed results different enough from one’s expectations.
Someone would have to be extraordinarily observant and experienced.

We don’t know, because nobody has been keeping score.

Suppose roundoff falsifies a computed simulation of a proposed design. Then …

• If success is predicted but a trial implementation of the design malfunctions, and if the
malfunction is traced back to a miscomputation, will this mistake become public?

• If failure is predicted and the design remains unimplemented, who’ll know truly why?
If later a realization of the design succeeds, who’ll scrutinize that false simulation?

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 27/68

Isolated anomalies (due to roundoff ?) are unlikely to be diagnosed.

With tools currently available, Time and Cost impede diagnosis.

TIME:
Isolated anomalies were encountered during the development of SCALAPACK, intended
to run on almost all platforms used for scientific and engineering computation. Many an
anomaly would occur on only one of the many platforms on which SCALAPACK was run.
A graduate student assigned to debug the anomaly would fail to diagnose it before it went
away (or went somewhere else) when that platform’s hardware or compiler was updated.
Perhaps an over-optimizing compiler was at fault. Often we never found out.

COST:
Computers are cheap enough for use to compute results worth less than the time a PhD-
bearing error-analyst would spend trying and probably failing to debug their anomalies.

What if a a tiny spot in a medical image indicates a cyst or tumor in the brain ?
A lucky patient’s surgeon digs in and finds nothing.
A luckier patient’s surgeon asks for more detailed images, and they show nothing amiss.
Who’ll investigate this incident to see how often the software generates false positives?
How unlucky is a patient for whom the software generates a false negative?

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 28/68

By now I hope you have seen enough evidence to be persuaded that floating-point
software is probably far more infested by lurking bugs than is generally believed.

Prophylaxis:
An ounce of prevention is worth a pound of cure.

Floating-point roundoff can do damage so bad, we should try
to preclude it by Default use of extravagantly high precision .

<www.cs.berkeley.edu/~wkahan/CS279/RRR.pdf> explains how much
extravagantly high precision is likely to work well if used by default.

The new IEEE 754 (2008) specifies 16-byte wide Quadruple Precision. It has
been implemented by IBM, Sun and others. It should be extravagant enough,
but serves our needs only if it is the default precision for real scratch-variables.

But that much precision may be impracticable. We still need tools
to diagnose occasional anomalies suspected to be due to roundoff.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 29/68

Currently, debuggers allow conditional break-points to be set into a program, and allow
single-stepping through it. Grateful though I am for these capabilities, I have found them
inadequate to cope with hundreds of lines of floating-point expressions each evaluated
billions of times before something happens whose anomalous nature will not become
evident until after billions more evaluations have occurred, all in a few seconds. And a
program that must be recompiled to be debugged cannot be debugged if the bug is caused
by over-optimization that recompilation changes.

The following case study describes one of the debugging tools I have found most helpful.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 30/68

A Didactic Hypothetical Case Study: Bits Lost in Space

Imagine plans for unmanned astronomical observatories in orbits perpendicular to the
ecliptic around the sun. They will (re)position themselves according to comparisons of an
Ephemeris with telescopic observations of stars and planets. Extensive simulations
exercise three different versions of the software that will manage these observatories.
Each version is assembled from modules coming from diverse sources. Many modules
come as object-modules precompiled and ready to be loaded from, say, DLL libraries.

Many modules come without source-code, or
with source-code nobody has the time to read.

Discrepancies appear during the simulations. Among millions of tests are a
mere handful about which different software versions disagree significantly.

The disagreements are attributed to roundoff because they go away when data—
positions, attitudes, time, calibrations, …

— are changed slightly. Otherwise 4-byte float arithmetic would have been adequate.

How do we discover which software version (if any) is right? And what
is wrong with the rarely inaccurate versions? These aren’t rhetorical questions.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 31/68

The software is assembled from modules whose inputs are other modules’
outputs. At some level the interfaces between modules are accessible to
scrutiny and even alteration. So, what can I do that You Can’t to identify
possibly aberrant modules ?

I can rerun the software in question on exactly the same PRECIOUS DATA as
generated the disagreements, but with selected modules altered

WITHOUT ALTERATION NOR ACCESS TO THEIR CODES
to round differently: all up, all down, or all towards zero. (I dare not change some non-
default roundings in the Math. library.) Modules whose four results from four different
rounding modes disagree too much become suspected (but not yet convicted) of
numerical hypersensitivity to roundoff at the precious data in question.

What do I have that you haven’t? My very old computer systems
from the late 1980s and early 1990s,

hardware, compilers, debuggers, … .
They let me inject control word changes that then over-ride default rounding modes to
alter arithmetic only in chosen program modules, and with no other changes to them.

For details see §11 of <www.cs.berkeley.edu/~wkahan/Mindless.pdf> .

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 32/68

The modules that come under suspicion are supposed to compute the angles subtended at
the observatory by stars or planets whose positions are read from a table (an Ephemeris).

Directions to planets and distant stars are specified by angles named as follows:

Names of Angles used for Spherical Polar Coordinates

Angles must satisfy –π ≤ θ ≤ π and –π/2 ≤ φ ≤ π/2 , and similarly for Θ and Φ .

Two stars whose coordinates are (θ, φ) and (Θ, Φ) subtend an angle ψ at the observer’s eye. This
ψ is a function ψ(θ–Θ, φ, Φ) that depends upon θ and Θ only through their difference, actually
| θ–Θ | mod 2π . Three implementations of this function ψ have been compared; they were called
u, v and w . From millions of tests, here are the six that aroused suspicion:

Which digits are wrong ? Which (if any) of subprograms u, v and w dare you trust ?

