Is there a Small Skew Cayley Transform with Zero Diagonal ?

Abstract

The eigenvectors of an Hermitian matrix H are the columns of some complex unitary matrix Q. For any diagonal unitary matrix Ω the columns of $Q \cdot \Omega$ are eigenvectors too. Among all such $Q \cdot \Omega$ at least one has a skew-Hermitian Cayley transform $S := (I+Q\cdot\Omega)^{-1} \cdot (I-Q\cdot\Omega)$ with just zeros on its diagonal. Why? The proof is unobvious, as is the further observation that Ω may also be so chosen that no element of this S need exceed 1 in magnitude. Thus, plausible constraints, easy to satisfy by perturbations of complex eigenvectors when an Hermitian matrix H is perturbed infinitesimally, can be satisfied for discrete perturbations too. And if H is real symmetric, Q real orthogonal and Ω restricted to diagonals of ±1's, then, as Evan O'Dorney [2014] has proved recently, at least one real skewsymmetric S must have no element bigger than 1 in magnitude.

Full text posted at http://www.cs.berkeley.edu/~wkahan/SkCayley.pdf

Hermitian Eigenproblem

Hermitian Matrix $H = H^H = \overline{H}^T$ — complex conjugate transpose.

Real Eigenvalues $v_1 \le v_2 \le v_3 \le ... \le v_n$ sorted and put into a column vector $v := [v_1, v_2, v_3, ..., v_n]^T$

Corresponding eigenvector columns $q_1, q_2, q_3, ..., q_n$ need not be determined uniquely but can always be chosen to constitute columns of a *Unitary* matrix Q satisfying

$$H \cdot Q = Q \cdot Diag(v)$$
 and $Q^H = Q^{-1}$.

 $\mathbf{Q}\cdot\mathbf{\Omega}$ is also an eigenvector matrix for every unitary diagonal matrix $\mathbf{\Omega} = \overline{\mathbf{\Omega}}^{-1}$.

Familiar special case: Real symmetric $H = H^T$, real orthogonal $Q = Q^{-1 T}$. Q: Ω is also an eigenvector matrix for every diagonal matrix $\Omega = Diag(\pm 1 \text{ 's})$.

Perturbed Hermitian Eigenproblem

Given Hermitian Matrix $H = H_0 + \Delta H$ for small $||\Delta H||$.

Suppose H_o has known eigenvalue column v_o and eigenvector matrix Q_o .

Then eigenvalue column v of H must be close to $v_o: ||v - v_o||_{\infty} \le ||\Delta H||$.

But no eigenvector matrix Q of H need be near Q_0 unless $||\Delta H||$ is rather smaller than gaps between adjacent eigenvalues v_i of H, or of H_0 .

Cautionary Examples: For every tiny nonzero θ , no matter how tiny,

$$H = \begin{bmatrix} 1 + \theta & 0 \\ 0 & 1 - \theta \end{bmatrix}$$
 has eigenvectors rotated through $\pi/2$ from $H_0 = \begin{bmatrix} 1 - \theta & 0 \\ 0 & 1 + \theta \end{bmatrix}$

$$\mathbf{H} = \begin{bmatrix} 1 & \theta \\ \theta & 1 \end{bmatrix} \text{ has eigenvectors rotated through } \pi/4 \text{ from } \mathbf{H}_{0} = \begin{bmatrix} 1 - \theta & 0 \\ 0 & 1 + \theta \end{bmatrix}.$$

See Parlett's book and papers by C. Davis & W. Kahan, and by Paige & Wei, on rotations of eigenspaces.

Still, how are tiny perturbations of eigenvector matrices to be represented?

Infinitesimally Perturbed Unitary Matrices

Say
$$Q = Q^{-1 \text{ H}}$$
 is perturbed to $Q + dQ = (Q + dQ)^{-1 \text{ H}}$; then
 $O = dI = d(Q^{\text{H}} \cdot Q) = dQ^{\text{H}} \cdot Q + Q^{\text{H}} \cdot dQ$, so
 $dQ = -2Q \cdot dS$ for some *Skew-Hermitian* $dS = -dS^{\text{H}}$, and
 $Q + dQ = Q \cdot (I - 2dS)$.

This is what brings skew-Hermitian matrices to our attention.

Discretely Perturbed Unitary Matrices

Say $Q = Q^{-1 \text{ H}}$ is perturbed to a nearby $Q + \Delta Q = (Q + \Delta Q)^{-1 \text{ H}}$; then either $Q + \Delta Q = Q \cdot e^{-2\Delta Z}$ for some small skew-Hermitian ΔZ ,

or $Q + \Delta Q = Q \cdot (I + \Delta S)^{-1} \cdot (I - \Delta S)$ for a small skew-Hermitian ΔS .

This is what brings the *Cayley Transform* to our attention.

