

SIAMjvnl July 16, 1997

Slide 1

The

John von Neumann Lecture

on

The Baleful Effect of
Computer Languages and Benchmarks

upon
Applied Mathematics, Physics and Chemistry

presented by

Prof. W. Kahan

Mathematics Dept., and
Elect. Eng. & Computer Sci. Dept.

University of California

Berkeley CA 94720-1776

(510) 642-5638

at the

45th Annual Meeting of S.I.A.M.

Stanford University
15 July 1997

PostScript file:

http://http.cs.berkeley.edu/~wkahan/SIAMjvnl.ps

For more details see also …

/Triangle.ps

 and …

/Cantilever.ps

SIAMjvnl July 16, 1997

Slide 2

The Baleful Effect of Computer Languages and Benchmarks
upon Applied Mathematics, Physics and Chemistry

Abstract:

An unhealthy preoccupation with floating–point arithmetic’s Speed, as if it were
the same as Throughput, has distracted the computing industry and its
marketplace from other important qualities that computers’ arithmetic hardware
and software should possess too, qualities like

Accuracy, Reliability, Ease of Use, Adaptability, ···

These qualities, especially the ones that arise out of Intellectual Economy, tend
to be given little weight partly because they are so hard to quantify and to compare
meaningfully. Worse, technical and political limitations built into current
benchmarking practices discourage innovations and accommodations of features
necessary as well as desirable for robust and reliable technical computation. Most
exasperating are computer languages like Java

 that lack locutions to access
advantageous features in hardware that we consequently cannot use though we
have paid for them. That lack prevents benchmarks from demonstrating the
features' benefits, thus denying language implementors any incentive to
accommodate those features in their compilers. It is a vicious circle that the
communities concerned with scientific and engineering computation must help the
computing industry break. But our communities are still entangled in
misconceptions that becloud floating–point issues, so we send the industry mixed
and murky signals.

“ The trouble with people is not that they don’t know
but that they know so much that ain’t so.”

Josh Billings’ Encyclopedia of Wit and Wisdom

 (1874)

SIAMjvnl July 16, 1997

Slide 3

Floating–Point Arithmetic has always been the
Sliver under a Fingernail of Computer Science.

For the Princeton IAS machine, von Neumann rejected floating–point
hardware thus:

[Without it,] “… human time is consumed in arranging for the introduction of
suitable scale factors. We only argue that the time so consumed is a very small
percentage of the total time we will spend ...” [programming in machine language.]

• • •

“ We wish to incorporate into the machine … only such logical concepts as are
either necessary … or highly convenient …” J.v.N.

Collected Works

 vol.5 p. 43;
§5.3 of Burks, Goldstine & von Neumann (1946/7). [Anticipating RISC ?]

“ While a floating binary point is undoubtedly very convenient in coding problems,
building it into the computer adds greatly to its complexity …”

ibid

. §6.6.7 p. 73.

“ We formulated there [§6.6.7] various criticisms which caused us to exclude this
facility, at any rate, from the first model of our machine. … Besides, the floating
binary point represents an effort to render a thorough mathematical understanding
of at least part of the problem unnecessary, and we feel that this is a step in a
doubtful direction.”

ibid

. §8.6 p. 113.

What could have motivated such specious rationalization?
I have to speculate …

Immediately upon the end of World War II in Europe, von Neumann inspected
British and German computing facilities. He must have learned of the sad (for
the Nazis) fate of Konrad Zuse’s proposal to build an electronic computer with
carefully rounded floating–point arithmetic that would have included

±∞

 and
things like

NaN

s, anticipating features of IEEE Standard floating–point by four
decades. But in 1939 the German Air Ministry had refused to fund the proposal
because, they said, it was too complicated to build before 1942, by which time
they expected to have won the war and rendered the computer unnecessary.

Perhaps von Neumann wished to avert such a fate for the IAS machine.

SIAMjvnl July 16, 1997

Slide 4

Von Neumann’s writings did more than disparage floating–point.

Omission of a guard digit could be justified by quoting this:

“ Numbers which decrease in these cases [leading zeros created by cancellation]
are really (mathematically) losing precision. Hence it is perfectly proper to omit
[normalization] in this event. (Indeed, such a true loss of precision cannot be
obviated by any formal procedure, but, if at all, only by a different mathematical
formulation of the problem.)”

 ibid

. §6.6.7, p. 74. This has been taken to mean

1.0xxxx

??? the values of digits beyond the rightmost
-

0.1xxxx

x??? digit stored cannot be known, so the last

0.0000x

???? digit x of the subtrahend doesn’t matter.

It’s almost true, and therefore a lie.

This misconception degraded the arithmetics of the IBM /360 until 1967, all
Seymour Cray’s CDC and CRAY designs, TI calculators,

Skepticism of floating–point error–analysis could be justified …

Papers in 1947/8 by Bargman, Goldstein, Montgomery and von Neumann
seemed to imply that 40-bit arithmetic would hardly ever deliver usable accuracy
for the solution of so few as 100 linear equations in 100 unknowns; but by 1954
engineers were solving bigger systems routinely and getting satisfactory accuracy
from arithmetics with no more than 40 bits.