Angle Symbols Relative to Horizon Relative to Ecliptic Plane Relative to Equatorial Plane

θ, Θ Azimuth Right Ascension Longitude

φ, Φ Elevation Declination Latitude

θ–Θ : 0.00123456784 0.000244140625 0.000244140625 1.92608738 2.58913445 3.14160085

φ : 0.300587952 0.000244140625 0.785398185 -1.57023454 1.57074428 1.10034931

Φ : 0.299516767 0.000244140654 0.785398245 -1.57079506 -1.56994033 -1.09930503

ψ ≈ u : 0.00158221229 0.0 0.0003452669770.000598019978 3.14082050 3.14055681

ψ ≈ v : 0.00159324868 0.000244140610 0.000172633489 0.000562231871 3.14061618 3.14061618

ψ ≈ w : 0.00159324868 0.000244140610 0.000172633489 0.000562231871 3.14078044 3.14054847

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 33/68

Which if any of subprograms u, v and w dare you trust? They have now been rerun on the
suspect data in different rounding modes mandated by IEEE Standard 754. Fortunately, they
were rerun on a system that permitted the directions of all default (to nearest) roundings to be
changed without recompilation of the subprograms. Here are two of the six sets of results:

Only subprogram w seems practically indifferent to changes in rounding’s direction. It
uses an unobvious formula stable for all admissible float data. Subprogram u uses a
naive formula easy to derive but numerically unstable for subtended angles too near 0 or
π . Subprogram v uses a formula familiar to astronomers though it loses half the digits
carried when the subtended angle is too near π , where astronomers are most unlikely to
have tried it. See §11 of <www.cs.berkeley.edu/~wkahan/Mindless.pdf> for the
formulas. If not for roundoff all three subprograms would agree.

Without access to source code, nor to another subprogram known to be
reliable, how else might you decide which program(s) to scrutinize first?

θ–Θ : 0.000244140625 2.58913445

φ : 0.000244140625 1.57074428

Φ : 0.000244140654 -1.56994033

ψ ≈ u : 0.000598019920NaN arccos(>1) 0.000598019920 3.14061594 3.14067936 3.14082050

ψ ≈ v : 0.000244140581 0.000244140683 0.000244140581 3.14039660 3.14159274 3.14039660

ψ ≈ w : 0.000244140610 0.000244140683 0.000244140610 3.14078045 3.14078069 3.14078045

Rounded: To Zero To +Infinity To –Infinity To Zero To +Infinity To –Infinity

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 34/68

The ability to redirect rounding is mandated by IEEE Standard 754 (1985) for
floating-point arithmetic. It is a valuable diagnostic aid albeit far from foolproof.
We need it to help debug schemes contrived to exploit parallelism aggressively.

Some compilers have supported dynamically redirected rounding, but almost no
programming languages and their debuggers support it. Except maybe C99 ?

Java outlaws redirected rounding.
See <www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf> .

The lack of use of this capability is leading to its atrophy. Use it or lose it.

For other desirable debugging tools we may wish were provided by software-
development environments, tools that employ high-precision floating-point and
interval arithmetic combined (they are not helpful enough by themselves), see §14
of my web posting <www.cs.berkeley.edu/~wkahan/Mindless.pdf> . One of the
techniques discussed there runs two programs in lock-step. One is the program being
debugged and the other is a version of it recompiled to use substantially higher precision.

This technique does not run them forward until their correspondingly named variables
diverge too far; that would be futile. This technique is much easier to use than that.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 35/68

And now for something entirely different:

Floating-Point Exceptions

Conflicting Terminology:
Some programming languages, like Java, use “exception” for the policy, object or
action, like a trap, that is generated by a perhaps unusual but usually anticipated event like
Division-by-zero, End-of-file, or an attempt to Dereference a Null Pointer.

IEEE Standard 754 for Floating-Point Arithmetic uses “Exception” somewhat
ambiguously for a class of events or one of them, like Division-by-zero, INVALID
OPERATION SQRT(–5.0), or Overflow, that, by default (in the absence of a
contrary request by the program), generates a value presubstituted for the
exceptional operation and, as a side-effect, signals the event by raising a flag
which the program can sense later, or (as happens most often) ignore.

An Exception is so called because a programmer might reasonably take exception (in the
legal sense) to any policy, imposed in advance of the program’s invocation, intended to
cope with a specific class of arithmetic Exceptions. For instance, terminating execution
upon an overflow and exhibiting its location plus a traceback of the subroutine return stack
is a policy appropriate for debugging a program while it is under development, but may
well be a perilous policy afterwards, as we shall see.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 36/68

IEEE 754’s Five Floating-Point Exception-Classes:
INVALID OPERATION defaults to NaN Not-a-Number

OVERFLOW defaults to ±∞
DIVIDE-BY-ZERO (∞ from finite operands) defaults to ±∞
INEXACT RESULT defaults to a rounded value

UNDERFLOW is GRADUAL and ultimately glides down to zero by default.

Each Exception raises one of five flags that will clear only upon the program’s command.
Each flag serves as a logical value and, ideally, as a subterranean pointer to the location
of a Milestone in the program near where the flag was first raised after it was cleared.

