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Prof. W. Kahan’s  Comments  on  SORN  Arithmetic

 

What follows pertains to  John L. Gustafson’s  proposal 
 “A Radical Approach to Computation with Real Numbers”

presented in two documents:
Unums2.0slides.pptx 48 numbered pages “Updated April 23 2016”
RadicalApproach.pdf 16 unnumbered pages   undated

The  .pdf  file is  “published with open access at  SuperFri.org”  but I could not find it there.  A 
version later than the one found on his web page on  18 May 2016  may exist;  I know not where.

 

What are  SORNs ?

 

These are  

 

S

 

ets 

 

O

 

f 

 

R

 

eal 

 

N

 

umbers  upon which  Gustafson’s  proposal would perform arithmetic 
indirectly by table-lookups to achieve higher speed than if performed by floating-point arithmetic.  
Before describing how that would work,  let’s describe his  SORNs  as briefly as possible.

They are subsets drawn from all  Extended Real Numbers,  which are the real numbers augmented 
by one point at  

 

∞

 

  whose sign is ignored.  SORNs  are best visualized as point-sets on the circle  

 

Ω

 

  obtained by  

 

Stereographic Projection

 

  from the real axis:  

A motivation for doing this is that,  regarded as a map from the circle  

 

Ω

 

  to itself,  each rational 
function of just one real variable becomes infinitely differentiable despite any poles it may have.  
Plotted on a torus,  the function has an infinitely smooth graph.  However,  although those rational 
functions constitute a  

 

Field

 

,  the  Extended Reals  do not.  These cannot satisfy all of a  Field’s  
cancellation laws because of  

 

Exceptions

 

  at  

 

∞

 

 

 

±

 

 

 

∞

 

 

 

,  

 

∞

 

/

 

∞

 

  and  

 

∞

 

·0

 

 

 

,  besides the usual  0/0

 

 

 

,  that 
would generate  NaNs  in  IEEE 754 floating-point.           ( “NaN”  means  “

 

N

 

ot 

 

a

 

 

 

N

 

umber”. )

Gustafson  disparages  NaNs,  so he assigns the set of all  Extended Reals  —  call it  

 

Ω

 

  —  as the 
arithmetic result of those failures (.pptx p. 9);  then he can boast that his  SORN  arithmetic has … 

 “No exceptions (subnormals, NaNs, ‘negative zero’, …)”      [p. 3 of .pptx,  p. 2 of .pdf]
But his assignment of a value  

 

Ω

 

  to those  Field  exceptions deprives  SORN  arithmetic of what I 
have called  

 

Algebraic Integrity

 

,  to be explained in a moment.  That lack deprives programmers of 
confidence that the numerical evaluation of formulas derived via ordinary rational algebra will 
produce predictable results or else signal malfunctions detectable and correctable by the program.

∞

0

0
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… …

∞ := (nonzero)/0 .
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What is  

 

Algebraic Integrity

 

 ?

 

Absent roundoff,  if several different expressions for the same rational function produce different 
values when evaluated numerically in  IEEE floating-point,  at most two different values can be 
produced,  and either the two values are  

 

±∞

 

  or else at least one is a  NaN,  which is easy to detect.

SORN  arithmetic has no such integrity.  SORN  arithmetic’s evaluations of different expressions 
for the same function,  though they may have different removable singularities,  can produce any 
number of different values,  none of them recognizably exceptional.  Here is an example:

u

 

(

 

t

 

)

 

 := 2t

 

/

 

(1 + t) ;     v

 

(

 

t

 

)

 

 := 2 – (2/t)

 

/

 

(1 + 1/t) ;

x

 

(

 

t

 

)

 

 := (1 + u

 

(

 

t

 

)

 

2

 

)

 

/

 

(2 + u

 

(

 

t

 

)

 

2

 

) ;   y

 

(

 

t

 

)

 

 := (1 + v

 

(

 

t

 

)

 

2

 

)

 

/

 

(2 + v

 

(

 

t

 

)

 

2

 

) ;   z

 

(

 

t

 

)

 

 := 1 – 1

 

/

 

(2 + v

 

(

 

t

 

)

 

2

 

) ;

An automated algebra system would confirm that  u = v  and  x = y = z  as rational functions of  t  
disregarding removable singularities at  t = 0  and  t = –1

 

 

 

.  However,  SORN  arithmetic yields

 x(0) = 1/2 ,      y

 

(

 

0

 

)

 

 = 

 

{

 

0 < y 

 

≤

 

 

 

∞

 

}

 

 ,      z

 

(

 

0

 

)

 

 = 

 

{

 

1/2 

 

≤

 

 z 

 

≤

 

 1

 

}

 

 .