In 1957, soon after von Neumann died, the flaw in his reasoning was exposed
(by A.S. Householder if my memory is right). To solve it more easily without

floating–point von Neumann had transformed equation Bx = c to B

T

Bx = B

T

c ,
thus unnecessarily doubling the number of sig. bits lost to ill-condition. Now that
transformation deserves to be used only to solve least–squares problems with a
rectangular matrix B , and only if the arithmetic carries somewhat more than twice
as many sig. bits as are trusted in the data (B, c) or desired in the solution x .

. .

Indignor quandoque bonus dormitat Homerus.

 Horace.
(“ Even the great Homer nods occasionally, and it annoys me.”)

Considering how prodigious von Neumann’s output was, his few mistakes are
amply forgivable. Compared with his, my output is infinitesimal and my mistakes
innumerable. To list a dozen of them here would seem boastful, so I won’t.

SIAMjvnl July 16, 1997

Slide 5

Thesis:
Floating–Point Arithmetic

becomes an extremely dull subject
(of interest only to anal-compulsives)

when it is done correctly.

It is not being done correctly.

Numerical results obtained by the
overwhelming majority of computer owners are

less reliable, less robust, and
less accurate, sometimes much less,

than their hardware was designed to provide.

Computer owners derive scant benefit
from advantageous hardware features they have paid for

since these are practically inaccessible through
commercially dominant compilers and computer languages.

Why?

SIAMjvnl July 16, 1997

Slide 6

Why do so few of us benefit from improved floating–
point capabilites we paid for in our hardware?

1. Most of us do not know they’re there. We don’t even have
standard names by which to ask for them.

2. Current benchmarking practices test only those attributes of
floating–point arithmetic common to all computers of the
1970s. Improved capabilities are not exercised by any
benchmark, so no incentive exists to support them in
commercial compilers for standard programming
languages, so we cannot write suitable programs in a
fashion sufficiently portable to be acceptable as
benchmarks. It’s a vicious circle.

3. The improved capabilities are features of IEEE Standard 754
for Binary Floating–Point Arithmetic mistakenly deemed
arcane, as if intended for only a few specialists.

Bunk !

This is just one of a host of persistent misunderstandings
that impede attempts to deal with floating–point issues.

SIAMjvnl July 16, 1997

Slide 7

14 Prevalent Misconceptions about Floating–Point Arithmetic

1• Floating–point numbers are all at least slightly uncertain.

2• In floating–point arithmetic, every number is a “ Stand–In ” for all
the numbers that differ from it in digits beyond the last digit stored.

3• Arithmetic much more precise than the data it operates upon is needless.

4• In floating–point arithmetic nothing is ever exactly 0 ; but if it is,
no purpose is served by distinguishing +0 from -0 .

5• Subtractive cancellation always causes numerical inaccuracy,
or is the only cause of it.

6• A singularity always degrades accuracy when data approach it.

7• Classical formulas taught in schools and found in handbooks and software
must have passed the Test of Time, not merely withstood it.

8• When better formulas are found, they supplant the worse.

9• Modern “ Backward Error–Analysis ” explains all error, or excuses it.

10• Algorithms known to be “ Numerically Unstable ” should never be used.

11• “ Ill–Conditioned ” data or problems deserve inaccurate results.

12• Bad results are the fault of bad data or bad programmers,
not programming languages.

11• Most features of IEEE Floating-Point Standard 754 are too arcane.

14• ‘ Beauty is truth, truth beauty.’ — that is all ye know on earth,
 and all ye need to know. ... Keats’