Ideally, the path of a program’s control would be memorialized by Hansel & Gretel’s
Breadcrumbs. More practical would be a circular file of entries of the IDs of Milestones
passed by the program. The compiler should always drop a milestone at the start of every
basic block and wherever else the programmer requests it, and every milestone should
ideally have its own unique ID. The correlation between milestones in the source-code and
those in the executable code will be imperfect because of aggressive optimization, but

“… ‘Nothing avails but perfection’ may be spelt shorter: ‘Paralysis’.”
 Winston S. Churchill, 6 Dec. 1942

For better Exception-handling than is provided by current programming languages other
than C99 and perhaps FORTRAN 2003, see suggestions in …
 <www.cs.berkeley.edu/~wkahan/Grail.pdf> and <…/ARITH_17U.pdf > .

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 37/68

INVALID OPERATION defaults to NaN Not-a-Number
OVERFLOW defaults to ±∞
DIVIDE-BY-ZERO (∞ from finite operands) defaults to ±∞
INEXACT RESULT defaults to a rounded value
UNDERFLOW is GRADUAL and ultimately glides down to zero by default.

Floating-point Exception-handling is a crucially important issue because …

Floating-Point Exceptions turn into Errors
ONLY when they are Handled Badly.

Tradition has tended to conflate “Exception” with “Error” and handle both via disruptions
of control, either aborting execution or jumping/trapping to a prescribed handler. …

FORTRAN: Abort, showing an Error-Number and, perhaps, a traceback
BASIC: ON ERROR GOTO … ; ON ERROR GOSUB …
C : setjmp/longjmp; ERRNO; abort
ADA: Arithmetic Error Falls Through to a handler or the caller, or aborts
Java: try/throw/catch/finally; abort showing error-message and traceback

These disruptions are not disallowed by IEEE Standard 754; but it requires a program to
demand one of them. They must not be the default for any floating-point Exception-class.

Why not ?

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 38/68

Why does conformity to IEEE 754 disallow disruptions of control,
unless demanded by the program,

as the handlers by default for Floating-point Exceptions ?

As we shall see, …

• Disruptions of control are Error-Prone when they may have more than one cause.

• Disruptions of control hinder techniques for formal validations of programs.

• IEEE 754’s presubstitutions and flags seem easier (albeit not easy) ways to cope
with Floating-point Exceptions, especially by programmers who incorporate

other programmers’ subprograms into their own programs.

Error-Prone:
Prof. Westley Weimer’s PhD. thesis, composed at U.C. Berkeley, exposed hundreds of
erroneous uses of try/throw/catch/finally in a few million lines of non-numerical code.
Mistakes were likeliest in scopes where two or more kinds of exceptions may be thrown.

See <www.cs.virginia.edu/~weimer> .

Floating-point is probably more prone to error because every operation is
susceptible, unless proved otherwise, to more than one kind of Exception.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 39/68

Floating-point programs are probably more prone to error than others because every
operation is susceptible, unless proved otherwise, to more than one kind of Exception.
And these programs have lots of operations; a handler could be entered from any one,

quite possibly unanticipatedly.

A program that handles Floating-point Exceptions by disruptions of
control resembles a game …

 … with an important difference …

 Snakes-and-Ladders
End 98 97 96 95 94 93 92 91 90

80 81 82 83 84 85 86 87 88 89

79 78 77 76 75 74 73 72 71 70

60 61 62 63 64 65 66 67 68 69

59 58 57 56 55 54 53 52 51 50

40 41 42 43 44 45 46 47 48 49

39 38 37 36 35 34 33 32 31 30

20 21 22 23 24 25 26 27 28 29

19 18 17 16 15 14 13 12 11 10

Start 1 2 3 4 5 6 7 8 9

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 40/68

 … with an important difference, for Floating-point Exceptions, …

None or else too many of the origins of jumps into an Exception handler
are visible in the program’s source-text. This hinders its formal validation.

A policy that forces every unanticipated Exception to
disrupt control can have very bad consequences. e.g. …

Invisible Snakes-and-Ladders
End 98 97 96 95 94 93 92 91 90

80 81 82 83 84 85 86 87 88 89

79 78 77 76 75 74 73 72 71 70

60 61 62 63 64 65 66 67 68 69

59 58 57 56 55 54 53 52 51 50

40 41 42 43 44 45 46 47 48 49

39 38 37 36 35 34 33 32 31 30

20 21 22 23 24 25 26 27 28 29

19 18 17 16 15 14 13 12 11 10

Start 1 2 3 4 5 6 7 8 9

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 41/68

 USS Yorktown (CG-48) Aegis Guided Missile Cruiser, 1984 — 2004

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 42/68

Now decommissioned, the USS Yorktown was among the first warhips extensively
computerized to reduce crew (by 10% to 374) and costs (by $2.8 million per year).

On 21 Sept. 1997, the Yorktown was maneuvering off the coast of Cape Charles, VA,
when a crewman accidentally ENTERed a blank field into a data base. The blank was
treated as a zero and caused a Divide-by-Zero Exception which the data-base program
could not handle. It aborted to the operating system, Microsoft Windows NT 4.0, which
crashed, bringing down all the ship’s LAN consoles and miniature remote terminals.

The Yorktown was paralyzed for 2 hours,
unable to control steering, engines or weapons,

until the operating system was re-booted.

Fortunately the Yorktown was not in combat nor in crowded shipping lanes.

See <www.gcn.com/Articles/1998/07/13/Software-glitches-leave-Navy-Smart-Ship-dead-in-the-water.aspx>

If IEEE 754’s default had been in force, the division by zero
would have insinuated ∞ and/or NaN into the data-base,
which could have been debugged afterwards without a crash.

. .

3
4

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 43/68

The half-a-billion-dollars Ariane 5 disaster of 4 June 1996

The Ariane 5 is a French rocket that serves nowadays to lift satellites into orbit.

