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Is  there  a   Small  Skew  Cayley  Transform   with   
Zero  Diagonal ?

 

Abstract

 

The eigenvectors of an  Hermitian  matrix  H  are the columns of some 
complex unitary matrix  Q .  For any diagonal unitary matrix  

 

Ω

 

  the 
columns of  Q·

 

Ω

 

  are eigenvectors too.  Among all such  Q·

 

Ω

 

  at least 

one has a  skew-Hermitian Cayley  transform  S := (I+Q·

 

Ω

 

)

 

–1

 

·(I–Q·

 

Ω

 

)  
with just zeros on its diagonal.  Why?  The proof is unobvious,  as is 
the further observation that  

 

Ω

 

  may also be so chosen that no element 
of this  S  need exceed  1  in magnitude.  Thus,  plausible constraints,  
easy to satisfy by perturbations of complex eigenvectors when an  
Hermitian  matrix  H  is perturbed infinitesimally,  can be satisfied for 
discrete perturbations too.  And if  H  is real symmetric,  Q  real 
orthogonal and  

 

Ω

 

  restricted to diagonals of  

 

±

 

1’s,  then,  as  Evan 
O’Dorney [2014]  has proved recently,  at least one real skew-
symmetric  S  must have no element bigger than  1  in magnitude.

 

Full text posted at  

 

http://www.cs.berkeley.edu/~wkahan/SkCayley.pdf
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Hermitian Eigenproblem

 

Hermitian Matrix   H = H

 

H

 

 = H

 

T

 

     —  complex conjugate transpose.

Real Eigenvalues  

 

v

 

1

 

 

 

≤

 

 

 

v

 

2

 

 

 

≤

 

 

 

v

 

3

 

 

 

≤

 

 … 

 

≤

 

 

 

v

 

n

 

  sorted and put into a column vector

    v := [ 

 

v

 

1

 

, 

 

v

 

2

 

, 

 

v

 

3

 

, …, 

 

v

 

n

 

 ]

 

T

 

  

Corresponding eigenvector columns   q

 

1

 

, q

 

2

 

, q

 

3

 

, …, q

 

n

 

   need not be determined

uniquely but can always be chosen to constitute columns of a  

 

Unitary

 

  matrix  
Q   satisfying

H·Q = Q·Diag(v)    and    Q

 

H

 

 = Q

 

–1

 

 .

Q·

 

Ω

 

  is also an eigenvector matrix for every unitary diagonal matrix  

 

Ω

 

 = 

 

Ω

 

–1 

 

.  

 

Familiar special case:

 

  Real symmetric  H = H

 

T

 

 ,  real orthogonal  Q = Q

 

–1 T

 

 .

Q·

 

Ω

 

  is also an eigenvector matrix for every diagonal matrix  

 

Ω

 

 =Diag(

 

±

 

1

 

 

 

’s) . 
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Perturbed Hermitian Eigenproblem

 

Given  Hermitian Matrix   H = H

 

o

 

 + 

 

∆

 

H  for small  ||

 

∆

 

H|| .

Suppose  H

 

o

 

  has known eigenvalue column  v

 

o

 

  and eigenvector matrix  Q

 

o

 

 .

Then eigenvalue column  v  of  H  must be close to  v

 

o

 

 :  ||v – v

 

o

 

||

 

∞

 

 

 

≤

 

 ||

 

∆

 

H|| .

But no eigenvector matrix  Q  of  H  need be near  Q

 

o

 

  unless  ||

 

∆

 

H||  is rather 

smaller than gaps between adjacent eigenvalues  

 

v

 

j

 

  of  H ,  or of  H

 

o 

 

.

 

Cautionary Examples:

 

   For every tiny nonzero  

 

θ

 

 ,  no matter how tiny,  

H =   has eigenvectors rotated through  

 

π

 

/2  from  H

 

o

 

 =  .

H =    has eigenvectors rotated through  

 

π

 

/4  from  H

 

o

 

 =  .

 

See  Parlett’s  book and papers by  C. Davis & W. Kahan,  and by  Paige & Wei,  on rotations of eigenspaces.

 

Still,  how are tiny perturbations of eigenvector matrices to be represented?

1 θ+ 0

0 1 θ–

1 θ– 0

0 1 θ+

1 θ
θ 1

1 θ– 0

0 1 θ+
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Infinitesimally Perturbed Unitary Matrices

 

Say   Q = Q

 

–1 H

 

   is perturbed to   Q + dQ = (Q + dQ)

 

–1 H

 

 ;   then

O = dI  =  d(Q

 

H

 

·Q)  =  dQ

 

H

 

·Q + Q

 

H

 

·dQ ,   so

dQ = –2Q·dS  for some  

 

Skew-Hermitian  dS = –dSH ,    and

Q + dQ = Q·(I – 2dS) .