Ode on a Grecian Urn


   ~~~~~~~~~~~~~~~~~~~~~~~~~~~

 

Misconceptions like these prevent programming languages and their 
compilers from conveying to owners of over  90%  of computers now 
on desk–tops the benefits of floating–point semantics built into their 
hardware and superior to what is now considered acceptable.

And we continue to disseminate these misconceptions.



 

SIAMjvnl                                                                                                               July 16, 1997

 

Slide 8

 

Case Study:  Heron’s Formula for the  Area  

 

∆

 

  of a Triangle

 

Given a triangle’s side–lengths  a, b, c ,   its area is computed from a 
classical formula:

 

∆

 

 :=  

 

√

 

(s (s-a) (s-b) (s-c)) ,      where    s :=  (a+b+c)/2 .

Example:  a := 65536 - 1

 

.

 

5/128 ;   b := a + 3

 

.

 

5/128 ;   c := 64 + 1/256

 

.

 

0 .

These data are representable exactly as  Single Precision  ( 

 

float

 

  in  C ,  
or  REAL*4  in  Fortran )  numbers.  What we get for  

 

∆

 

  depends upon 
the precision to which arithmetic operations are rounded:

Single  ( Fortran  and newer  C  compilers ):

 

∆

 

 = 2,097,

 

023.5

 

Double  ( older  C  compilers )

 

∆

 

 = 2,097,279

 

.

 

621
Why so much difference?

Recompute  

 

∆

 

  for  27  sets of  Single  data differing from the given data 
by at most one ulp  ( 

 

U

 

nit in the 

 

L

 

ast 

 

P

 

lace stored,  the  24th  sig. bit ).

Single:

 

∆

 

   varies from   2,096,

 

895.25

 

   to   2,097,

 

407.5

 

 .

Recompute  

 

∆

 

  in three  Rounding Modes,  

 

Up

 

,  to 

 

Nearest

 

,  and  

 

Down

 

.

Single:

 

∆

 

  varies from   2,097,

 

023.25

 

   to   2,09

 

8,048.25

 

 .

 

Diagnosis:

 

   

 

∆

 

  is an  

 

ill–conditioned

 

  function of this data.  Roundoff 
contributes little more uncertainty to  ∆  than it inherits from last–digit 
uncertainty in this data,  so  Heron’s  formula does as well as can be done. 

This diagnosis is  WRONG.

a

b cA

C B∆

Needle-like Triangle



SIAMjvnl                                                                                                               July 16, 1997

Slide 9

Heron’s  Classical Formula is  Numerically Unstable
for  Needle-like Triangles.

Here is a better formula:  First sort the data so that   a ≥ b ≥ c .  Then

∆  =  √(  (a+(b+c))(c-(a-b))(c+(a-b))(a+(b-c))  )/4  .
DO NOT REMOVE PARENTHESES.

Cancellation will occur but will cause no harm on any commercially 
significant  North American  computer except  Crays  X-MP, …, J90.

Single  ( Fortran  and newer  C  compilers ): ∆ = 2,097,279.5
Double  ( older  C  compilers ) ∆ = 2,097,279.621
Different only in bits beyond the last bit stored.

Recompute  ∆  for  27  sets of  Single  data differing from the given data 
by at most one ulp  ( Unit in the Last Place stored,  the  24th  sig. bit ).

Single: ∆   varies from   2,097,279.   to   2,097,280. .

Recompute  ∆  in three  Rounding Modes,  Up,  to Nearest,  and  Down.

Single: ∆  varies from   2,097,279.25   to   2,097,280. .

Diagnosis:   ∆  is a  well–conditioned  function of this data.  Roundoff 
contributes uncertainty to only the last bit or two of  ∆ .  ( In fact,  this 
better formula computes  ∆  fully accurately for ill-conditioned data too.).

P.S.:  The foregoing results were obtained from  MATLAB  on an ancient  
Intel PC  upgraded with  Cyrix  chips,  and also on another  Pentium  PC.  
Without changes to  .m  files that compute  ∆  from each of two formulas, 
•  how do I make  MATLAB  round to  Single  ( 24 sig. bits ) ?
•  how do I make  MATLAB  round  Up  and  Down,  not  to Nearest ?

I can,  but you can’t.
I ran an old version,  MATLAB 3.5,  plus my  DOS  program that diddles 
the floating–point control word on  Intel-based  PCs.



SIAMjvnl                                                                                                               July 16, 1997

Slide 10

Heron’s  formula is not the only schoolbook trigonometric 
formula that dislikes triangles of certain shapes.

Unnecessarily inaccurate results can be obtained also from …

   C :=  arccos( (a2 + b2 - c2)/(2ab) )  =  2 arctan( √( (s-a) (s-b)/(s (s-c)) ) )

c :=  √( a2 + b2 - 2 a b cos C )

B := arcsin( (b/a) sin A )
This formula for  B  dislikes triangles with  B  too near  90˚ .

These classical formulas have withstood the  Test of Time,  not passed it.

For better formulas see  http://http.cs.berkeley.edu/~wkahan/Triangle.ps .

Where does  Heron’s  classical formula for  Area  ∆  go wrong?

Almost nowhere.

a

b cA

C B∆

Needle-like Triangle

C

a

a

b
A

B'

B"

B = B',   not  B"



SIAMjvnl                                                                                                               July 16, 1997

Slide 11

Map  Triangles  to  Points in the Plane  by taking a
Triangle’s  side–lengths  ( a, b, c )  as  Barycentric Coordinates:

Every point in the  Bold Triangle  above represents a family of  Similar  triangles.
All triangles  Similar  to a given generic triangle map to six of those points.

Points near the boundary represent  Needle–like Triangles.

Points inside the  curvilinear triangle  represent triangles with all angles acute and 
utterly well–conditioned areas  ∆(a,b,c) .             ( The curves are hyperbolic arcs.)

Triangles for which  Heron’s  formula miscalculates  ∆(a,b,c)  are at points
 inside the  thick edges,  with thickness proportional to the roundoff threshold.  

Every extra decimal digit of arithmetic precision shrinks their thickness by  1/10.

The revised formula  ∆(a,b,c)  with sorted  a, b, c  is accurate at all triangles.

a = 0 = b-c

c = 0 = a-bb = 0 = c-a

b > c+ac > a+b

a > b+c



SIAMjvnl                                                                                                               July 16, 1997

