Is there a Small Skew Cayley Transform with Zero Diagonal ?

Abstract

The eigenvectors of an Hermitian matrix H are the columns of some complex unitary matrix Q . For any diagonal unitary matrix Ω the columns of $\mathrm{Q} \cdot \Omega$ are eigenvectors too. Among all such $\mathrm{Q} \cdot \Omega$ at least one has a skew-Hermitian Cayley transform $\mathrm{S}:=(\mathrm{I}+\mathrm{Q} \cdot \Omega)^{-1} \cdot(\mathrm{I}-\mathrm{Q} \cdot \Omega)$ with just zeros on its diagonal. Why? The proof is unobvious, as is the further observation that Ω may also be so chosen that no element of this S need exceed 1 in magnitude. Thus, plausible constraints, easy to satisfy by perturbations of complex eigenvectors when an Hermitian matrix H is perturbed infinitesimally, can be satisfied for discrete perturbations too. And if H is real symmetric, Q real orthogonal and Ω restricted to diagonals of ± 1 's, then, as Evan O'Dorney [2014] has proved recently, at least one real skewsymmetric S must have no element bigger than 1 in magnitude.

Full text posted at http://www.cs.berkeley.edu/~wkahan/SkCayley.pdf

Hermitian Eigenproblem

Hermitian Matrix $\mathrm{H}=\mathrm{H}^{\mathrm{H}}=\overline{\mathrm{H}}^{\mathrm{T}} \quad$ - complex conjugate transpose.
Real Eigenvalues $v_{1} \leq v_{2} \leq v_{3} \leq \ldots \leq v_{\mathrm{n}}$ sorted and put into a column vector

$$
\mathrm{v}:=\left[v_{1}, v_{2}, v_{3}, \ldots, v_{\mathrm{n}}\right]^{\mathrm{T}}
$$

Corresponding eigenvector columns $\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \ldots, \mathrm{q}_{\mathrm{n}}$ need not be determined uniquely but can always be chosen to constitute columns of a Unitary matrix Q satisfying

$$
\mathrm{H} \cdot \mathrm{Q}=\mathrm{Q} \cdot \operatorname{Diag}(\mathrm{v}) \quad \text { and } \quad \mathrm{Q}^{\mathrm{H}}=\mathrm{Q}^{-1} .
$$

$\mathrm{Q} \cdot \Omega$ is also an eigenvector matrix for every unitary diagonal matrix $\Omega=\bar{\Omega}^{-1}$.

Familiar special case: Real symmetric $H=H^{T}$, real orthogonal $Q=Q^{-1 T}$.
$\mathrm{Q} \cdot \Omega$ is also an eigenvector matrix for every diagonal matrix $\Omega=\operatorname{Diag}(\pm 1$'s).

Perturbed Hermitian Eigenproblem

Given Hermitian Matrix $\quad \mathrm{H}=\mathrm{H}_{\mathrm{o}}+\Delta \mathrm{H}$ for small $\|\Delta \mathrm{H}\|$.
Suppose H_{o} has known eigenvalue column v_{0} and eigenvector matrix Q_{0}.
Then eigenvalue column v of H must be close to $\mathrm{v}_{\mathrm{o}}:\left\|\mathrm{v}-\mathrm{v}_{\mathrm{o}}\right\|_{\infty} \leq\|\Delta \mathrm{H}\|$.
But no eigenvector matrix Q of H need be near Q_{0} unless $\|\Delta \mathrm{H}\|$ is rather smaller than gaps between adjacent eigenvalues v_{j} of H, or of H_{o}.

Cautionary Examples: For every tiny nonzero θ, no matter how tiny,
$H=\left[\begin{array}{cc}1+\theta & 0 \\ 0 & 1-\theta\end{array}\right]$ has eigenvectors rotated through $\pi / 2$ from $H_{o}=\left[\begin{array}{cc}1-\theta & 0 \\ 0 & 1+\theta\end{array}\right]$.
$H=\left[\begin{array}{ll}1 & \theta \\ \theta & 1\end{array}\right]$ has eigenvectors rotated through $\pi / 4$ from $H_{o}=\left[\begin{array}{cc}1-\theta & 0 \\ 0 & 1+\theta\end{array}\right]$.

See Parlett's book and papers by C. Davis \& W. Kahan, and by Paige \& Wei, on rotations of eigenspaces.
Still, how are tiny perturbations of eigenvector matrices to be represented?