This is what brings  skew-Hermitian  matrices to our attention.

Discretely Perturbed Unitary Matrices

Say   Q = Q–1 H   is perturbed to a nearby   Q + ∆Q = (Q + ∆Q)–1 H ;   then

   either Q + ∆Q =  Q·e–2∆Z  for some small skew-Hermitian  ∆Z ,

   or Q + ∆Q =  Q·(I + ∆S)–1·(I – ∆S)   for a small skew-Hermitian  ∆S .
~~~~~~~~~~~

This is what brings the  Cayley Transform  to our attention.
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What is a  Cayley Transform   $(z) ?

$(z)  is an analytic function of a complex variable  z  on the  Riemann  sphere,
Closed by one point at  ∞ .

1)  It is  Involutary :    $($(z)) = z .                       •••  so  $  must be  Bilinear Rational. 

2)  It swaps  Invert ↔ Negate :   $(–z) = 1/$(z)    and so    $(1/z) = –$(z) .

Inference:  Only two choices for  $(z) ,          or       .    Our choice is

    $(z) :=   ,       chosen so that  $(0) = 1 .

$  maps  …

Real Axis ↔ Real Axis ,    Imaginary Axis ↔ Unit Circle ,

Right Half-Plane ↔ Unit Disk ,

Real Orthogonal Matrix  Q = Q–1 T   ↔  Real Skew-Symmetric  S = –ST ,

Complex Unitary Matrix  Q = Q–1 H   ↔   Complex Skew-Hermitian  S = –SH .

1 z–
1 z+
------------ z 1+

z 1–
------------

1 z–
1 z+
------------
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Evading the  Cayley Transform’s Pole

$(B) := (I + B)–1·(I – B)

Unitary   Q = $(S) = Q–1 H     ↔     Skew-Hermitian   S = $(Q) = –SH  
    provided

    det(I + Q) ≠ 0      ↔                                S  is finite.

Every unitary  Q  has eigenvalues all with magnitude  1 ;   but
no  Cayley  transform  Q = $(S)  has  –1  as an eigenvalue.

Will this exclude any eigenvectors ?        No :

Lemma:  If  Q  is unitary and if  I+Q  is singular,  then reversing signs of aptly
chosen columns of  Q  will make  I+Q  nonsingular and provide a
finite skew  Cayley  transform  S = $(Q) .

Proof:  Any of many simple computations.  The earliest I know appeared in  1960 ;  see  
Exs. 7 - 11, pp. 92-3 in §4 of Ch. 6 of Richard Bellman’s book  Introduction to Matrix 
Analysis (2d. ed. 1970, McGraw-Hill).  Or see pp. 2-3 of  …~wkahan/SkCayley.pdf  .

Henceforth take  det(I + Q) ≠ 0  for granted.
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Back to  Perturbed Hermitian Eigenproblem

Given  Hermitian Matrix   H = Ho + ∆H  for small  ||∆H|| .

Suppose  Ho  has known eigenvalue column  vo  and eigenvector matrix  Qo .

W.L.O.G,  exposition is simplified by taking the eigenvectors of  Ho  as a new 

orthonormal coordinate system,  so that  Ho = Diag(vo) .  Now we wish to solve

H·Q = Q·Diag(v)    and    QH·Q = I                              (†)
for a sorted eigenvalue column  v  near  vo ,  and a unitary  Q  not far from  I .

Substituting  Q = $(S)  into  (†)  transforms it into a slightly less nonlinear

(I+S)·H·(I–S) = (I–S)·Diag(v)·(I+S)   and   SH = –S                     (‡)

If all  hjk/(hjj  – hkk)  for  j ≠ k  are so small that  3rd-order  S·(H – Diag(H))·S  

will be negligible,  then equations  (‡)  have simple approximate solutions

v ≈ Diag(H)    and    sjk ≈ hjk/(hjj  – hkk)   for   j ≠ k . 

Diagonal elements  sjj   can be arbitrary imaginaries but small lest  3rd-order 

terms be not negligible.  Forcing  sjj  := 0  seems plausible.  But if done when 

off-diagonal elements are too big to yield acceptable simple approximations to  
v  and  S ,  can  (‡)  still be solved for  v  and small  S  with  diag(S) = o ?

1
2
---



File: SkCay1ey                                                                                                                      Presentation version dated  February 16, 2015 7:08 am

Prof. W. Kahan                                                                                                                                                                                            Page 8/15