On its maiden flight it turned cartwheels shortly after launch and was blown up, scattering
half a billion dollars worth of payload and the hopes of European scientists over a marsh
in French Guiana. The disaster was traced to an Arithmetic Error,— Overflow,– in a
software module monitoring acceleration (due to gravity and tidal forces) and used only
while the rocket was on the launch-pad. This module’s output was destined to be ignored
after rocket ignition, so it was mistakenly left enabled; but it aborted upon overflow.

A commission of inquiry blamed the disaster upon software tested inadequately.
What software failure could not be blamed upon inadequate testing?

Since then the question “Who is to blame?” has spawned dozens of responses :
 <www.rvs.uni-bielefeld.de/publications/compendium/incidents_and_accidents/ariane5.html>

 …updated to 13 July 2005 by Prof. Peter B. Ladkin

Nobody else has blamed the Fall-Through policy of the programming language ADA.

If the overflow had not been trapped, but instead had raised a flag and generated an ∞ or
any other value, both would have been ignored, and the Ariane 5 would not have crashed.

A trap too often catches creatures it was not set to catch.
. .

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 44/68

Modern commercial and military jet aircraft can achieve their efficiencies only because

they Fly by Wire :
The pilot’s control stick, wheel and pedals connect only to a computer. It commands the
control surfaces (ailerons, elevators, rudder) to move in ways often counter-intuitive,
sometimes limited for safety’s sake. And the computer can shake the pilot’s stick.

Suppose an aircraft in a banked turn suffers a lightning strike or severe turbulence that
overwhelms a sensor that sends the computer an extraordinary signal that precipitates an
unanticipated INVALID OPERATION that puts a message onto the pilot’s screen:

 “ INVALID OPERATION at line 276 of CZRXPT in line …
 [STOP] [CONTINUE] ”

or, worse,

 “ PLEASE RESTART.”

. .

We may never know what happened on 1 June 2009 to Air France #447 (Airbus
330) 35000 ft. over the Atlantic about 1000 mi. North-East of Rio de Janeiro.

. .

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 45/68

A policy that aborts execution as soon as a severe Exception occurs can also

Prematurely Abort a Search :
Suppose a program seaches for an object Z that satisfies some condition upon ƒ(Z) .
e.g.,

• Locate a Zero Z of ƒ(x) , where ƒ(Z) = 0 , or
• Locate a Maximum Z of ƒ(x) , where ƒ(Z) = maxx ƒ(x) .

How can the search’s trial-arguments x be restricted to the domain of ƒ if its boundary is
unknown? Is this boundary easier to find than whatever Z about ƒ is to be sought?

Example:
 shoe(x) := (tan(x) – arcsin(x))/(x·|x|3) except shoe(0) := +∞ .

We seek a root Z > 0 of the equation shoe(Z) = 0 if such a root exists. (We don’t know.)
We know x = 0.5 lies in shoe’s domain, but (pretend) we don’t know its boundary.

Does your rootfinder find Z ? Or does it persuade you that Z probably does not exist ?

Try, say, each of 19 initial guesses x = 0.05, 0.1, 0.15, 0.2, …, 0.5, …, 0.9, 0.95 .

 fzero in MATLAB 6.5 on a PC said it cannot find a root near any one of them.
 root in MathCAD 3.11 on an old Mac diverged, or converged to a huge complex no.

Why did [SOLV] on HP-18C, 19C and 28C handheld calculators find what they didn’t ?

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 46/68

 shoe(x) := (tan(x) – arcsin(x))/(x·|x|3)

If no positive Z in shoe(x) ’s domain satisfies shoe(Z) = 0 ,
then the SHOE leaks at its toe.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

X

 s
ho

e(
 X

)

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 47/68

 shoe(x) := (tan(x) – arcsin(x))/(x·|x|3)

The HP-28C found the root Z = 0.999906012413 from each of those 19 first guesses.

What did the calculator know/do that the computers didn’t ? … Defer Judgment .

See P.J. McClellan’s “An Equation Solver for a Handheld Calculator” in the Hewlett–Packard Journal 38 #8 (Aug. 1987) pp. 30–34.

0.9995 0.9996 0.9997 0.9998 0.9999 1 1.0001
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

X

 s
ho

e(
 X

)

Notice the 1000-fold
change in the scale
of the x - axis.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 48/68

Damned if you do and damned if you don’t

Defer Judgment
Choosing a default policy for handling an Exception-class runs into a …

Dangerous Dilemma:
• Disrupting the path of a program’s control can be dangerous.
• Continuing execution to a perhaps misleading result can be dangerous.

Computer systems need 3 things to mitigate the dilemma :
1• An Algebraically Completed number system for Default Presubstitutions.

2• Sticky Flags to Memorialize Leading Exceptions in each Exception-class.

3• Retrospective Diagnostics to help the program’s User debug it.
The program’s User may be another program composed by maybe a different programmer.

These things, to be explained hereunder, are intended for Floating-Point computations.

Whether they suit other kinds of computations too is for someone else to decide.

Mathematicians do not need these 3 things for their symbolic and algebraic manipulations on paper.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 49/68

1• An Algebraically Completed Number System
… is one whose every operation upon members of the system produces a defined result,
 usually another member of the system, or else a LOGICAL or a character string or …

The system has no forbidden operation, none whose result is “undefined” or
“Platform Dependent”.

Consequently the control of computations in that system need never be trapped nor
disrupted unless a program explicitly demands disruption for its selected class(es) of
Exceptions,– occurrences of some operations with some operands or some results expected
to occur only rarely. And each such occurrence generates a side-effect,— raises a flag.