Slide 12

Conclusion:  Everybody should use the better formula for  ∆ .

But they won’t.

The better formula has been published at least four times,  but not where 
most programmers who might need it are likely to look it up.  Heron’s  
formula is what they will almost surely find instead.

In general,  the programmers who use a little  ( or a lot of )  floating–point 
arithmetic may be very clever at things they care about,  but not at error–
analysis of floating–point.  ( Not even  von Neumann  got it quite right.)  
And all of us shall occasionally run their programs unwittingly,  and be 
thus exposed to risks of which they were unaware.

The floating–point arithmetics on  Motorola  and  AMD/Cyrix/
Intel  chips  in  Macs,  PCs  and  Power-PCs,  were designed to 
attenuate the risks you face and to help you diagnose them.

They were designed to evaluate every subexpression to  8-byte  Double–
Precision  ( Power-PC/Macs )  like old–fashioned  C,  or to  10-byte 
Extended Precision  ( PCs,  older  Macs ),  to attenuate the incidence of 
dangerously inaccurate results.  But  Java  doesn’t do this.

They were designed to let you rerun program modules,  whose source-
code you can’t or won’t change,  unchanged but in different rounding 
modes upon data that produce suspicious results.  If different roundings 
change a module’s results too much,  you may wish to question its 
provenance.  But  Java  does not allow you to do this.

Attenuating risks does not eliminate them;  neither is the foregoing 
diagnostic technique anywhere near foolproof.  Still,  those hardware 
designs do improve your chances.  But not with  Java  programs.



SIAMjvnl                                                                                                               July 16, 1997

Slide 13

It seems bizarre that a programming language being promoted as the way 
for  Everyman  to program  Everything  to run  Everywhere  should have 
floating–point semantics chosen to be so disadvantageous to the 
overwhelming majority of programmers and users of the overwhelming 
majority of computers on desktops.  I have been assured that it was not 
done in an attempt to secure commercial advantage for a few at the 
expense of the many,  so I must presume that it was done out of 
ignorance.

An attempt is under way to supplant  Java’s  treatment of floating–point 
by something better.  It is called  Borneo,  devised by some students at  
U.C. Berkeley,  and being implemented at least in part by one of them,  
Joe Darcy  < darcy@cs.berkeley.edu >  with support from some folks at  
Sun.

Three  Williams
contend for
  Java’s
numerics

William K.

William G.
William J.

 Java



SIAMjvnl                                                                                                               July 16, 1997

Slide 14

Published Benchmarks
tend to be  preoccupied  with

speed
to the near exclusion of everything else.

Consequently,  the  Computer  analog of  Gresham’s Law  goes  ···

“ The  Fast  drives out the  Slow,
  even if the  Fast  is  Wrong.”

Wrong ?

Some controversial mathematical conventions are embedded in 
computers,  in hardware and/or in programming languages,  and 
persist only because little commercial incentive exists to expend 
the considerable effort required to resolve controversy and attend 
to details that could not affect the speed of current benchmarks.

Example:     Why do systems disagree about    35035.0D0 / 15.0  -  7007.0 / 3.0   ?

Example:     Why do systems disagree about whether   0.00.0  =  1.0  or  ERROR ?

Nit-Picky Example:       What should be done with the sign of   ± 0.0   ?

( This example was chosen because a smaller error than the difference between  +0  and  
-0  is hard to imagine;  and yet the computing industry appears unable to correct such  
mistakes,  and bigger mistakes too,  after they become entrenched.  Thus are the sins of 
the fathers visited upon succeeding generations,  all in the name of  “ Compatibility.”)



SIAMjvnl                                                                                                               July 16, 1997

Slide 15

Where does the sign of    ± 0.0    matter ?

Complex Arithmetic

Example:   Define  complex analytic functions

     ,    and

    .

Plot  the values taken by  F(z)   as   z   runs along  eleven  rays

z = r·i ,   z = r·e4i·π/10,   z = r·e3i·π/10,   z = r·e2i·π/10,   z = r·ei·π/10,   z = r

and their  Complex Conjugates,  taking positive   r   from near  0  to near  +∞ .

The expected picture,  called  “ Borda’s Mouthpiece,”  shows eleven streamlines 
of an ideal fluid flowing into a channel under such high pressure that the fluid’s 
surface tears free from the inside of the channel.

But a streamline goes astray  when the complex functions  SQRT(···)  and  
LOG(···)  are implemented,  as is customary in  Fortran  and in libraries currently 
distributed with  C++  compilers,  in a way that disregards the sign of   ± 0.0  and 
consequently  violates  identities   like

SQRT( CONJ( Z ) )   =   CONJ( SQRT( Z ) )      and

 LOG( CONJ( Z ) )   =   CONJ( LOG( Z ) )

whenever the  COMPLEX  variable  Z  takes negative real values.

Pictures of  Borda’s Mouthpiece  come next.

g z( ) z
2

z z
2

1+⋅+=

F z( ) 1 g z( ) g z( )( )log+ +=



SIAMjvnl                                                                                                               July 16, 1997

Slide 16

4 2 0 2 4 6 8

5

0

5

y( ),I U

x( ),I U

Borda's Mouthpiece,  plotted without  -0

4 2 0 2 4 6 8

5

0

5

Y( ),I U

X( ),I U

Borda's Mouthpiece,   plotted correctly

This plot shows the streamlines of a flow of an  Ideal Fluid  under high pressure 
escaping to the left through a channel with straight horizontal sides.  Inside the 
channel,  the flow's boundary is free,  not touching the channel walls.  Without 