Infinitesimally Perturbed Unitary Matrices

Say $\mathrm{Q}=\mathrm{Q}^{-1 \mathrm{H}}$ is perturbed to $\mathrm{Q}+\mathrm{dQ}=(\mathrm{Q}+\mathrm{dQ})^{-1 \mathrm{H}}$; then

$$
\mathrm{O}=\mathrm{dI}=\mathrm{d}\left(\mathrm{Q}^{\mathrm{H}} \cdot \mathrm{Q}\right)=\mathrm{d} \mathrm{Q}^{\mathrm{H}} \cdot \mathrm{Q}+\mathrm{Q}^{\mathrm{H}} \cdot \mathrm{dQ} \text {, so }
$$

$\mathrm{dQ}=-2 \mathrm{Q} \cdot \mathrm{dS}$ for some Skew-Hermitian $\mathrm{dS}=-\mathrm{dS}{ }^{\mathrm{H}}$, and

$$
\mathrm{Q}+\mathrm{dQ}=\mathrm{Q} \cdot(\mathrm{I}-2 \mathrm{dS}) .
$$

This is what brings skew-Hermitian matrices to our attention.

Discretely Perturbed Unitary Matrices

Say $\mathrm{Q}=\mathrm{Q}^{-1 \mathrm{H}}$ is perturbed to a nearby $\mathrm{Q}+\Delta \mathrm{Q}=(\mathrm{Q}+\Delta \mathrm{Q})^{-1 \mathrm{H}}$; then either $\mathrm{Q}+\Delta \mathrm{Q}=\mathrm{Q} \cdot e^{-2 \Delta \mathrm{Z}}$ for some small skew-Hermitian $\Delta \mathrm{Z}$, or $\quad \mathrm{Q}+\Delta \mathrm{Q}=\mathrm{Q} \cdot(\mathrm{I}+\Delta \mathrm{S})^{-1} \cdot(\mathrm{I}-\Delta \mathrm{S})$ for a small skew-Hermitian $\Delta \mathrm{S}$.
\qquad
This is what brings the Cayley Transform to our attention.

What is a Cayley Transform \$(z) ?

$\$(\mathrm{z})$ is an analytic function of a complex variable z on the Riemann sphere,
Closed by one point at ∞.

1) It is Involutary: $\$(\$(\mathrm{z}))=\mathrm{z}$... s so $\$$ must be Bilinear Rational.
2) It swaps Invert \leftrightarrow Negate: $\$(-z)=1 / \(z) and so $\quad \$(1 / z)=-\(z).

Inference: Only two choices for $\$(z), \frac{1-z}{1+z}$ or $\frac{z+1}{z-1}$. Our choice is

$$
\$(\mathrm{z}):=\frac{1-\mathrm{z}}{1+\mathrm{z}}, \quad \text { chosen so that } \$(0)=1
$$

\$ maps ...
Real Axis \leftrightarrow Real Axis , Imaginary Axis \leftrightarrow Unit Circle , Right Half-Plane \leftrightarrow Unit Disk ,

Real Orthogonal Matrix $Q=Q^{-1 T} \leftrightarrow$ Real Skew-Symmetric $S=-S^{T}$, Complex Unitary Matrix $\mathrm{Q}=\mathrm{Q}^{-1 \mathrm{H}} \leftrightarrow$ Complex Skew-Hermitian $\mathrm{S}=-\mathrm{S}^{\mathrm{H}}$.

Evading the Cayley Transform's Pole

$$
\$(\mathrm{~B}):=(\mathrm{I}+\mathrm{B})^{-1} \cdot(\mathrm{I}-\mathrm{B})
$$

Every unitary Q has eigenvalues all with magnitude 1 ; but no Cayley transform $\mathrm{Q}=\$(\mathrm{~S})$ has -1 as an eigenvalue.
Will this exclude any eigenvectors? No :

Lemma: If Q is unitary and if $\mathrm{I}+\mathrm{Q}$ is singular, then reversing signs of aptly chosen columns of Q will make $\mathrm{I}+\mathrm{Q}$ nonsingular and provide a finite skew Cayley transform $\mathrm{S}=\$(\mathrm{Q})$.