A program cannot sense something amiss with  y

 

(

 

0

 

)

 

  or  z

 

(

 

0

 

)

 

  since,  ideally,  SORN  arithmetic 
has no rounding errors according to  p. 3 of .pptx,  p. 2 of .pdf.  Instead it may  “lose information”  
by producing undeserved intervals instead of single points.  This has happened to  y

 

(

 

0

 

)

 

  and  z

 

(

 

0

 

)

 

 

 

.

Like interval arithmetic,  SORN  arithmetic is  

 

Inclusion-Monotonic

 

;  this means that if  SORNs  
X  and  Y  overlap,  then  SORN  evaluations of the same expression at  X  and at  Y  must produce  
SORNs  that overlap.  Consequently,  SORN  evaluations of different expressions for the same 

 

rational

 

  function cannot be arbitrarily different;  their intersection must be non-empty.

Why would a programmer put different expressions for the same function into a program?  It is a 
common practice to enhance the reliability and/or accuracy of numerical software relying upon 
that function.  Over different parts of the function’s domain,  different expressions may be less 
sensitive to roundoff or  “loss of information”;  or different expressions may have different costs 
of evaluation.  On the boundaries of subdomains different expressions would be expected to agree 
within roundoff.  If one expression malfunctions,  the program can try another,  

 

but only if it detects the malfunction.

An arithmetic system that hides malfunctions must produce quite misleading results 
occasionally.  We shall see that happen to  SORN  arithmetic later below.

 

•   •  •  •  •  •  •  •  •

In several respects  SORN  intervals containing  

 

∞

 

  resemble the  

 

Exterior Intervals

 

  I advocated in  
1968  during a  Summer Course on Numerical Analysis (#6818) at the Univ. of Michigan at Ann 
Arbor.  These were intervals like  X = 

 

[

 

6,  8

 

]

 

/

 

[

 

–1,  2

 

]

 

 = 

 

[

 

3,  –6] = {x = ∞  or  x ≥ 3  or  x ≤ –6} .  
They were introduced to help evaluate continued fractions,  and were expected to exist rarely and 
briefly.  However,  they complicated the implementation of interval arithmetic,  perhaps more than 
they were worth at the time.  We shall see them complicate  SORN  arithmetic too,  worsened by 
its lack of  Algebraic Integrity.  Gustafson  could have avoided that lack by a small change in his 
definitions,  but then he could not have boasted that  SORN  arithmetic had  “No exceptions”.
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How does  SORN  arithmetic work?
It uses  table-look-ups  to act upon  pointers  to  SORN  values,  not upon the values themselves,  
in the hope of performing every arithmetic operation in a cycle or two on the  CPU  chip.

Let us consider pointers that are binary integers  N  bits wide.  N  is expected to be small,  likely  
16  or less.  Each pointer has two integer values,  a  2’s  complement value  j  and an unsigned 
value  J .  Context will determine which interpretation is used.  It won’t be confusing:

  j = if  J < 2N–1  then  J  else  J – 2N ;        J = if  j ≥ 0  then  j  else  2N + j ; 

J = +2N–1  just when  j = –2N–1 .

Each even index  j  points to a single  Extended Real  value  x(j)  ordered monotonically so that  

x(j+2) > x(j)  except that  x(±2N–1) = ∞ .  SORN’s  values  x(j)  inherit the sign-symmetry of their 

indices:  x(–j) = –x(j)   except that  x(±2N–1) = ∞ ;  consequently  x(0) = 0.0 .  SORN’s  values  x(j)  

occur in reciprocal pairs:  x(j) = 1/x(sign(j)·2N–1 – j)  except  0.0 = 1/x(±2N–1) = 1/∞ .  Therefore  

x(±2N–2) = ±1.0  respectively.  Otherwise you may distribute  SORN  values  x(j)  as you please.