-0 ,   the flow along the outside of the lower channel wall is misplotted across 
the inner  mouth of the channel and,  though it does not show above,  also as a 
short segment in the upper wall at its inside end.                              W. Kahan



SIAMjvnl                                                                                                               July 16, 1997

Slide 17

CIRCULATING FLOW PAST  JOUKOWSKI 'S  AIRFOIL

Shape: =σ 0.3 + 0.1i Angle of Attack: =α 0.125 Circulation: =γ 0.381346

1

1.5
1.751.75

This shows the stream-lines of a two-dimensional flow of an  Ideal Fluid  around a cross- 
section called  " Joukowski's Airfoil."  Its  Shape  and its  Angle of Attack  determine 
the intensity of  Circulation  by means of what is called the  " Kutta Condition,"  which  
says that the flow should not be  Singular  ( turn sharply )  at the airfoil's sharp trailing  
edge.  Circulation around a wing engenders lift.  It is evident from the plot because the 
stream-lines flow closer together,  indicating higher speed and lower pressure,  on one side  
of the airfoil than on the other.  Only at small  Angles of Attack  is this picture realistic; 
then a real wing roughly satisfies the  Kutta  condition for circulation by creating  Vortices 
off the wing-tips.  These vortices are sometimes visible as  " Contrails "  of condensed  
moisture following an aircraft.  At large  Angles of Attack  the  Kutta Condition  cannot  
be maintained;  the flow separates from the airfoil,  and the wing stalls.  



SIAMjvnl                                                                                                               July 16, 1997

Slide 18

What happened to the aerofoil’s lower surface?  It got lost in a 
computer that does not support  -0 ,  or else in a programming 
language that supports the declarations  REAL  and  COMPLEX  
but not  IMAGINARY.

( There are ways to program around a bug like this,  but they can be tricky.  Besides,  
from accumulations of little bugs like these does software die the  Death of a 
Thousand Cuts.)

CIRCULATING FLOW PAST  JOUKOWSKI 'S  AIRFOIL

Shape: =σ 0.3 + 0.1i Angle of Attack: =α 0.125 Circulation: =γ 0.381346

1

1.5
1.751.75



SIAMjvnl                                                                                                               July 16, 1997

Slide 19

Why such plots malfunction,  and a very simple way to correct them,  were 
explained long ago in my paper

“ Branch Cuts for Complex Elementary Functions,  or  Much Ado 
About Nothing's Sign Bit,”   ch. 7 in   The State of the Art in 
Numerical Analysis   ( 1987 )  ed. by  M. Powell and A. Iserles  for  
Oxford University Press.

A  controversial  proposal  to incorporate that correction,  among other things,  in 
a  Complex Arithmetic Extension  to the programming language  C  has been put 
before  ANSI X3J11 ,  custodian of the  C  standard,  by  Jim Thomas  <jthomas@ 
best.com>   and myself.  It is controversial because it purports to help programmers 
cope with physically important discontinuities by suspending a logical proposition,

“  x = y  ”   implies    “  f(x) = f(y)  ”  ,
at certain kinds of discontinuities.   However,  regardless of that proposal’s merits,  
it is barely worth discussing because  ...

Little incentive exists to incur the costs of corrections  
( even if principally to documentation )  that will  not 
be rewarded by improved performance in current 
benchmarks and a consequent commercial advantage.

If benchmarks did include the graph-plotting example above,
they could  not enforce its correctness anyway.

Why not ?

Benchmarks have to be capable of running  successfully  on  all  commercially 
significant computers.  But older computers,  which do not conform to  IEEE 
Standard 754,   lack hardware support for   - 0.0 ,   and are therefore intrinsically 
incapable of plotting  Borda’s Mouthpiece  correctly from the simplest program that 
would suffice on conforming computers.  On nonconforming computers,

“successful”   could not mean   “correct.”



SIAMjvnl                                                                                                               July 16, 1997

Slide 20

What computations are both important and technically 
challenging enough that they could earn real money if 

accomplished significantly better?
These are promising candidates for service in benchmarks.

1.  Solving big systems of linear equations:   A·x = b .

2.  Computing eigenvalues/vectors:    X-1·A·X = diagonal.

Despite phenomenal improvements in numerical methods over 
the past three or four decades,  we still lack software that will 
always solve these problems as accurately as their data deserve.

For instance,  solving  A·x = b  can still run afoul of certain 
pathologies:

Gargantuan dimension.
Unfortunate column ordering —>  poor pivot choice.
Disparate scaling of rows  —>  poor pivot choice.
Systematically severe ill-condition  (near singularity).

One way to ameliorate such pathologies is to follow  Gaussian  
elimination by  Iterative Refinement,  which is believed to cope 
with them.  But that is not the whole story:  ....



SIAMjvnl                                                                                                               July 16, 1997

Slide 21

Case study:  Roundoff  Degrades  an  Idealized  Cantilever

(  Work done jointly with  Ms. Melody Y. Ivory )

A uniform steel spar is clamped horizontal at one end and loaded with a mass at the 
other.  How far does the spar bend under load?

The calculation is  discretized:  For some integer  N  large enough  ( typically in the 
thousands )  we compute approximate deflections

x0 = 0 ,   x1,  x2,  x3,  ...,  xN-1,   xN ≈ deflection at tip

at  uniformly spaced stations along the spar..  These  xj 's  are the components of a 

column vector  x  that satisfies a system  A·x = b  of linear equations in which 