Proof: Any of many simple computations. The earliest I know appeared in 1960 ; see Exs. 7-11, pp. 92-3 in §4 of Ch. 6 of Richard Bellman's book Introduction to Matrix Analysis (2d. ed. 1970, McGraw-Hill). Or see pp. 2-3 of ...~wkahan/SkCayley.pdf.

$$
\text { Henceforth take } \operatorname{det}(\mathrm{I}+\mathrm{Q}) \neq 0 \text { for granted. }
$$

Back to Perturbed Hermitian Eigenproblem

Given Hermitian Matrix $H=H_{o}+\Delta H$ for small $\|\Delta H\|$.
Suppose H_{0} has known eigenvalue column v_{o} and eigenvector matrix Q_{0}.
W.L.O.G, exposition is simplified by taking the eigenvectors of H_{o} as a new orthonormal coordinate system, so that $\mathrm{H}_{\mathrm{o}}=\operatorname{Diag}\left(\mathrm{v}_{\mathrm{o}}\right)$. Now we wish to solve

$$
\mathrm{H} \cdot \mathrm{Q}=\mathrm{Q} \cdot \operatorname{Diag}(\mathrm{v}) \quad \text { and } \quad \mathrm{Q}^{\mathrm{H}} \cdot \mathrm{Q}=\mathrm{I}
$$

for a sorted eigenvalue column v near v_{o}, and a unitary Q not far from I .
Substituting $\mathrm{Q}=\$(\mathrm{~S})$ into (\dagger) transforms it into a slightly less nonlinear

$$
\begin{equation*}
(\mathrm{I}+\mathrm{S}) \cdot \mathrm{H} \cdot(\mathrm{I}-\mathrm{S})=(\mathrm{I}-\mathrm{S}) \cdot \operatorname{Diag}(\mathrm{v}) \cdot(\mathrm{I}+\mathrm{S}) \text { and } \mathrm{S}^{\mathrm{H}}=-\mathrm{S} \tag{京}
\end{equation*}
$$

If all $h_{j k} /\left(h_{j j}-h_{k k}\right)$ for $j \neq k$ are so small that 3 rd-order $S \cdot(H-\operatorname{Diag}(H)) \cdot S$ will be negligible, then equations (\ddagger) have simple approximate solutions

$$
\mathrm{v} \approx \operatorname{Diag}(H) \quad \text { and } \quad \mathrm{s}_{\mathrm{jk}} \approx \frac{1}{2} \mathrm{~h}_{\mathrm{jk}} /\left(\mathrm{h}_{\mathrm{jj}}-\mathrm{h}_{\mathrm{kk}}\right) \text { for } \mathrm{j} \neq \mathrm{k} .
$$

Diagonal elements s_{jj} can be arbitrary imaginaries but small lest 3rd-order terms be not negligible. Forcing $\mathrm{s}_{\mathrm{jj}}:=0$ seems plausible. But if done when off-diagonal elements are too big to yield acceptable simple approximations to v and S , can (\ddagger) still be solved for v and small S with $\operatorname{diag}(\mathrm{S})=\mathrm{o}$?

Do a sorted eigenvalue column v and a skew S both satisfying

$$
(\mathrm{I}+\mathrm{S}) \cdot \mathrm{H} \cdot(\mathrm{I}-\mathrm{S})=(\mathrm{I}-\mathrm{S}) \cdot \operatorname{Diag}(\mathrm{v}) \cdot(\mathrm{I}+\mathrm{S}) \text { and } \mathrm{S}^{\mathrm{H}}=-\mathrm{S}
$$

always exist with $\operatorname{diag}(S)=0$ and S not too big? If so, then $Q:=\$(S)$.

Why might we wish to compute v and S, and then Q ?

Iterative Refinement.

The usual way to enhance the accuracy of solutions v and Q of

$$
\mathrm{H} \cdot \mathrm{Q}=\mathrm{Q} \cdot \operatorname{Diag}(\mathrm{v}) \quad \text { and } \quad \mathrm{Q}^{\mathrm{H}} \cdot \mathrm{Q}=\mathrm{I}
$$

when H is almost diagonal is Jacobi Iteration. It converges quadratically if programmed in a straightforward way, cubically if programmed in a tricky way made doubly tricky if available parallelism is to be exploited too.
See its treatment in Golub \& Van Loan's book, and recent papers by Drmac \& Veselic.
If the simple solution of (\ddagger) is adequate, it converges cubically and is easy to parallelize. Sometimes the simple solution is inadequate, and then we seek a better solution of (\ddagger) by some slightly more complicated method. S should not be too big lest Cayley transform $\mathrm{Q}:=(\mathrm{I}+\mathrm{S})^{-1} \cdot(\mathrm{I}-\mathrm{S})$ be too inaccurate.