Each odd index  j  points to the open interval  X(j)  between adjacent single values  x(j ± 1) ;   

X(j) = {x(j–1) < X < x(j+1)}  except  X(2N–1 – 1) = {x(2N–1 – 2) < X < +∞} .  Equivalently  X(J)  

is the open interval between  x(J–1)  and  x(J+1)  except  X(2N–1) = {x(2N–2) < X < 0} .  The 
symmetries possessed by single values  x(j)  are inherited by the intervals  X(j) .  The exceptional 
cases occur in different places for unsigned than for signed indices;  this will matter later.

Thus the entire circle  Ω  of  Extended Reals  is covered once by a system that combines single 
values  x(even j)  and intervals  X(odd j) .  Rational arithmetic operations on the system need two 

tables,  one for add/subtract,  one for multiply/divide,  with  2N  rows and  2N  columns and  22N  
entries,  each an arithmetical result.   Unfortunately,  except perhaps for some very small  N ,  …

the system is not yet closed under rational arithmetic operations.

The arithmetical result of combining an  x(j)  or  X(j)  with an  x(k)  or  X(k)  need not be any of 
these,  but can overlap more than one of them.  Gustafson  describes such an overlap as  “a loss of 
information”  on  .pptx p. 10,  .pdf p. 5.  To close the system each arithmetical result  in each 
arithmetic operation’s table must be an interval on  Ω .  This interval can be represented by a pair  
«I, ∆I»  of unsigned integers pointing to an interval that runs counter-clockwise on  Ω  beginning 
at  x(I)  or  X(I)  and ending at  x(I+∆I)  or  X(I+∆I) .  I think this is what  Gustafson  intended by  
“run-length encoding”  mentioned on .pptx pp. 36 and 47,  described at the top of .pdf p. 15  but a 

little incorrectly.  The  2N  pairs  «I, 2N–1»  are redundant;  only one,  say  «2N–1, 2N–1» ,  is 

needed for the whole circle  Ω .  Assign another arbitrarily,  say  «0, 2N–1» ,   to the empty set  Ø .  
Ignore unsigned integer overflow if it happens to  I+∆I .  (This is what unsigned indices are for.)

As a  SORN  computation proceeds,  intervals will combine with intervals to yield usually wider 
intervals each represented by a pair  «I, ∆I» .  Addition/subtraction requires two fetches from its 
table,  multiplication/division as many as four,  followed by some further logic.  SORN  arithmetic 
acting upon pairs  «I, ∆I»  is no less complicated than interval arithmetic with exterior intervals.
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Originally  Gustafson  came up with a simpler kind of  SORN  arithmetic suitable only for smaller  
N ,  say  N < 9 ,  which implements very low precision exterior interval arithmetic and more.  Let  

W  be a word  2N  bits wide representing an arbitrary subset of elements  x(J)  and  X(J)  on the 
circle  Ω :  Bit #J  of  W  is  1  if and only if  x(J)  (for even  J)  or  X(J)  (for odd  J)  belongs to the  

SORN  represented by  W .  There are   such  SORNs.  A rational operation upon two  SORNs,  

represented by two such words,  is selected from a table with  2N  rows,  2N  columns,  and  22N  

entries,  each a word  2N  bits wide,  but wired together to put out their logical  OR  as one word.

Thus can each rational operation upon two arbitrary subsets of the points and intervals on  Ω  be 
performed by a  CPU’s  chip in one cycle if  N  is small enough for the tables to fit on the chip.

SORN  Arithmetic’s Cost vs. Benefit
Two ways to perform  SORN  arithmetic have been described.  The faster way,  acting upon words  

W  each  2N  bits wide,  requires on-chip tables occupying areas proportional to  23N
 .  This has to 

compete with other demands,  like the cache,  for that area.  Besides,  computations nowadays 
tend to wait longer for memory management than for arithmetic.  Why build an arithmetic unit so 
fast that it spends most of its time waiting to be fed?  I doubt that this way will ever be built.