IEEE 754’s Floating-Point Numbers approximate the familiar Field of Real Numbers
Algebraically Completed by the adjunction of ±∞ and NaN (to be described later). No
roundoff nor over/underflow afflicts the Algebraically Completed Real Numbers, but they
do admit Division-by-Zero. Their Exceptional arithmetic operations are, as expected,

 finite/0 , 0/0 , ∞/∞ , ∞·0 , ∞ – ∞ , real √ < 0 , and order-comparison with NaN .

They spawn potential violations of the Real Field’s cancellation laws: x – x = 0 , x/x = 1 .
Also of its Trichotomy : x < y or x = y or else x > y , unless x and/or y is NaN .

Algebraic Completion of the Real Numbers
is feasible in more than one way

no one of which always suits everybody.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 50/68

Three Algebraic Completions of the Real Numbers

•• ••-∞ +∞
±0

IEEE 754’s:
NaNs

•

•

••

∞

0

+1-1 NaNs

NaNsNaNs

Projective Closure: Unsigned

Unsigned

•
0

(Stereographic
 Projection,
 like the
 Riemann
 Sphere of the
 Complex Plane)

(A NaN is
 Not a Number)

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 51/68

Digression about Algebraically Completed Real Numbers :

By violating cancellation laws, the adjunction of ∞ and NaN threatens the validity of
the distributive law for Real expressions. Analysts invoke these laws and associative
and commutative laws routinely to rearrange expressions in ways intended to speed up
their evaluation in Floating-Point arithmetic and/or reduce their vulnerability to over/
underflows and roundoff that do not afflict Real numbers. Here is an EXAMPLE :

The Continued Fraction cf(x) …

It has been rearranged in two ways requiring just one slow division each. The middle expression was
obtained by ordinary algebraic simplification; the last expression was obtained by a rather unobvious
method to need fewer multiplications. The graph of cf is smooth and altogether unexceptional …

cf x() 13
12

x 2– 1

x 7– 10

x 2– 2
x 3–
------------–

------------------------------+
--–

--- 2152 x 2551 x 1080 x 194 13x–()–()–()–
112 x 151 x 72 x 14 x–()–()–()–

--- 13
12 x 2–() x 5–()2 4+()

x x 2–()2 x 5–()2 3+()+
--–==–=

{1÷ 7• 8±}

{4÷ 8±}
{1÷ 5• 6±}

{Numbers in braces count operations.}

-2 -1 0 1 2 3 4 5 6
-5

0

5

10

15

20

25

30

35

X

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 52/68

The evaluation of cf using the first expression is unexceptional too except for DIVISIONS-BY-ZERO
at x = 1, 2, 3 and 4 ; they generate infinities that evaporate harmlessly. The other two expressions
incur no divisions by zero but produce NaN instead of cf(∞) = 13 . Consequently, when evaluated
in Floating-Point at huge arguments x these two become infinite or NaN because of Overflows.

The middle expression loses about two more decimal digits than the others lose to roundoff. The
plot below shows how the first and second expressions vary when evaluated at 513 consecutive
floating-point arguments centered around x = 2.4006… where cf(x) achieves its minimum. The
first expression fluctuates by at most a unit or two in the last digit of 13.000…000 as shown by the
darker nearly horizontal line; the second expression generates the ragged oscillations and spikes.

cf x() 13
12

x 2– 1

x 7– 10

x 2– 2
x 3–
------------–

------------------------------+
--–

--- 2152 x 2551 x 1080 x 194 13x–()–()–()–
112 x 151 x 72 x 14 x–()–()–()–

--- 13
12 x 2–() x 5–()2 4+()

x x 2–()2 x 5–()2 3+()+
--–==–=

{1÷ 7• 8±}

{4÷ 8±}
{1÷ 5• 6±}

{Numbers in braces count operations.}

-300 -200 -100 0 100 200 300
-100

-50

0

50

100

150

 ∆x in ulps of 2.4006...

END OF
EXAMPLE

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 53/68

Digression about Algebraically Completed Real Numbers resumes :

Algebraic Integrity: Non-Exceptional evaluations of algebraically equivalent
 expressions over the Real Numbers produce the same values.

To conserve Algebraic Integrity as much as possible, every Algebraic Completion must
ensure that, if Exceptions cause evaluations of algebraically equivalent expressions over
the Algebraically Completed Real Numbers to produce more than one value, they can
produce at most two, and if these are not both infinite then at least one is NaN .

 The Completion chosen by IEEE Standard 754 does this.

So would some other less tolerant Completions; e.g. …
• Introduce NaN and only one unsigned ∞ , thus requiring just one unsigned 0 .
• Introduce NaN but no ∞ .

Yet other Completions, like APL’s 0/0 := 1 and MathCAD’s 0/0 := 0 , destroy Algebraic Integrity.

Floating-Point, unlike Real, evaluations usually conserve Algebraic Integrity
at best approximately after the occurrence of roundoff and over/underflow.

For example, compare evaluations of the three algebraically equivalent expressions
 2/(1 + 1/x) , 2·x/(1 + x) , 2 + (2/x)/(–1 – 1/x)

at Real x = 0 , Real x = ∞ , Real x = –1 and Floating-Point x ≈ –1.000…??? .

END of Digression about Algebraically Completed real Numbers

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 54/68

Presubstitution …
… provides for each Exception-class a short procedure that will supply a value for any

Floating-Point Exception that occurs later, instead of aborting execution.

IEEE Standard 754 provides five presubstitutions by default for …
INVALID OPERATION defaults to NaN Not-a-Number
OVERFLOW defaults to ±∞
DIVIDE-BY-ZERO (∞ from finite operands) defaults to ±∞
INEXACT RESULT defaults to a rounded value
UNDERFLOW is GRADUAL and ultimately glides down to zero by default.