column vector  b  represents the load  ( the mass at the end plus the spar’s own 
weight )  and the matrix  A  looks like this for  N = 10 :

The usual way to solve such a system of equations is by  Gaussian  elimination,  
which is tantamount to first factoring  A = L·U  into a lower-triangular  L  times an 
upper-triangular  U ,  and then solving  L·(U·x) = b  by one pass of forward 
substitution and one pass of backward substitution.  Since  L  and  U  each has only 
three nonzero diagonals,  the work goes fast;  fewer than  30·N  arithmetic 
operations suffice.  But this solution  x  is very sensitive to rounding errors;  they 

can get amplified by the  condition number  of  A ,  which is of the order of  N4 .

The loss of accuracy to roundoff during  Gaussian  elimination poses a  Dilemma:
Discretization error  —> 0  like  1/N2 ,  so for realistic results we want  N  big.

Roundoff is amplified by  N4 ,  so for accurate results we want  N  small.

A

9 4– 1 o o o o o o o

4– 6 4– 1 o o o o o o

1 4– 6 4– 1 o o o o o

o 1 4– 6 4– 1 o o o o

o o 1 4– 6 4– 1 o o o

o o o 1 4– 6 4– 1 o o

o o o o 1 4– 6 4– 1 o

o o o o o 1 4– 6 4– 1

o o o o o o 1 4– 5 2–

o o o o o o o 1 2– 1

=



SIAMjvnl                                                                                                               July 16, 1997

Slide 22

For realistic problems  ( aircraft wings,  crash-testing car bodies, ...),   typically  
N > 10000 .  With  REAL*8  arithmetic carrying the usual  53  sig. bits,  about  16 
sig. dec.,  we must expect to lose almost all accuracy to roundoff occasionally.

Iterative Refinement  mollifies the dilemma:
Compute a  residual  r := A·x - b  for  x .  Solve  A·∆x = r  for a correction  ∆x  
using the same program  ( and triangular factors  L  and  U )  as  “solved”  A·x = b  
for an  x  contaminated by roundoff.  Update  x := x - ∆x  to refine its accuracy.

Actually,  this  Iterative Refinement  as performed on the prestigious work-stations  
( IBM RS/6000,  DEC Alpha,  Convex,  H-P,  Sun SPARC,  SGI-MIPS,  ... )  does 
not necessarily refine the accuracy of  x  much though its residual  r  may get much 
smaller,  making  x  look much better to someone who does not know better.

Only on  Intel-based  PCs  and  680x0-based  Macintoshes  ( not  Power-Macs )  can  
Iterative Refinement  always  improve the accuracy of  x  substantially  provided  
the program is not prevented by a feckless compiler from using the floating-point 
hardware as it was designed to be used:

The following figures exhibit some evidence to support the foregoing claims.  For 
more details see   http://http.cs.berkeley.edu/~wkahan/Cantilever.



SIAMjvnl                                                                                                               July 16, 1997

Slide 23

ACCURACY
of a  Cantilever’s Deflection  after  Iterative Refinement

by a  MATLAB 4.2  program run on workstations

Iterative Refinement  of residuals  r  ( employing the  r-based  stopping criterion ),   
as does  LAPACK  program  _GERFS,  always reduces the residual  r  below an ulp 
or two,  but rarely improves the accuracy of the solution  x  much,  and often 
degrades it a little,  on workstations that do not accumulate residuals to extra 
precision.  And the error-bound on  x  inferred from  r  is too pessimistic.  But on 
those workstations it is difficult to do better.

Initial Error
Refined ...  
ErrorBound   
Iterations*5 

10
2

10
3

10
4

0

10

20

30

40

50

Dimension  N  of matrix  A

C
or

re
ct

 S
ig

ni
fic

an
t 

B
its

 in
  

X

Refine Residual        REAL*8 Residual        HP-PA RISC & IBM RS/6000

2



SIAMjvnl                                                                                                               July 16, 1997

Slide 24

ACCURACY
of a  Cantilever’s Deflection  after  Iterative Refinement

by a  MATLAB 4.2  program run on workstations

Iterative Refinement  of solutions  x  ( employing the  x-based  stopping criterion )  
is no more accurate than refinement of  r  for the  Cantilever  problem  ( and rarely 
more accurate for other problems )  on workstations that do not accumulate 
residuals to extra precision.  And the error-bound on  x  inferred from  ∆x  is still too 
pessimistic for this problem  ( and too optimistic for others ).  Worse,  refining  x  
usually takes more iterations than refining  r ,  though not for cases shown here.  
Therefore this kind of  Iterative Refinement  does not suit those workstations.

Initial Error
Refined ...  
ErrorBound   
Iterations*5 

10
2

10
3

10
4

0

10

20

30

40

50

Dimension  N  of matrix  A

C
or

re
ct

 S
ig

ni
fic

an
t 

B
its

 in
  

X

Refine Error           REAL*8 Residual        HP-PA RISC & IBM RS/6000

2



SIAMjvnl                                                                                                               July 16, 1997

Slide 25

ACCURACY
of a  Cantilever’s Deflection  after  Iterative Refinement
by a  MATLAB 4.2  program run on  PCs  and old  Macs

Iterative Refinement  of residuals  r  ( employing the  r-based  stopping criterion ),   
as does  LAPACK  program  _GERFS,  always reduces the residual  r  below an ulp 
or two,  and also improves the accuracy of the solution  x  if not stopped too soon  
( as occurred above at  N = 64  because the initial  r  was below  1 ulp )  on  PCs  
and  Macs  that accumulate residuals to extra precision.  But the error-bound on  x  
inferred from  r  is still too pessimistic.  On these computers we can do better.

Initial Error
Refined ...  
ErrorBound   
Iterations*5 

10
2

10
3

10
4

0

10

20

30

40

50

Dimension  N  of matrix  A

C
or

re
ct

 S
ig

ni
fic

an
t 

B
its

 in
  

X

Refine Residual       REAL*10 Residual        68040-Mac & '86/Pentium PC

2



SIAMjvnl                                                                                                               July 16, 1997