Do a sorted eigenvalue column  v  and a skew  S  both satisfying

(I+S)·H·(I–S) = (I–S)·Diag(v)·(I+S)   and   SH = –S                     (‡)
always exist with  diag(S) = o  and  S  not too big?   If so,  then  Q := $(S) .

Why might we wish to compute  v  and  S ,  and then  Q ?

Iterative Refinement.

The usual way to enhance the accuracy of solutions  v  and  Q  of

H·Q = Q·Diag(v)    and    QH·Q = I                              (†)
when  H  is almost diagonal is  Jacobi Iteration.  It converges quadratically if 
programmed in a straightforward way,  cubically if programmed in a tricky 
way made doubly tricky if available parallelism is to be exploited too.
See its treatment in  Golub & Van Loan’s  book,  and recent papers by  Drmac & Veselic.

If the simple solution of  (‡)  is adequate,  it converges cubically and is easy to 
parallelize.  Sometimes the simple solution is inadequate,  and then we seek a 
better solution of  (‡)  by some slightly more complicated method.  S  should 

not be too big lest  Cayley  transform  Q := (I+S)–1·(I–S)  be too inaccurate.

Thus is the question at the top of this page motivated.
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Do a sorted eigenvalue column  v  and a skew  S  both satisfying

(I+S)·H·(I–S) = (I–S)·Diag(v)·(I+S)   and   SH = –S                     (‡)
always exist with  diag(S) = o  and  S  not too big? 

YES  in the  Complex Case,  when  S  can be complex skew-Hermitian.   And
then at least one such  S  has  diag(S) = o  and all  |sjk| ≤ 1 .

This  Existence Theorem  is proved.  How best to find that  S  is not yet known.

In the  Real Case,  when a real  H = HT  entails a real skew-symmetric  S = –ST
 ,

every  diag(S) = o ;  and that some such  S  has all  |sjk| ≤ 1  too

has been proved recently by  Evan O’Dorney [2014].

What follows will be first some examples,
     and then an outline of the  Existence Theorem’s  proof.

In what follows,  one of the unitary or real orthogonal eigenvector matrices of  
H  is  G ,  and all other eigenvector matrices  Q := G·Ω  of  H  are generated by 
letting diagonal matrix  Ω  runs through all …

• …  diagonal unitary matrices  Ω = eı Diag(x)  with real columns  x ,   or
• …  real diagonals  Ω = Diag([ ±1, ±1, ±1, …, ±1 ])  in the  Real Case.
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A  3-by-3  Example

Real orthogonal   G := $( ) = /13 .     Q := G·Ω ;    S := $(Q) .

diag(S) = o  for six diagonal matrices  Ω .   Four of them are real,  namely
Ω := I ,   Diag([ –1, –1, 1 ]) ,   Diag([ 1, –1, –1 ]) ,   and   Diag([ –1, 1, –1 ]) .

Typical of the last three is   $(G·Diag([ –1, 1, –1 ])) =    .    ||…|| = 3/2 .

The two complex unitary diagonals  Ω  are scalars  Ω := (–5 ± 12ı)·I/13 .

For them   $(G·Ω) =  /4   and its complex conjugate resp.

Note that its every element is strictly smaller than  1  in magnitude though still 
||…|| = 3/2 .  Allowing  Q  and  S  to be complex lets  S  have smaller elements.

0 2 2–

2– 0 2

2 2– 0

3– 4 12

12 3– 4

4 12 3–

0 1–
1
2
---

1 0 1

1
2
---– 1– 0

0 1– 3ι– 1 3ι–

1 3ι– 0 1– 3ι–

1– 3ι– 1 3ι– 0
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An Extreme  n-by-n  Example

Real orthogonal  G :=  .

Let  Ω  run through all unitary diagonals with  det(Ω) ≠ –1 .  These include  

2n–1  real orthogonal diagonals of  ±1 ’s  with an even number of  –1 ’s .  Every 

such  Ω  has  |det(Ω)| = 1 .  Every  Q := G·Ω  is unitary;  2n–1  are orthogonal.

For all such  Ω ,  every off-diagonal element of  S := $(Q)  has magnitude  
2/|1 + det(Ω)| .  It is minimized when  det(Ω) = +1 ;  only then is  diag(S) = o ,  
and then every off-diagonal element of  S  has magnitude  1 .  This happens in 
all the  Real Cases.

For a detailed explanation see   …/~wkahan/SkCayley.pdf  .

0 1      