The slower way to perform  SORN  arithmetic,  acting upon pairs  «I, ∆I»  each  2N  bits wide,  

requires on-chip tables occupying areas proportional to  N·22N  plus some complicated logic that 
will take at least two or three cycles.  This runs about as fast as ordinary floating-point.  SORNs  
beat interval arithmetic with exterior intervals programmed in software on hardware of roughly 
the same precision,  somewhat less than  N sig.bits,  occupying an area on chip proportional to  

N2
 .  Consequently  SORN  computation can compete successfully against floating-point only if 

its precision  N  is not too big,  and then only if the value added to computation by interval 
arithmetic offsets the higher cost of the greater area  SORN  hardware occupies on the  CPU chip.

Low precisions  N  have sufficed for much of the world’s data.  Engineers used slide rules  (< 10 
sig.bits)  for most calculations for many decades before electronic computers and aircraft existed.  
How much value does interval arithmetic,  with or without  SORNs,  add to computation at low 
precision without it?  Gustafson  advocates  SORN/interval  arithmetic as insurance against being 
misled when computed results are corrupted by roundoff.  History is not entirely on his side.

Long experience and some error-analyses support a rough rule-of-thumb that renders roundoff 
extremely unlikely to causes embarrassment if  all  intermediate floating-point computations are 
performed carrying a little more than twice the precision trusted in data and desired in results.  
This advice has survived the test of time in statistics,  optimization,  root-finding,  geometry,  
structural analysis and differential equations,  among other things.  Of course exceptions exist;  
their rarity has given rise to a wry joke among numerical analysts: 

Nobody unlucky enough to have been betrayed by that rule-of- 
thumb need concern us;  he has already been run over by a truck.

SORN/interval  arithmetic insures against that bad luck but invites a different kind of betrayal.

2
2N
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Excessively Wide Intervals
Gustafson  knows that interval arithmetic can produce intervals that are too wide,  sometimes by 
orders of magnitude.  He knows about two of the many ways that can happen:  One is called  “The 
Wrapping Effect”;  another is called  “The Dependency Problem”.  He asserts that his  SORN  
arithmetic is free from such shortcomings.  He is mistaken.

The wrapping effect arises when a repetitive computation like a vector iteration  xn+1 := ƒ(xn)  is 
programmed in interval arithmetic as  Xn+1 := F(Xn)  by transliterating a formula for  ƒ  directly 
into an interval arithmetic program  F .  The effect occurs because coffin  F(X) ⊇  ƒ(X) ,  which is 
not often a coffin.  Here a  coffin,  represented by a vector of  d  intervals in a  d-dimensional 

space,  is a rectangular parallelepiped with  d·2d–1  edges each parallel to a coordinate axis.  Even 
if the image  ƒ(X)  of a coffin  X  is merely a slightly tilted box,  F(X)  must be bigger than  ƒ(X)  

by some factor  Λ > 1 ,  and then  Xn  must be too big by a factor  Λn
 .  Exponential growth.

Gustafson  asserts on  .pptx pp. 42-3  that  SORN  computation’s  “Uncertainty grows linearly in 
general”  and displays about  30  steps of an orbit calculation drawn from  p. 306  of his book  
THE END OF ERROR — Unum Computing (2015, CRC press).  There his word for a coffin is  
“ubox”.  The book’s elaborate computation resembles the numerical solution of the differential 
equation for a two-body orbit but actually,  by taking account of its conservation of energy and 
angular momentum,  the computation amounts to an iterative solution of a trigonometric equation.
See www.eecs.berkeley.edu/~wkahan/Math128/KeplerOrbits.pdf  for details.  Uncertainty for that 
orbit should grow linearly.  But  Λ  exceeds  1  by a little for each short step  F  of his method to 
calculate orbits for three or more bodies.  I don’t think he has done that for more than a few dozen 
steps amounting to a tiny fraction of an orbit.  Had he carried his calculation out for one or two 
complete and stable orbits he would have seen linear turn into excessive exponential growth.