These presubstitutions descend partly from the chosen Algebraic Completion of the Reals,
partly from greater risks other presubstitutions may pose if their Exceptions are ignored.

Untrapped Exceptions are too likely to be overlooked and/or ignored.
• From past experience, INEXACT RESULT and UNDERFLOW are almost always ignored regardless of

their presubstitutions if these are at all plausible. Ignored underflow is deemed least risky if GRADUAL.

• DIVIDE-BY-ZERO might as well be ignored because ∞ either goes away quietly (finite/∞ = 0) or else
almost always turns into NaN during an INVALID OPERATION , which raises its flag.

• INVALID OPERATION should not but will be ignored inadvertently. Its NaN is harder to ignore.

Consequently, each default presubstitution has a side-effect;– it raises a Flag. (See later.)

Ideally, a program should be allowed to choose different presubstitutions of its own.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 55/68

Ideally, (on some computers today this ideal may be beyond reach)
 a program should be allowed to choose different presubstitutions of its own.

INEXACT RESULT’s default presubstitution is Round-to-Nearest .
• IEEE 754 offers three non-default Directed Roundings (Up, Down, to Zero) that

a program can invoke to replace or over-ride (only) the default rounding.
… useful for debugging as discussed previously, and for Interval Arithmetic.

UNDERFLOW’s default presubstitution is Gradual Underflow .
• IEEE 754 (2008) allows a kind of Flush-to Zero (almost), but not as the default.

 … useful for very few iterative schemes that converge to zero very quickly, and on some
hardware whose builders did not know how to make Gradual Underflow go fast.
 See <www.cs.berkeley.edu/~wkahan/ARITH_17U.pdf> for details.

OVERFLOW’s and DIVIDE-BY-ZERO’s default presubstitution is ±∞ .
• Sometimes Saturation to ±(Biggest finite Floating-point number) works better.

INVALID OPERATIONs’ default presubstitutions are all NaN .
• Better presubstitutions must distinguish among 0/0 , ∞/∞ , 0·∞ , ∞ – ∞ , …

• The scope of a presubstitution, like that of any variable, respects block structure.
• Hardware implementation is easiest with Lightweight Traps, each at a cost very like

the cost of a rare conditional invocation of a function from the Math. library.

For examples of non-default presubstitutions see <www.cs.berkeley.edu/~wkahan/Grail.pdf> ,
its pp. 1-8 explain the urgent need to implement them, and how to do it in pp. 8-10.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 56/68

Digression about NaNs :

“NaN” means “Not a Number”; it is not “UNDEFINED”.
… nor to be confused with a river in Siam, a nursemaid, grandmother, a girl’s name, nor Indian flatbread

An INVALID OPERATION, typically an attempt to evaluate a function outside its Real
domain, defaults to a NaN whenever any other Real result would worsen confusion.
 Examples: 0/0 , ∞/∞ , ∞ – ∞ , 0·∞ , Real √–5 , arccos(2) , log(–5.6) , (–7.8)0.3

 , …

Whenever a new NaN is created, the INVALID OPERATION FLAG must be raised too.
Later this NaN propagates quietly through every arithmetic operation upon it except …

• Order Predicates “ x < y , x ≤ y , x ≥ y , x > y ” are all FALSE and will raise the
 INVALID flag (unless the program spurns it) when x and/or y is NaN . And then

 quietly (no flag) “ x = y ” is FALSE , and “ x ≠ y ” is TRUE; NaN ≠ NaN .

• If ƒ(x, y) is independent of x for some value of y , say y = 0 , then ƒ(NaN, 0)
takes the same value as every other ƒ(x, 0) . For example, NaN0 = 1 .

IEEE 754 provides at least 4,000,000 NaNs distinguishable by non-numerical means, so
each newly created NaN can point (indirectly) to the site of its creation in a program.

A program may use NaNs also for missing data, uninitialized variables, and/or for the
result of an ambiguous or unsuccessful search perhaps for a nonexistent value.

END of Digression about NaNs

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 57/68

2• Flags
IEEE Standard 754 mandates a Sticky Flag for each Exception-class to memorialize its
every Exception that has occurred since its Flag was last clear. Programs may raise,
clear, sense, save and restore each Flag, but not too often lest the program be slowed.

The Flag of an Exception-class may be raised as a by-product of arithmetic.

The Flag is a function, a flag a variable of data-type FLAG in memory like other variables.

The Flag is not a bit in hardware’s Status Register. Such a bit serves to update its Flag
when the program senses or saves it, perhaps after waiting for the bit to stabilize.

Any flag’s data-type gets coerced to LOGICAL in conditional and LOGICAL expressions.

Any Flag may also serve Retrospective Diagnostics by pointing to where it was raised.

An Exception that raises its Flag need not overwrite it if it’s already raised; … faster !

Three frequent operations upon flags are …
• Swap a saved flag with the current one to restore the old and sense the new.
• Merge a saved flag into the current Flag (like a logical OR) to propagate one.
• Save, clear and restore all (IEEE 754’s five) Flags at once.

References to the Flags are Floating-Point operations the optimizing compiler must not
swap with a prior or subsequent Floating-Point operation lest the Flag be corrupted.
This constraint upon code movement is another reason to reference Flags sparingly.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 58/68

Flags’ Scopes
Variables of data-type FLAG are scoped like other variables, in so far as they respect block
structure, except for the five Exception-classes’ five Flags which, if supported at all,

have usually been treated as GLOBAL variables.