 0 1     

  … …    

   … …   

    0 1  

     0 1

1–( )n 1–
     0
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The Existence Theorem
Given a unitary matrix  G  

(of eigenvectors of an  Hermitian matrix  H )
let  Ω  run through unitary diagonal matrices,  so  Q := G·Ω  is unitary too, 

(also a matrix of eigenvectors of that  Hermitian matrix  H )
and let  S := $(Q)  be the  skew-Hermitian Cayley  transform of  Q = $(S) .

Then  diag(S) = o  for at least one such  S ,  and its every element has  |sjk| ≤ 1 .

Existence Proof:
Among all such  Q = G·Ω  the one(s)  “nearest”  the identity  I ,  in a peculiar 
sense defined hereunder,  must turn out to have the desired kind of  S = $(Q) .

The peculiar gauge of  “nearness”  of a unitary  Q  to  I  is

£(Q) :=  –log(det((I+QH)·(I+Q)/4))  =  log(det( I + $(Q)H·$(Q) )) .

£(Q) > 0  for every unitary  Q  except  £(I) = 0  and  
    £(Q) = +∞  when  det(I+Q) = 0 .

What remains of the proof is a characterization of every unitary  Q = G·Ω  that 
minimizes  £(Q) .  For this we need the first two derivatives of  £ .
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How to Derive Derivatives,  with respect to a real column-vector  x ,  of

£(Q) :=  –log(det((I+QH)·(I+Q)/4))  =  log(det( –log(det((2I+Q–1+Q)/4)) 

when unitary  Q = G·Ω = G·eı Diag(x) .   

We shall abbreviate  Diag(x) =: X ,  and then the  Differential  dX := Diag(dx) .

Tools:

•  Ω = eı X   has   dΩ = deı X = Ω·eı dX   since diagonals  dX  and  X  commute.

•  d(B–1) = –B–1·dB·B–1 .

•  Jacobi’s formula   d log(det(B)) = trace(B–1·dB) .
For a derivation see  …/~wkahan/MathH110/jacobi.pdf  .

•  trace(B·C) = trace(C·B) .

Using these tools we find first that   d £(B) = trace($(B)·B–1·dB)  in general,  

and then that   d £(G·Ω) = ı diag($(G·Ω))Tdx ,   so  

∂£(G·Ω)/∂x =  ı diag($(G·Ω))T  =  ı diag(S)T .

This must vanish at the minimum  (and any other extremum)  of  £(G·Ω) ,  so
at least one  Ω  makes  S := $(G·Ω)  have  diag(S) = o ,  as claimed.
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The second derivative of  £(G·eı Diag(x))  is representable by a symmetric  
Hessian  matrix  M  of second partial derivatives that figures in 

 (∂2£(G·Ω)/∂x2)·∆x·dx  =  dxT·M·∆x .

For any fixed  ∆x  a lengthy computation of

 (∂2£(G·Ω)/∂x2)·∆x·dx = d(∂£(G·Ω)/∂x)·∆x =  d(ı diag($(G·Ω))T)·∆x  = … 

yields  Hessian   M = (I + |S|2)/2  in which  S = $(G·Ω)  and  |S|2  is obtained 

from  S  elementwise by substituting  |sjk|2  for every element  sjk .

At the minimum of  £(G·eı Diag(x))  its  Hessian  M = (I + |S|2)/2  must be 

positive (semi)definite,  and this implies that every  |sjk|2 ≤ 1  since  

diag(S) = o .  Thus is the  Existence Theorem’s  second claim confirmed.  And 
the extreme  n-by-n  example shows that the upper bound  1  is achievable.

END of  Existence  proof.

 •  •  •  

No such proof can work in the  Real Case  when  H  is real symmetric,  its 
eigenvector matrix  G  is real,  and  Ω  is restricted to real orthogonal diagonals.
These constitute a discrete set,  not a continuum,  so derivatives don’t matter.
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Conclusion:
Perturbing a complex  Hermitian  matrix  H  changes its unitary matrix  Q  of 
eigenvectors to a perturbed unitary  Q·(I+S)–1·(I–S)  in which the skew-
Hermitian  S = –SH  can always be chosen to be small  ( no element bigger 
than  1  in magnitude )  and to have only zeros on its diagonal.  When  H  is 
real symmetric and  Q  is real orthogonal and  S  is restricted to be real skew-
symmetric,  Evan O’Dorney [2014]  has proved that  S  can always be chosen 
to have no element bigger in magnitude than  1 .  But how to construct such a 
small skew  S  efficiently and infallibly is not known yet.
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