Since  SORN  arithmetic produces only coffins,  it cannot avoid the wrapping effect.  To attenuate 
this effect the coffin  X0  must be subdivided into smaller coffins at a cost in parallel computations 
that grows exponentially with the dimension  d .  Attenuation is affordable only if  d  is small.

The dependency problem arises when an expression’s subexpressions are correlated but interval 
arithmetic disregards their correlations while evaluating the expression numerically.  Two simple 
examples are  Z := X – Y  and  Q := X/Y  when an earlier assignment  Y := X  is disregarded.  
Here are three program extracts that expose the mistake in  Gustafson’s  assertions,  on  .pptx pp. 
44-6 and .pdf p. 12,  that  SORN  arithmetic has no dependency problem:

    Y := ... independent of  X ; Y := …  accidentally matches  X ;       X := … ;
    … no change to  X  nor  Y ; … no change to  X  nor  Y ;       … no  X nor Y ;
    Z := X – Y ; Z := X – Y ;       Z := X – X ;

What interval operations will the computer execute for the programs’ last subtractions?  Normally 
the width of an interval difference is the sum of the operands’ widths.  Gustafson  expects the 
computer to treat the last program’s subtraction differently from the others,  obtaining  for  Z  an 
interval narrower than  X .  Gustafson  repeats the operation by iterating  X := X – X  to generate a 
dwindling sequence that  “Converges to the smallest open interval containing zero.”  If a computer 
is smart enough to perform a different operation for  “ X – X ”  than for other subtractions,  why 
not save time by simply  “optimizing”  X – X  to zero as many an optimizing compiler would?
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Gustafson  makes the same mistake when he starts  X := [1/2, 2]  and iterates  X := X/X  on  .pptx 
p. 46  to obtain convergence to  (5/8, 8/5),  not just  1.0 .  Why does he make this mistake again?

Perhaps the algorithms he has in mind for  SORN  arithmetic are incorrect for  SORNs  that are 
independent intervals.  Has he programmed and compared them yet with interval arithmetic?

Closely related to the dependency problem is a third way for  SORN/interval  arithmetic to yield 
vastly pessimistic over-estimates of a computed result’s uncertainty.  It occurs when a numerically 
precarious algorithm has been chosen to compute the desired result.  For example,  the result may 
satisfy a system of equations whose coefficients depend upon a few parameters each uncertain 
independently within small tolerances like,  say,  0.1% .  Consequently the coefficients will inherit 
uncertainties,  perhaps as little as  0.1% ,  but not independently;  the coefficients’ uncertainties 
will be correlated.  Resist the temptation to carry only three or four sig.dec. while computing the 
coefficients and solving the equations.  The solution may be far more sensitive to uncorrelated  
0.1%  perturbations in the coefficients than to  0.1%  perturbations in the parameters.  It happens 
to calculations of deflections under load of cantilevered elastic structures,  especially wings and 
shells supported only at their periphery,  like the roof of a stadium unsupported by pillars that 
would block the views of some spectators.  It happens to computer-simulated crash tests of cars 
and aircraft that derive much of their strength from their outer shells.  The rule-of-thumb cited 
above offers some protection against roundoff.  SORN/interval arithmetic carrying only three or 
four sig.dec. would produce intervals far wider than the uncertainties inherited from parameters 
by the correct results,  but a naive user could misinterpret those wide intervals as if they were 
uncertainties inherent in the results,  and then react inappropriately.

A simple didactic example of a geometrical problem whose solution is far less sensitive to small 
perturbations of the data than to small perturbations in the linear equations the solution satisfies is 
a tetrahedron’s incenter posted on  p. 26 of  www.cs.berkeley.edu/~wkahan/MathH110/Cross.pdf . 

SORN  Equation-Solving Without Algebraic Integrity
An important application of interval arithmetic locates  all  solutions  z  of an equation  æ(z) = o  
given a program  Æ  to compute a vector-valued function  æ(x)  in interval arithmetic at interval 
vectors  X  (coffins)  obtaining coffins   Æ(X) ⊇  æ(X) .  The program  Æ  has to be good enough 
that  width(Æ(X)) → 0  as  width(X) → 0  except for rounding errors,  so  width(Æ(z))  must be 
relatively tiny wherever  æ(z) = o .  Coffin  X  cannot contain a solution  z  if  Æ(X)  is an interval 
that excludes  o ,  in which case  X  is discarded.  Otherwise  X  is partitioned into smaller coffins  
X  each of which is tested and either discarded or kept for further subdivision.