What is a Cayley Transform (z)?

(z) is an analytic function of a complex variable z on the Riemann sphere, Closed by one point at ∞ .

1) It is *Involutary*: \$(\$(z)) = z. ••• so \$ must be *Bilinear Rational*.

2) It swaps *Invert* \leftrightarrow *Negate* : (-z) = 1/(z) and so (1/z) = -(z).

Inference: Only two choices for \$(z), $\frac{1-z}{1+z}$ or $\frac{z+1}{z-1}$. Our choice is

$$\$(z) := \frac{1-z}{1+z}$$
, chosen so that $\$(0) = 1$.

\$ maps ...

Real Axis \leftrightarrow Real Axis , Imaginary Axis \leftrightarrow Unit Circle , Right Half-Plane \leftrightarrow Unit Disk ,

Real Orthogonal Matrix $Q = Q^{-1 \text{ T}} \leftrightarrow$ Real Skew-Symmetric $S = -S^T$, Complex Unitary Matrix $Q = Q^{-1 \text{ H}} \leftrightarrow$ Complex Skew-Hermitian $S = -S^H$.

Evading the Cayley Transform's Pole

 $(B) := (I + B)^{-1} \cdot (I - B)$

Unitary	$Q = $(S) = Q^{-1} H$	\leftrightarrow	Skew-Hermitian	$S = \$(Q) = -S^H$
provided				
	$\det(I+Q) \neq 0$	\leftrightarrow		S is finite.

Every unitary Q has eigenvalues all with magnitude 1; but no Cayley transform Q = S(S) has -1 as an eigenvalue.

Will this exclude any eigenvectors ? No :

Lemma: If Q is unitary and if I+Q is singular, then reversing signs of aptly chosen columns of Q will make I+Q nonsingular and provide a finite skew Cayley transform S = \$(Q).

Proof: Any of many simple computations. The earliest I know appeared in 1960; see Exs. 7 - 11, pp. 92-3 in §4 of Ch. 6 of Richard Bellman's book *Introduction to Matrix Analysis* (2d. ed. 1970, McGraw-Hill). Or see pp. 2-3 of ...~wkahan/SkCayley.pdf.

Henceforth take $det(I + Q) \neq 0$ for granted.

Back to Perturbed Hermitian Eigenproblem

Given Hermitian Matrix $H = H_0 + \Delta H$ for small $||\Delta H||$.

Suppose H_0 has known eigenvalue column v_0 and eigenvector matrix Q_0 .

W.L.O.G, exposition is simplified by taking the eigenvectors of H_0 as a new orthonormal coordinate system, so that $H_0 = Diag(v_0)$. Now we wish to solve

 $H \cdot Q = Q \cdot Diag(v) \quad \text{and} \quad Q^H \cdot Q = I \qquad (\dagger)$ for a sorted eigenvalue column v near v_o, and a unitary Q not far from I.

Substituting Q = (S) into (†) transforms it into a slightly less nonlinear

$$(I+S)\cdot H\cdot (I-S) = (I-S)\cdot Diag(v)\cdot (I+S)$$
 and $S^{H} = -S$ (‡)

If all $h_{jk}/(h_{jj} - h_{kk})$ for $j \neq k$ are so small that 3rd-order $S \cdot (H - Diag(H)) \cdot S$ will be negligible, then equations (‡) have simple approximate solutions

$$v \approx Diag(H)$$
 and $s_{jk} \approx \frac{1}{2}h_{jk}/(h_{jj} - h_{kk})$ for $j \neq k$.

Diagonal elements s_{jj} can be arbitrary imaginaries but small lest 3rd-order terms be not negligible. Forcing $s_{jj} := 0$ seems plausible. But if done when off-diagonal elements are too big to yield acceptable simple approximations to v and S, can (‡) still be solved for v and small S with diag(S) = o? Do a sorted eigenvalue column v and a skew S both satisfying

$$(I+S)\cdot H\cdot (I-S) = (I-S)\cdot Diag(v)\cdot (I+S)$$
 and $S^H = -S$ (‡)
always exist with diag(S) = o and S not too big? If so, then Q := \$(S).

Why might we wish to compute v and S, and then Q?

Iterative Refinement.

The usual way to enhance the accuracy of solutions v and Q of

 $H \cdot Q = Q \cdot Diag(v)$ and $Q^H \cdot Q = I$ (†) when H is almost diagonal is *Jacobi Iteration*. It converges quadratically if programmed in a straightforward way, cubically if programmed in a tricky way made doubly tricky if available parallelism is to be exploited too. See its treatment in Golub & Van Loan's book, and recent papers by Drmac & Veselic.

If the simple solution of (\ddagger) is adequate, it converges cubically and is easy to parallelize. Sometimes the simple solution is inadequate, and then we seek a better solution of (\ddagger) by some slightly more complicated method. S should not be too big lest Cayley transform $Q := (I+S)^{-1} \cdot (I-S)$ be too inaccurate.