Slide 26

ACCURACY
of a  Cantilever’s Deflection  after  Iterative Refinement
by a  MATLAB 4.2  program run on  PCs  and old  Macs

Iterative Refinement  of solutions  x  ( employing the  x-based  stopping criterion )  
far surpasses the accuracy of refinement of  r  for ill–conditioned  Cantilever  
problems  ( and also for other problems )  on  PCs  and  Macs  that accumulate 
residuals to extra precision.  And the error-bound on  x  inferred from  ∆x  is 
satisfactory for this problem  ( and almost always for others ).  Of course,  the 
required number of iterations rises sharply as  A  approaches singularity.  Still,   this 
kind of  Iterative Refinement  is the right kind for those popular computers.

Initial Error
Refined ...  
ErrorBound   
Iterations*5 

10
2

10
3

10
4

0

10

20

30

40

50

Dimension  N  of matrix  A

C
or

re
ct

 S
ig

ni
fic

an
t 

B
its

 in
  

X

Refine Error          REAL*10 Residual        68040-Mac & '86/Pentium PC

2

4

6

10



SIAMjvnl                                                                                                               July 16, 1997

Slide 27

Would the  Cantilever  problem make a good benchmark?

Perhaps not.  Since different families of computers are best 
served by different versions of  Iterative Refinement  with 
different capabilities,  like rather different kinds of error over–
estimates,  comparisons would become confounded.

A good bench mark has to be a single program that does 
something worth–while on every computer even if it does better 
on some of them.

I have devised such a program:  RefinEig.



SIAMjvnl                                                                                                               July 16, 1997

Slide 28

RefinEig  --  towards a better benchmark for accuracy:

For any square matrix  B   the  MATLAB  statement

[Q, V] = eig( B )

computes an eigenvector matrix  Q  and a diagonal matrix  V  of eigenvalues.

Ideally,      V  =   Q-1·B·Q     should be diagonal.

Numerical accuracy deteriorates as  B   approaches a set of measure zero,
the algebraic variety of  Defective  matrices  B ,

on which  V  cannot be diagonal.

No  single  algorithm can compute  Q  and  V  as accurately as deserved by   
every  datum  B ,  if a theorem proved recently by  Ming Gu  at  Berkeley  ( he is 
at  UCLA  now )  can be taken at face value;  see his  “Finding Well-Conditioned 
Similarities to Block-Diagonalize Nonsymmetric Matrices is NP-Hard” Journal of 
Complexity 11 (1995), pp. 377-391.

Therefore   eig(...)  must be flawed;
and it is,   as examples will demonstrate.



SIAMjvnl                                                                                                               July 16, 1997

Slide 29

Examples:   Werner Frank’s  NxN  matrices,  exemplified here for  N = 5 :

F’  is obtained by transposing,  and  P  by reversing rows and columns of  F .

F ,  F’ ,  P  and  P’   have the same eigenvalues,  all positive in reciprocal pairs.
If  ƒ  is an eigenvalue,  so is  1/ƒ ,  and then   √ƒ - 1/√ƒ   is a zero of the  Nth  Hermite  polynomial.

The smaller eigenvalues are the more  ill-conditioned  ( i.e.  sensitive 
to perturbation ),  exponentially more so for bigger  N ,  the same for 
all four of  F ,  F’ ,  P  and  P’ .  Consequently  eig(...)  computes 
none of their  “ significant ”  bits correctly when   N > 17 .

However,  for   7 < N < 17 ,     eig(...)  computes those smaller eigenvalues 
several sig. bits more accurately for  F’   than for the other matrices,  thus 
demonstrating that

eig(...)’s   accuracy depends in part
upon mathematically irrelevant accidents.

Remedy:
[Q, V] = RefinEig(Q, V, B)

is my  MATLAB-language  program designed to try to improve the accuracy of
[Q, V] = eig( B )

in cases when it has been degraded by some accident.

Sometimes the improvement is spectacular.

F

5 4 3 2 1

4 4 3 2 1

o 3 3 2 1

o o 2 2 1

o o o 1 1

= F ′

5 4 o o o

4 4 3 o o

3 3 3 2 o

2 2 2 2 1

1 1 1 1 1

= P

1 1 o o o

1 2 2 o o

1 2 3 3 o

1 2 3 4 4

1 2 3 4 5

=



SIAMjvnl                                                                                                               July 16, 1997

Slide 30

Legend: - - - - - eig             on  680x0-Mac  or  Intel-PC
______ RefinEig  on  680x0-Mac  or  Intel-PC
. . . . . . eig             on  others
· - · - · - · RefinEig  on  others.

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from  Frank's matrix   F

Dimension  N

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from  Frank's matrix   F ,  nobalance

Dimension  N



SIAMjvnl                                                                                                               July 16, 1997

Slide 31

Legend: - - - - - eig             on  680x0-Mac  or  Intel-PC
______ RefinEig  on  680x0-Mac  or  Intel-PC
. . . . . . eig             on  others
· - · - · - · RefinEig  on  others.

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from  Frank's matrix   P'

Dimension  N

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from  Frank's matrix   P' ,  nobalance

Dimension  N



SIAMjvnl                                                                                                               July 16, 1997

Slide 32

Legend: - - - - - eig             on  680x0-Mac  or  Intel-PC
______ RefinEig  on  680x0-Mac  or  Intel-PC
. . . . . . eig             on  others
· - · - · - · RefinEig  on  others.

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from  Frank's matrix   P

Dimension  N

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from  Frank's matrix   P ,  nobalance

Dimension  N



SIAMjvnl                                                                                                               July 16, 1997

Slide 33

Legend: - - - - - eig             on  680x0-Mac  or  Intel-PC