We hope that this process will ultimately converge to a collection of relatively tiny coffins  Z  at 
none of which does interval  Æ(Z)  exclude  o ,  and at some of which  Æ(Z)  includes  o .  Each  
Z  that includes  o ,  if any,  has located a solution  z ∈  Z  .  Any other  Z  encloses a singularity 
around which  Æ(Z)  is  NaN .  Gustafson  calls this process  “C-Solution”  in his book.

For example take  æ(ξ) := 3/(ξ+1) – 2/(ξ–1) + 1/(ξ–1)2 .  Interval arithmetic,  with or without 
exterior intervals,  produces  NaN  for  Æ(X)  when  X = [0,  4]  because of  ∞ – ∞ ;  but this  X  
must not be discarded lest it contain solutions  z  as well as singularities.  Subsequent subdivisions 
converge to tiny intervals around  1 ,  2  and  3 .  Evidently  æ(2) = æ(3) = 0  but  æ(1)  is  NaN .
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At every  X  around  1 ,  SORN  arithmetic gets  Æ(X) = æ(1) = Ω ,  which includes  0 .  SORN  
arithmetic alone does not reveal that  æ(ξ)  has a  pole  (goes to  ∞),  not a  zero,  at  ξ = 1 .

Another more perplexing example is constructed from  R(ξ, η) := (ξ  – η)·(ξ  + η)/(ξ2 + η2) .  At  

x =   let  æ(x) :=  ,  and try to find a  C-Solution  z  of  æ(z) = o  using  SORN  

arithmetic to compute  Æ(X)  at coffins  X  each a rectangle with edges parallel to the coordinate 

axes.  At every  X  that encloses  o  we find that  Æ(X) =  ,  which encloses  o .  At every  X  

that does not enclose  o  but has one corner much closer to  o  than the others,  Æ(X)  is a finite 
interval that encloses  o .  C-Solution  converges convincingly onto an alleged solution  z = o .

But  “ æ(z) = o ”  has no solution  z .

It has no solution because  –1 ≤ R(ξ, η) = –R(η, ξ) ≤ +1  except that  R(0, 0)  would be  NaN  in 
interval arithmetic but not  SORN  arithmetic.  Its lack of  Algebraic Integrity  has betrayed the  C-
Solution process.  That could be fixed by some small changes to  SORN  arithmetic.

Another contributor to betrayal by  SORNs  is not so easy to fix: …

Mathematically Sound?
Gustafson asserts that  SORN  arithmetic is  “mathematically sound,  with no rounding errors”  on 
p.3 of .pptx,  p. 2 of .pdf.  Instead of rounding errors,  SORN/interval arithmetic produces overly 
wide intervals,  sometimes vastly too wide.  A little too wide suffices to induce mathematically 
unsound inferences.  Let us re-examine the  C-Solution  process that was betrayed just above.  It 

involved expression  R(ξ, η) := (ξ  – η)·(ξ  + η)/(ξ2
 + η2) = –R(η, ξ) = R(µ·ξ, µ·η)  for any  µ > 0 .  

Another expression for the same function is  S(ξ, η) := 1 – 2/(1 + (ξ/η)2) .  SORN  arithmetic,  
with or without  Algebraic Integrity,  produces excessively wide intervals for  R  but not for  S :

As  µ → 0+  the rectangles  X := (Ξ, Υ )  shrink to  o  without enclosing it,  and every  Æ(X)  
above includes  o .  The  C-Solution  process converges towards and is stopped at tiny rectangles 
very near  o  though it is a singularity,  not a solution  z  of  “ æ(z) = o ”.  SORN  arithmetic is not 
prevented by  “no rounding errors”  from producing mathematically misleading numerical results.