Why ?

The Exception-classes’ five Flags can implicitly be inherited and exported
by every Floating-point operation or subprogram (or Java “method”)
unless it can specify otherwise in a language-supplied Signature.

The least annoying scheme I know for managing Flags’ inheritance and export is APL’s
for System Variables []CT (Comparison tolerance) and []IO (Index Origin):

An APL function always inherits system variables and, if it changes one, exports the
change unless this variable has been Localized by redeclaration at the function’s start. If
augmented by a command to merge a changed flag with the Flag, this scheme works well.

Still, because they are side-effects, …

Flags are Nuisances !

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 59/68

Flags are Nuisances.
Why bother with them?

Because every known alternative can be worse :

Execution continued oblivious to Exceptions can be dangerous,
and is reckless.

Java forbids Flags, forcing a conscientious programmer to test for
an Exceptional result after every liable operation.

So many tests-and-branches are tedious and error-prone.
 Recall pp. 23-4 of <www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf> . Similarly for …

C’s single flag ERRNO must be sensed immediately lest another Exception overwrite it.

What can Flags do that try/throw/catch/finally cannot ?
If a throw is hidden in a subprogram invoked more than once in the try clause, the
catch clause can’t know the state of variables perhaps altered between those invocations.

 Recall W. Weimer’s discovery that try/throw/catch/finally is error-prone .

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 60/68

Flags are Nuisances.
Why bother with them? … continued …

Why not use the DATA-FLOW idea instead ?
This idea attaches an Exception-History to each scalar Floating-Point variable. Its
History records all Exceptions that may have affected the variable’s value adversely.

Aside from the cost of Histories in memory and execution-time, no good way is known to combine
Histories of combined variables that predicts which of a result’s past experiences affect it adversely.

For instance, adding a variable affected by Underflow to another big enough renders the underflow
inconsequential. Dividing an infinity into something small enough may render the infinity’s History
irrelevant. What is small enough ? Big enough ? How much History is enough?

Nobody can read Histories that are too long or too often irrelevant.
. .

A Floating-Point Exception Flag costs relatively little unless the program references it.
• Apt Presubstitutions render most Exceptions and their Flags ignorable, not all.
• Apt non-default presubstitutions render more Exceptions and Flags ignorable.

We should try not to burn out conscientious programmers prematurely.
Their task is difficult enough with presubstitutions and Flags; too difficult without.

And Flags let overlooked Exceptions be caught by Retrospective Diagnostics . …

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 61/68

3• Retrospective Diagnostics

We are not gods.
Sometimes some of us overlook something.

At any point in a program’s execution, usually when it ends, its
Unrequited Exceptions are those overlooked or ignored so far.

Evidence of one’s existence is its Flag still standing raised.

Retrospective Diagnostics help a program’s user debug Unrequited Exceptions
by facilitating interrogation of NaNs and raised Flags now interpreted as pointers
(indirectly, and perhaps only approximately) to relevant sites in the program.

Why might a program export a raised Flag or pass it through?
• It’s a consequence of an oversight, a programmer’s mistake. Which programmer?
• A judgment has been deferred to a later stage of the computation. Recall shoe(x) .
• The program’s result is Exceptional and deserves its Flag. e.g., exp(exp(exp(999.))) .
• The programmer did not bother to clear a Flag intended correctly to be ignored.

Recall how IEEE 754’s default presubstitutions were chosen.

Retrospective Diagnostics help a program’s user sift through the possibilities.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 62/68

Earliest Retrospective Diagnostics See my web page’s …/7094II.pdf
In the early 1960s, programs on the IBM 7090/7094 were run in batches. Each program
was swept from the computer either after delivering its output, be it lines of print or card
images or compile-time error-messages, or upon using up its allotment of computer time.

Often the only output was a cryptic run-time error-message and a 5-digit octal address.

I put a LOGICAL FUNCTION KICKED(…) into FORTRAN’s Math. library, and altered
the accounting system’s summary of time used etc. appended to each job’s output. Then …

 IF (KICKED(OFF)) ... executable statement ...
in a FORTRAN program would do nothing but record its location when executed. If later
the program’s execution was aborted, a few extra seconds were allotted to execute the
executable statement (GO TO …, PRINT …, CALL …, or REWIND …) after the last
executed invocation of KICKED . Any subsequent abortion was final.

. .

IBM’s presubstitution for UNDERFLOW was 0.0 , and its other presubstitutions for …
• DIVISION-BY-ZERO a quotient of 0.0 , or 0 for integers,
• OVERFLOW ±(biggest floating-point number),

… were defaults a programmer could override only by a demand for abortion instead.

I added options for Gradual Underflow, and for Division-by-Zero to produce a hugest
number, and for an extended exponent upon Over/Underflow. I added sticky Flags for a
program to test etc. any time after the Exceptions, and added Retrospective Diagnostics.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 63/68

Earliest Retrospective Diagnostics continued

Each raised Flag held the nonzero 5-digit octal address of the 7090/7094 program’s site
that first raised the Flag after it had last been clear. I added tests for raised Flags to the
accounting system’s summary of time used etc. appended to each job’s output; and for each
Flag still raised at the job’s end I appended a message to the job’s output saying …

 “You have an unrequited … name of Exception … at … octal address … ”

This is the only change to IBM’s system on the 7094 for which I was ever thanked.
… by a mathematician whose results invalidated by a DIVIDE-BY-ZERO

 would have embarrassed him had he announced them to the world.

My other alterations to IBM’s system were taken for granted as if IBM had granted them.