______ RefinEig  on  680x0-Mac  or  Intel-PC
. . . . . . eig             on  others
· - · - · - · RefinEig  on  others

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from  Frank's matrix   F'

Dimension  N

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from  Frank's matrix   F' ,  nobalance

Dimension  N



SIAMjvnl                                                                                                               July 16, 1997

Slide 34

How does  MATLAB  benefit from an  Extended  format
without ever mentioning it?

MATLAB ‘s  matrix multiplication  operation is programmed carefully,  differently 
for every different computer,  in order to reach

the highest possible speed.

Every element of a matrix product is a

Scalar Product   =   a1·b1 + a2·b2 + a3·b3 + ... + aN·bN   .

By keeping products   aj·bj  and their sums in fast registers to maximize speed,  

MATLAB  computes them to the precision of the registers;  on computers with  
Extended  precision,  that is  64  sig. bits even though the operands  aj  and  bj  carry 

only  53  sig. bits.

RefinEig  computes its residuals like   R  =  B·Q - Q·V   as matrix products

which,  after massive cancellation,  come out almost as accurate as if evaluated in  
64  sig. bit arithmetic though they are stored to only  53  sig. bits.

Thus,   on computers that have it,
Extended  precision can enhance  RefinEig’s  accuracy,

typically by  11  sig. bits,
without ever being mentioned.

R B Q
Q

V–
⋅=



SIAMjvnl                                                                                                               July 16, 1997

Slide 35

The Threat:      Atrophy  and  Stagnation

For lack of benchmarks that assess accuracy or other desirable attributes
other than speed,

Apple’s  Standard Apple Numerical Environment  ( S.A.N.E.)  never received the 
accolade it deserved from the marketplace.

Consequently,  Apple’s  management cut its losses,  dispersed much of  Apple’s 
numerical expertise,  and abandoned the  Double-Extended  format when they 
chose to move from the  680x0  to the faster  Power-PC-based   “ Power Mac ”  
( which goes faster for reasons other than its omission of an  Extended  format).

For lack of benchmarks that would reward their diligence,  compiler writers have 
not supported novel capabilities of  IEEE 754,  so atrophy threatens them:

Fast flexible handling of exceptions like  Division-by-Zero  and
Gradual Underflow.

Directed roundings,  necessary for good  Interval Arithmetic  and
    helpful for diagnosing numerical instability.

Extended precision,  capable of evolving into arbitrarily high precision.
Extended range.

More generally,  for lack of ways to accommodate innovations,  current benchmarks 
tend to stifle innovations regardless of their merits.



SIAMjvnl                                                                                                               July 16, 1997

Slide 36

Computer Languages  and  Compilers  hold center stage.

Mediæval thinkers held to a superstition that
Thought  is impossible without  Language.

That is why  “dumb”  changed in meaning from  “speechless”  to  “stupid.”

With the advent of computers,  “Thought”  and  “Language”  have changed their 
meanings,   and now there is some truth to the old superstition:

In so far as programming languages constrain utterance,
they also constrain what a programmer may contemplate productively. 

Few compiler writers address challenges to mathematical,  scientific and 
engineering computation,  and these few are preoccupied with keeping their 
handiwork abreast of rapidly changing hardware in a bitterly competitive 
marketplace where no new product enjoys more than a few months of ascendancy.

They have to run as fast as they can just to stay in the same place.

Consequently,  computer languages have not been evolving towards scientifically 
desirable goals,  swayed as they are by over-reliance upon standards  committees’ 
aesthetic fads,  on the one hand,  and industrial demands for compatibility with past 
practice on the other.  For instance,  a case could be made for   ...

The Baleful Effect of
C++
upon

Applied Mathematics,
Physics and Chemistry.

…  and now  Java.



SIAMjvnl                                                                                                               July 16, 1997

Slide 37

The challenges facing the  Scientific Community:

Although  Computer Science  ought to be a branch of  Applied Mathematics  
distinguished solely by its preoccupation with the cost of computation,  we cannot 
rely upon the mathematical probity of computer professionals among whom few 
harbor hospitality towards mathematical thought.   We have educated them badly:

Some think  Mathematics  is a  Religion
whose rules they have been taught not to break for fear of moral condemnation.

e.g.,    Division by Zero,     Discontinuity .
Although violating some rules is perilous,  others are intended to be broken a bit;

the trick is to tell which are which.

Some think  Mathematics  has at most  Aesthetic  value.
If you believe  Beauty  is  the  criterion by which  Mathematics  should be judged,

please recall that    Beauty  lies in the  Eye  of the  Beholder ;
in the eyes of a bug,  a rose is mere fodder.

Mathematics is a miraculous reward for penetrating thought.
To render that kind of thought ever more economical is the computer’s most 
worthwhile promise.  We had best not entrust it entirely to people antipathetic to 
mathematical thought or motivated too much by mere pecuniary rewards.

The  Scientific Community  has to help promulgate
Appropriate  Benchmarks

and other schemes that will reward diligence and encourage useful innovation while 
discouraging unnecessary and anarchic diversity that fragments the marketplace.

This problem is difficult technically and politically.