Thus is the question at the top of this page motivated.

Do a sorted eigenvalue column v and a skew S both satisfying $(I+S)\cdot H\cdot (I-S) = (I-S)\cdot Diag(v)\cdot (I+S)$ and $S^H = -S$ (‡) always exist with diag(S) = o and S not too big?

YES in the Complex Case, when S can be complex skew-Hermitian. And then at least one such S has diag(S) = o and all $|s_{jk}| \le 1$. This *Existence Theorem* is proved. How best to find that S is not yet known.

In the Real Case, when a real $H = H^T$ entails a real skew-symmetric $S = -S^T$, every diag(S) = o; and that some such S has all $|s_{jk}| \le 1$ too has been proved recently by Evan O'Dorney [2014].

What follows will be first some examples, and then an outline of the Existence Theorem's proof.

In what follows, one of the unitary or real orthogonal eigenvector matrices of H is G, and all other eigenvector matrices $Q := G \cdot \Omega$ of H are generated by letting diagonal matrix Ω runs through all ...

- ... diagonal unitary matrices $\Omega = e^{i \operatorname{Diag}(x)}$ with real columns x, or
- ... real diagonals $\Omega = \text{Diag}([\pm 1, \pm 1, \pm 1, ..., \pm 1])$ in the Real Case.

A 3-by-3 Example

Real orthogonal $G := \$ \begin{pmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{pmatrix} = \begin{bmatrix} -3 & 4 & 12 \\ 12 & -3 & 4 \\ 4 & 12 & -3 \end{bmatrix} / 13 . \quad Q := G \cdot \Omega ; \quad S := \$ (Q) .$

diag(S) = 0 for six diagonal matrices Ω . Four of them are real, namely $\Omega := I$, Diag([-1, -1, 1]), Diag([1, -1, -1]), and Diag([-1, 1, -1]).

Typical of the last three is
$$(G \cdot Diag([-1, 1, -1])) = \begin{bmatrix} 0 & -1 & \frac{1}{2} \\ 1 & 0 & 1 \\ -\frac{1}{2} & -1 & 0 \end{bmatrix}$$
. $||...|| = 3/2$.

The two complex unitary diagonals Ω are scalars $\Omega := (-5 \pm 12i) \cdot I/13$.

For them
$$\$(\mathbf{G}\cdot\mathbf{\Omega}) = \begin{bmatrix} 0 & -1-3\iota & 1-3\iota \\ 1-3\iota & 0 & -1-3\iota \\ -1-3\iota & 1-3\iota & 0 \end{bmatrix} / 4$$
 and its complex conjugate resp.

Note that its every element is strictly smaller than 1 in magnitude though still ||...|| = 3/2. Allowing Q and S to be complex lets S have smaller elements.

An Extreme n-by-n Example

Real orthogonal G :=
$$\begin{bmatrix} 0 & 1 & & & & \\ & 0 & 1 & & & \\ & & \dots & \dots & & \\ & & & 0 & 1 & \\ & & & 0 & 1 & \\ & & & 0 & 1 & \\ & & & 0 & 1 & \\ & & & 0 & 1 & \\ & & & 0 & 1 & \\ & & & & 0 & 1 \end{bmatrix}$$

Let Ω run through all unitary diagonals with $det(\Omega) \neq -1$. These include 2^{n-1} real orthogonal diagonals of ± 1 's with an even number of -1's. Every such Ω has $|det(\Omega)| = 1$. Every $Q := G \cdot \Omega$ is unitary; 2^{n-1} are orthogonal.

For all such Ω , every off-diagonal element of S := \$(Q) has magnitude $2/|1 + det(\Omega)|$. It is minimized when $det(\Omega) = +1$; only then is diag(S) = o, and then every off-diagonal element of S has magnitude 1. This happens in all the Real Cases.

For a detailed explanation see .../~wkahan/SkCayley.pdf.

The Existence Theorem

Given a unitary matrix G

(of eigenvectors of an Hermitian matrix H)

```
let \Omega run through unitary diagonal matrices, so Q := G \cdot \Omega is unitary too,
(also a matrix of eigenvectors of that Hermitian matrix H)
and let S := \$(Q) be the skew-Hermitian Cayley transform of Q = \$(S).
```

Then diag(S) = 0 for at least one such S , and its every element has $|s_{jk}| \le 1$.

Existence Proof:

Among all such $Q = G \cdot \Omega$ the one(s) "nearest" the identity I, in a peculiar sense defined hereunder, must turn out to have the desired kind of S = \$(Q).