Attempts over the period 1964-7 to insinuate similar facilities, all endorsed by a SHARE
committee, into IBM’s subsequent systems were thwarted by …

 … that’s a long story for another occasion.

 END OF REMINISCENCES.
. .

Note how NaNs, Flags and Retrospective Diagnostics differ from a system’s event-log:
• The system’s event-log logs events chronologically, by time of occurrence.
• NaNs and Flags point (indirectly) to (earliest) sites (hashed) in the program.

If Exceptions were logged chronologically, they could slow the program badly,
overflow the disk, and exhaust our patience even if we attempt data-mining.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 64/68

Retrospective Diagnostics’ Annunciator and Interrogator
How shall a program’s Unrequited Exceptions be brought to the attention of its user?

• If the program’s user is another program denied access to the former’s Flags by the
operating system, retrospective diagnostics are thwarted.

• If the program’s user is another program with access to the former’s Flags, the latter
program determines their use or may pass them through to the next user.

• If the program’s user is human, the program can annotate its output in a way that makes
the user … • Aware that Unrequited Exceptions exist, and then

• Able to investigate them if so inclined.

“Aware” :
• Don’t do it this way:

On my MS-Windows machines, some error-messages display for fractions of a second.

• Do do it this way:
On my Macs, an icon can blink or jiggle to attract my attention until I click on it.

The Math. library needs a subprogram that creates an Annunciator, an icon that attracts
a user’s attention by blinks or jiggles, which a program can invoke to annotate its output.

Clicking on an Annunciator should open an Interrogator, dropping a menu that lists
unrequited Exceptions and allows displayed NaNs to be clicked-and-dragged into the list.
Clicking on an item in the list should reveal (roughly) whence in the program it came.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 65/68

Retrospective Diagnostics can Annoy …
They can annoy the programmer with an implicit obligation to annotate output upon whose
validity doubt may be cast deservedly by Unrequited Exceptions. This obligation is one of

 Due Diligence .
Is programming a Profession ? If so, one of its obligations is Due Diligence .

Retrospective Diagnostics can annoy a program’s user if the Annunciator resembles

The little boy who cried “Wolf ! ”
by calling the user’s attention to Unrequited Exceptions that seem never to matter. This
may happen because the programmer decided to “Play it Safe”, too safe.

My IBM 7094’s retrospective diagnostics were usually torn off the end of a program’s output and discarded.

To warn or not to warn. The dilemma is intrinsic in approximate computation by one
person to serve an unknown other. They share the risk. And the Law of Torts assigns to
each a share of blame in proportion to his expertise, should occasion for blame arise.

. .

Retrospective Diagnostics may function better on some platforms than on others, and not
at all on yet others. Debugging may be easier on some platforms than on others. Numerical
software may be developed and/or run more reliably on some platforms than on others.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 66/68

What Needs Doing … Yes, it will be controversial.

… by Programming Languages and Compilers:
• The Default for Fltg. Pt. scratch variables, constants and expression-evaluation

should be the widest precision that the hardware does not run too slowly, in
the style adopted by the original Kernighan-Ritchie C on the old PDP-11 ,
so that numerically naive programmers are less often betrayed by roundoff.

• Support at least one extravagantly higher precision despite that it runs too slowly.
• Support Modes for the choice of directed roundings and non-default presubstitutions

Scoped in a convenient way, e.g., like APL’s System Variables; but …
Insulate the Math. Library’s functions, especially when Inlined .

• Support IEEE 754’s NaNs, and Flags also Scoped in a convenient way.
• Exception-Handling control structures are O.K., but not as the default for Fltg. Pt.
• Disallow Fltg. Pt. optimizations that disregard parentheses unless Associativity is

enabled explicitly by the program’s text (not command-line).
• Let a module’s local variables be initialized to NaNs that point to variables’ names

… by Operating Systems and Debuggers :
• Support Retrospective Diagnostics’ Annunciator and Interrogator.
• Support Pause/Explore/Resume at designated Fltg. Pt. Exceptions, to debug them.
• Let a Debugger override a selected module’s default roundings by directed roundings,

as if the module’s text had invoked a directed rounding Mode, though that
text is unavailable except for a symbol-table provided by the compiler.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 67/68

Who shall bell the cat ?
Who has the knowledge, skills, incentive and time to implement
debugging capabilities like those advocated in this document?
The necessary combinations of expertise and motivation might reasonably be thought to
reside in Computer Science & Engineering Departments.

Maybe not. Maybe Computer Science has changed too much.

A compendium published in 1983 ,
 Encyclopedia of Computer Science and Engineering 2nd ed.

ed. by A. Ralston & E.D. Reilly Jr., 1694 pp., Van Nostrand Reinhold,
explains at length Floating-Point Error Analysis (by J.H. Wilkinson) and control
structures intended to handle all kinds of Exceptions (by J.L. Wagener).

A compendium published in 1997 ,
 The Computer Science and Engineering Handbook

ed. by A.B. Tucker Jr., 2650 pp., CRC Press & ACM,
explains a few numerical methods but neither roundoff nor Floating-Point Exceptions.

In Commun. ACM v. 40 #4, 1997 ,
 “The Debugging Scandal and What To Do About It”, pp. 26 - 78,

does not mention Floating-Point at all.

File: NeeDebug Needed Remedies for the Undebuggability … Version updated February 15, 2011 9:29 am

Prof. W. Kahan Page 68/68

“This … paper, by its very length, defends itself against the risk of being read.”
… attributed to Winston S. Churchill

If there be better ideas about it,
and if the reader is kind enough to pass some on to me,

this is not the subject’s
Last Word.