Thus is the question at the top of this page motivated.

Do a sorted eigenvalue column v and a skew S both satisfying

$$
(\mathrm{I}+\mathrm{S}) \cdot \mathrm{H} \cdot(\mathrm{I}-\mathrm{S})=(\mathrm{I}-\mathrm{S}) \cdot \operatorname{Diag}(\mathrm{v}) \cdot(\mathrm{I}+\mathrm{S}) \text { and } \mathrm{S}^{\mathrm{H}}=-\mathrm{S}
$$

always exist with $\operatorname{diag}(\mathrm{S})=0$ and S not too big?
YES in the Complex Case, when S can be complex skew-Hermitian. And then at least one such S has $\operatorname{diag}(\mathrm{S})=\mathrm{o}$ and all $\left|\mathrm{s}_{\mathrm{jk}}\right| \leq 1$.
This Existence Theorem is proved. How best to find that S is not yet known.
In the Real Case, when a real $H=H^{T}$ entails a real skew-symmetric $S=-S^{T}$, every $\operatorname{diag}(S)=0$; and that some such S has all $\left|s_{j k}\right| \leq 1$ too
has been proved recently by Evan O'Dorney [2014].
What follows will be first some examples, and then an outline of the Existence Theorem's proof.

In what follows, one of the unitary or real orthogonal eigenvector matrices of H is G , and all other eigenvector matrices $\mathrm{Q}:=\mathrm{G} \cdot \Omega$ of H are generated by letting diagonal matrix Ω runs through all \ldots

- ... diagonal unitary matrices $\Omega=e^{l \operatorname{Diag}(\mathrm{x})}$ with real columns x , or
- ... real diagonals $\Omega=\operatorname{Diag}([\pm 1, \pm 1, \pm 1, \ldots, \pm 1])$ in the Real Case.

A 3-by-3 Example

Real orthogonal $\mathrm{G}:=\$\left(\left[\begin{array}{ccc}0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0\end{array}\right]\right)=\left[\begin{array}{ccc}-3 & 4 & 12 \\ 12 & -3 & 4 \\ 4 & 12 & -3\end{array}\right] / 13 . \quad \mathrm{Q}:=\mathrm{G} \cdot \Omega ; \quad \mathrm{S}:=\(Q).
$\operatorname{diag}(S)=o$ for six diagonal matrices Ω. Four of them are real, namely $\Omega:=\mathrm{I}, \operatorname{Diag}([-1,-1,1]), \operatorname{Diag}([1,-1,-1])$, and $\operatorname{Diag}([-1,1,-1])$.

Typical of the last three is $\$(\operatorname{G} \cdot \operatorname{Diag}([-1,1,-1]))=\left[\begin{array}{ccc}0 & -1 & \frac{1}{2} \\ 1 & 0 & 1 \\ -\frac{1}{2} & -1 & 0\end{array}\right] .\|\ldots\|=3 / 2$.
The two complex unitary diagonals Ω are scalars $\Omega:=(-5 \pm 12 \imath) \cdot \mathrm{I} / 13$.
For them $\$(\mathrm{G} \cdot \Omega)=\left[\begin{array}{ccc}0 & -1-3 \imath & 1-3 \imath \\ 1-3 \imath & 0 & -1-3 \imath \\ -1-3 \imath & 1-3 \imath & 0\end{array}\right] / 4$ and its complex conjugate resp.
Note that its every element is strictly smaller than 1 in magnitude though still $\|\ldots\|=3 / 2$. Allowing Q and S to be complex lets S have smaller elements.

An Extreme n-by-n Example

Real orthogonal $\mathrm{G}:=\left[\begin{array}{cccccccc}0 & 1 & & & & & \\ & 0 & 1 & & & & \\ & & \cdots & \ldots & & & \\ & & & \cdots & \cdots & & \\ & & & & 0 & 1 & \\ (-1)^{\mathrm{n}-1} & & & & & 0 & 1 \\ & & & & & & 0\end{array}\right]$.