The peculiar gauge of "nearness" of a unitary Q to I is
$$\begin{split} &\pounds(Q) := -\log(\det((I+Q^H)\cdot(I+Q)/4)) = \log(\det(I+\$(Q)^H\cdot\$(Q))) \ . \\ &\pounds(Q) > 0 \ \text{ for every unitary } Q \ \text{ except } \pounds(I) = 0 \ \text{ and} \\ & \pounds(Q) = +\infty \ \text{ when } \det(I+Q) = 0 \ . \end{split}$$

What remains of the proof is a characterization of every unitary $Q = G \cdot \Omega$ that minimizes $\pounds(Q)$. For this we need the first two derivatives of \pounds .

How to Derive Derivatives, with respect to a real column-vector x, of

$$\pounds(Q) := -\log(\det((I+Q^H)\cdot(I+Q)/4)) = \log(\det(-\log(\det((2I+Q^{-1}+Q)/4))))$$

when unitary $Q = G \cdot \Omega = G \cdot e^{i \operatorname{Diag}(x)}$.

We shall abbreviate Diag(x) =: X, and then the *Differential* dX := Diag(dx).

Tools:

- $\Omega = e^{tX}$ has $d\Omega = de^{tX} = \Omega \cdot e^{t dX}$ since diagonals dX and X commute.
- $d(B^{-1}) = -B^{-1} \cdot dB \cdot B^{-1}$.
- Jacobi's formula $d \log(det(B)) = trace(B^{-1} \cdot dB)$. For a derivation see .../~wkahan/MathH110/jacobi.pdf.
- trace($B \cdot C$) = trace($C \cdot B$).

Using these tools we find first that $d \pounds(B) = \text{trace}(\$(B) \cdot B^{-1} \cdot dB)$ in general, and then that $d \pounds(G \cdot \Omega) = \iota \operatorname{diag}(\$(G \cdot \Omega))^T dx$, so $\partial \pounds(G \cdot \Omega) / \partial x = \iota \operatorname{diag}(\$(G \cdot \Omega))^T = \iota \operatorname{diag}(S)^T$.

This must vanish at the minimum (and any other extremum) of $\pounds(G \cdot \Omega)$, so at least one Ω makes $S := \$(G \cdot \Omega)$ have diag(S) = 0, as claimed.

The second derivative of $\pounds(G \cdot e^{i \operatorname{Diag}(x)})$ is representable by a symmetric *Hessian* matrix M of second partial derivatives that figures in $(\partial^2 \pounds(G \cdot \Omega) / \partial x^2) \cdot \Delta x \cdot dx = dx^T \cdot M \cdot \Delta x$.

For any fixed Δx a lengthy computation of $(\partial^2 \pounds (G \cdot \Omega) / \partial x^2) \cdot \Delta x \cdot dx = d(\partial \pounds (G \cdot \Omega) / \partial x) \cdot \Delta x = d(\iota \operatorname{diag}(\$ (G \cdot \Omega))^T) \cdot \Delta x = \dots$ yields Hessian $M = (I + |S|^2)/2$ in which $S = \$ (G \cdot \Omega)$ and $|S|^2$ is obtained from S elementwise by substituting $|s_{jk}|^2$ for every element s_{jk} .

At the minimum of $\pounds(G \cdot e^{t \operatorname{Diag}(X)})$ its Hessian $M = (I + |S|^2)/2$ must be positive (semi)definite, and this implies that every $|s_{jk}|^2 \le 1$ since diag(S) = 0. Thus is the Existence Theorem's second claim confirmed. And the extreme n-by-n example shows that the upper bound 1 is achievable. END of Existence proof.

• • •

No such proof can work in the Real Case when H is real symmetric, its eigenvector matrix G is real, and Ω is restricted to real orthogonal diagonals. These constitute a discrete set, not a continuum, so derivatives don't matter.

Conclusion:

Perturbing a complex Hermitian matrix H changes its unitary matrix Q of eigenvectors to a perturbed unitary $Q \cdot (I+S)^{-1} \cdot (I-S)$ in which the skew-Hermitian $S = -S^H$ can always be chosen to be small (no element bigger than 1 in magnitude) and to have only zeros on its diagonal. When H is real symmetric and Q is real orthogonal and S is restricted to be real skew-symmetric, Evan O'Dorney [2014] has proved that S can always be chosen to have no element bigger in magnitude than 1. But how to construct such a small skew S efficiently and infallibly is not known yet.

Citations

- W. Kahan [2006] "Is there a small skew Cayley transform with zero diagonal?" pp. 335-341 of *Linear Algebra & Appl.* 417 (2-3).
 Updated posting at www.cs.berkeley.edu/~wkahan/SkCayley.pdf
- Evan O.Dorney [2014] "Minimizing the Cayley trasform of an orthogonal matrix by multiplying by signature matrices" pp. 97-103 of *Linear Algebra & Appl.* 448. Evan found this existence proof in 2010 while still an undergraduate at U.C. Berkeley.