Ξ Υ R(Ξ, Y) S(Ξ, Y)

[µ,  2µ] [µ,  2µ] [–2,  2] [–3/5,  3/5]
[µ,  10µ] [µ,  10µ] [–90,  90] [–0.98,  0.98]
[µ,  10µ] [–µ,  µ] [0,  121] [0,  1]
[µ,  2µ] [–µ,  µ] [0,  9] [0,  1]
[µ,  2µ] [0,  µ] [0,  6] [0,  1]

[10µ,  11µ] [0,  0] [0.826,  1.21] [1,  1]
[181µ,  192µ] [0,  0] [0.8887,  1.12524] [1,  1]

(0,  µ] [0,  0] (0,  ∞] [1,  1]

ξ
η

R ξ η,( ) 9 8⁄–

R η ξ,( ) 9 8⁄+

Ω
Ω
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Example:  an Elbow Manipulator 
A set of  12  equations has been chosen to illustrate the utility of  SORN/interval  arithmetic.  Six 
angles  θ1, θ2, …, θ5, θ6  determine the posture of a robot arm with three elbow joints and three 
wrist joints.  A posture has been specified by six numerical values given for six polynomials in the  

12  variables  cj := cos(θj)  and  sj := sin(θj) ,  plus six more equations  sj
2 + cj

2 = 1  to constitute  

12  equations in the  12  variables.  We seek the set  {θj}   of solutions of these equations.  These 

are exhibited on  .pptx p. 12  and  .pdf p.7,  and solutions of low but adequate accuracy are offered 
on  .pptx p. 24  and  .pdf p. 8.  Unfortunately the second equations exhibited in  .pptx  and  .pdf  
differ in a term’s sign,  so I have not tried to confirm the solutions offered.  Still,  the equations 
illustrate well the utility of the  C-Solution  process using  SORN/interval arithmetic  because the 
solution-set occupies a continuum in a  6-dimensional space.  But the equations are not realistic.

They take no account of constraints that limit the angles to prevent wires from being torn and to 
protect the robot arm from self-collisions.  At the very least,  constraints like  |θj| ≤ 178°  must be 
imposed.  Such constraints are awkward to impose upon the pairs  {cj, sj}  of variables appearing 
in the  12  equations.  Moreover,  there are too many equations and variables;  the problem really 
requires only five equations in five unknowns.  The equations determine  θ1  immediately;  it is 
either  22.9181°  or  22.9181° – 180° .  Replacing one by the other replaces  θj  by  ±180° – θj  for  
j = 2, 3, 4  and  5 ,  and  θ6  by  –θ6 ,  so only one value of  θ1  need be considered.  Replacing  

cos(θj)  and  sin(θj)  by  tj := tan(θj/2)  complicates the five remaining equations,  replacing  sj  by  

2·tj/(1 + tj
2)  and  cj  by  2/(1 + tj

2) – 1  to turn polynomials into rational expressions.  Their extra 
cost is more than recompensed during the  C-solution’s  partition of coffins into smaller coffins,  
of which there are far fewer in  5  dimensions than in  12 .  And constraints like  |θj| ≤ 178°  turn 
simply into  |tj| ≤ tan(89°) .  Solutions fill out a continuum whose dimension matters.  What is it?

Loose Ends
SORNs,  like  Exterior Intervals,  complicate the  Order Relations  {<, ≤, =, ≠, ≥, >}  more than 
ordinary interval arithmetic does with exclusively finite intervals.  Is  –2 < ∞ ?  Not if  +∞ = –∞ .  
What is  cos(∞) ?  How does the empty set  Ø  compare with  3 ?  Distinct intervals  X  and  Y  
with non-empty overlap  X ∩ Y ≠ Ø  must make  “ X ≠ Y ”  true even though they differ in just 
one end-point.  And  X ⊇  Y  cannot imply  X ≈ Y  despite what  Gustafson’s  book says.  SORN  
arithmetic is incomplete without coherent specifications for order relations and the  Math  library.

Conclusion
SORN arithmetic is a plausible alternative to Exterior Interval arithmetic implemented in software 
on low-precision floating-point hardware.  How much demand exists for that?  Hard to say.  The 
temptation to use  SORN  arithmetic for lengthy computations upon data barely less precise than 
the arithmetic should be resisted lest misleadingly over-sized uncertainties obscure the results.
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