Let Ω run through all unitary diagonals with $\operatorname{det}(\Omega) \neq-1$. These include $2^{\mathrm{n}-1}$ real orthogonal diagonals of ± 1 's with an even number of -1 's. Every such Ω has $|\operatorname{det}(\Omega)|=1$. Every $\mathrm{Q}:=\mathrm{G} \cdot \Omega$ is unitary; $2^{\mathrm{n}-1}$ are orthogonal.

For all such Ω, every off-diagonal element of $\mathrm{S}:=\$(\mathrm{Q})$ has magnitude $2 /|1+\operatorname{det}(\Omega)|$. It is minimized when $\operatorname{det}(\Omega)=+1 ;$ only then is $\operatorname{diag}(S)=0$, and then every off-diagonal element of S has magnitude 1 . This happens in all the Real Cases.

For a detailed explanation see .../~wkahan/SkCayley.pdf.

The Existence Theorem

Given a unitary matrix G
(of eigenvectors of an Hermitian matrix H)
let Ω run through unitary diagonal matrices, so $\mathrm{Q}:=\mathrm{G} \cdot \Omega$ is unitary too,
(also a matrix of eigenvectors of that Hermitian matrix H) and let $S:=\$(Q)$ be the skew-Hermitian Cayley transform of $Q=\$(S)$.

Then $\operatorname{diag}(S)=0$ for at least one such S, and its every element has $\left|s_{\mathrm{jk}}\right| \leq 1$.

Existence Proof:

Among all such $\mathrm{Q}=\mathrm{G} \cdot \Omega$ the one(s) "nearest" the identity I , in a peculiar sense defined hereunder, must turn out to have the desired kind of $S=\$(Q)$.

The peculiar gauge of "nearness" of a unitary Q to I is

$$
\begin{aligned}
& \mathfrak{f}(\mathrm{Q}):=-\log \left(\operatorname{det}\left(\left(\mathrm{I}+\mathrm{Q}^{\mathrm{H}}\right) \cdot(\mathrm{I}+\mathrm{Q}) / 4\right)\right)=\log \left(\operatorname{det}\left(\mathrm{I}+\$(\mathrm{Q})^{\mathrm{H}} \cdot \$(\mathrm{Q})\right)\right) . \\
& \mathfrak{f}(\mathrm{Q})>0 \text { for every unitary } \mathrm{Q} \text { except } \mathfrak{f}(\mathrm{I})=0 \text { and } \\
& f(\mathrm{Q})=+\infty \text { when } \operatorname{det}(\mathrm{I}+\mathrm{Q})=0 .
\end{aligned}
$$

What remains of the proof is a characterization of every unitary $\mathrm{Q}=\mathrm{G} \cdot \Omega$ that minimizes $£(\mathrm{Q})$. For this we need the first two derivatives of $£$.

How to Derive Derivatives, with respect to a real column-vector x, of

$$
\mathfrak{f}(\mathrm{Q}):=-\log \left(\operatorname{det}\left(\left(\mathrm{I}+\mathrm{Q}^{\mathrm{H}}\right) \cdot(\mathrm{I}+\mathrm{Q}) / 4\right)\right)=\log \left(\operatorname { d e t } \left(-\log \left(\operatorname{det}\left(\left(2 \mathrm{I}+\mathrm{Q}^{-1}+\mathrm{Q}\right) / 4\right)\right)\right.\right.
$$

when unitary $\mathrm{Q}=\mathrm{G} \cdot \Omega=\mathrm{G} \cdot e^{\iota \operatorname{Diag}(\mathrm{x})}$.
We shall abbreviate $\operatorname{Diag}(\mathrm{x})=: \mathrm{X}$, and then the Differential $\mathrm{dX}:=\operatorname{Diag}(\mathrm{dx})$.

Tools:

- $\Omega=e^{l \mathrm{X}}$ has $\mathrm{d} \Omega=\mathrm{d} e^{l \mathrm{X}}=\Omega \cdot e^{l \mathrm{dX}}$ since diagonals dX and X commute.
- $\mathrm{d}\left(\mathrm{B}^{-1}\right)=-\mathrm{B}^{-1} \cdot \mathrm{~dB} \cdot \mathrm{~B}^{-1}$.
- Jacobi's formula $d \log (\operatorname{det}(B))=\operatorname{trace}\left(B^{-1} \cdot d B\right)$.

For a derivation see .../~wkahan/MathH110/jacobi.pdf.

- $\operatorname{trace}(B \cdot C)=\operatorname{trace}(C \cdot B)$.

Using these tools we find first that $d £(B)=\operatorname{trace}\left(\$(B) \cdot B^{-1} \cdot d B\right)$ in general, and then that $\mathrm{d} £(\mathrm{G} \cdot \Omega)=\boldsymbol{\imath} \operatorname{diag}(\$(\mathrm{G} \cdot \Omega))^{\mathrm{T}} \mathrm{dx}$, so

$$
\partial \mathfrak{f}(\mathrm{G} \cdot \Omega) / \partial \mathrm{x}=\boldsymbol{\imath} \operatorname{diag}(\$(\mathrm{G} \cdot \Omega))^{\mathrm{T}}=\boldsymbol{\imath} \operatorname{diag}(\mathrm{S})^{\mathrm{T}} .
$$

This must vanish at the minimum (and any other extremum) of $£(G \cdot \Omega)$, so at least one Ω makes $\mathrm{S}:=\$(\mathrm{G} \cdot \Omega)$ have $\operatorname{diag}(\mathrm{S})=\mathrm{o}$, as claimed.

The second derivative of $£\left(\mathrm{G} \cdot e^{\boldsymbol{\operatorname { D i a g } (\mathrm { x })})}\right.$ is representable by a symmetric Hessian matrix M of second partial derivatives that figures in

$$
\left(\partial^{2} f(G \cdot \Omega) / \partial x^{2}\right) \cdot \Delta x \cdot d x=d x^{T} \cdot M \cdot \Delta x .
$$

For any fixed $\Delta \mathrm{x}$ a lengthy computation of

$$
\left(\partial^{2} £(\mathrm{G} \cdot \Omega) / \partial \mathrm{x}^{2}\right) \cdot \Delta \mathrm{x} \cdot \mathrm{dx}=\mathrm{d}(\partial £(\mathrm{G} \cdot \Omega) / \partial \mathrm{x}) \cdot \Delta \mathrm{x}=\mathrm{d}\left(\imath \operatorname{diag}(\$(\mathrm{G} \cdot \Omega))^{\mathrm{T}}\right) \cdot \Delta \mathrm{x}=\ldots
$$ yields Hessian $M=\left(I+|S|^{2}\right) / 2$ in which $S=\$(G \cdot \Omega)$ and $|S|^{2}$ is obtained from S elementwise by substituting $\left|s_{j k}\right|^{2}$ for every element $s_{j k}$.

At the minimum of $\mathfrak{f}\left(\mathrm{G} \cdot e^{\text {Diag }(\mathrm{x})}\right)$ its Hessian $\mathrm{M}=\left(\mathrm{I}+|\mathrm{S}|^{2}\right) / 2$ must be positive (semi)definite, and this implies that every $\left|\mathrm{s}_{\mathrm{jk}}\right|^{2} \leq 1$ since $\operatorname{diag}(S)=0$. Thus is the Existence Theorem's second claim confirmed. And the extreme n-by-n example shows that the upper bound 1 is achievable. END of Existence proof.

No such proof can work in the Real Case when H is real symmetric, its eigenvector matrix G is real, and Ω is restricted to real orthogonal diagonals. These constitute a discrete set, not a continuum, so derivatives don't matter.

Conclusion:

Perturbing a complex Hermitian matrix H changes its unitary matrix Q of eigenvectors to a perturbed unitary $\mathrm{Q} \cdot(\mathrm{I}+\mathrm{S})^{-1}$. $(\mathrm{I}-\mathrm{S})$ in which the skewHermitian $\mathrm{S}=-\mathrm{S}^{\mathrm{H}}$ can always be chosen to be small (no element bigger than 1 in magnitude) and to have only zeros on its diagonal. When H is real symmetric and Q is real orthogonal and S is restricted to be real skewsymmetric, Evan O'Dorney [2014] has proved that S can always be chosen to have no element bigger in magnitude than 1 . But how to construct such a small skew S efficiently and infallibly is not known yet.

Citations

W. Kahan [2006] "Is there a small skew Cayley transform with zero diagonal?" pp. 335-341 of Linear Algebra \& Appl. 417 (2-3).
Updated posting at www.cs.berkeley.edu/~wkahan/SkCayley.pdf
Evan O.Dorney [2014] "Minimizing the Cayley trasform of an orthogonal matrix by multiplying by signature matrices" pp. 97-103 of Linear Algebra \& Appl. 448. Evan found this existence proof in 2010 while still an undergraduate at U.C. Berkeley.

