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Is there a Small Skew Cayley Transform with Zero Diagonal ?

80: Abstract

The eigenvectors of an Hermitian matrix H are the columns of some complex unitary matrix
Q . For any diagonal unitary matr® the columns of @ are eigenvectors too. Among all

such QQ at least one has a skew-Hermitian Cayley transform S :=@F&(I-QQ) with

just zeros on its diagonal. Why? The proof is unobvious, as is the further observati@n that

may also be so chosen that no element of this S need exceed 1 in magnitude. Thus, plausible
constraints, easy to satisfy by perturbations of complex eigenvectors when Hermitian matrix

H is perturbed infinitesimally, can be satisfied for discrete perturbations too. And if H is real
symmetric, Q real orthogonal arfd restricted to diagonals afl’s, then that at least one real
skew-symmetric S has every element betwgegnhas been proved by Evan O’Dorney [2014].
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81: Introduction

After Cayley transforms $(B) := (1+B)(I-B) have been described in §2, a transform with
only zeros on its diagonal will be shown to exist because it solves this minimization problem:
Among unitary matrices Q- with a fixed unitary Q and variable unitary diagonal
Q, those matrices Q- “nearest” the identity | in a sense defined in 83 have

skew-Hermitian Cayley transforms S := 9= -5 with zero diagonals
and with no elements bigger than 1 in magnitude.

Now, why might this interest us? It's a long story ... .

Let H be an Hermitian matrix ( so'H H) whose eigenvalues are ordered monotonically
(this is crucial) and put into a real column vectar and whose corresponding eigenvectors
can then be chosen to constitute the columns of some unitary matrix Q satisfying the equations

H-Q = Q-Diag(v) and =Q*t. (1)

( Notational note: We distinguish diagonal matrices Diag(A) and V = Diag(v) from column
vectors diag(A) and v =diag(V), unlike AVLAB whose diag(diag(A)) is our Diag(A) .
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We also distinguish scalar 0 from zero vectors o and zero matrices O . 3@ Qis the
complex conjugate transpose of; @Qnd 1 =v-1; and all identity matrices are called “1”.
The word “skew” serves to abbreviate either “skew-Hermitian” or “real skew-symmjetric”.

If Q and v are not known yet but H is very near an Hermitigrwith known eigenvalue-
column v, (also ordered monotonically) and eigenvector matrixtlign, as is well known,

v must lie very near v This helps us find v during perturbation analyses or curve tracing or
iterative refinement. However, two complications can push Q far frgm F@st, (1) above
does not determine Q uniquely: Replacing Q b @or any unitary diagonaf) leaves the
equations still satisfied. To attenuate this first complication we shall seeR &'r@arest”

Q, - Still, no QQ need be very near ,Qunless gaps between adjacent eigenvalues in v and
also in v, are all rather bigger than ||HzH this second complication is unavoidable for

reasons exposed by examples so simple as{llgP?fJ @n:dﬁ Iﬂ! with tiny 8 and ¢.

To simplify our exposition we assume, 91 with no loss of generality; doing so amounts to
choosing the columns of ,Qas a new orthonormal basis turning idto Diag(y) . Now we
can seek solutions Q and v of () above with v ordered and Q “nearest” | in some sense.

§2: The Cayley Transform $(B) := (I+By%(I-B) = (I-B)-(I+B)™*
On its domain it is arnvolution $($(B)) = B . However $(-$(B)) =B if it exists. $ maps
certain unitary matrices Q to skew matrices S (real if Q is real orthogonal) and back thus:
If 1+Q is nonsingular the Cayley transform of unitary Q1disskew S:= $(Q) = 15
and then the Cayley transform of skew S £ +8covers unitary Q = $(S) =&H.

Thus, given an algebraic equation like (1) to solve for Q subject to a nonlinear side-condition

like Q"=Q7, we can solve instead an equivalent algebraic equation for S subject to a near-
linear and thus simpler side-condition S #-#ough doing so risks losing some solution(s)

Q for which 1+Q is singular and the Cayley transform S is infinite. But no eigenvectors
need be lost that way. Instead their unitary matrix Q can appear post—multiplied harmlessly by
a diagonal matrix whose diagonal elements are each either +1 or —1. Here is why: ...

Lemma: If Q is unitary and if 1+Q is singular, then reversing signs of aptly chosen columns
of Q will make I+Q nonsingular and provide a finite Cayley transform S =$(Q) .

Proof. | am grateful to Prof. Jean Gallier for pointing out that Richard Bellman published
this lemma in 1960 as an exercise; see Exs. 7 -11, pp. 92-3 in 84 of Ch. 6 of his book
Introduction to Matrix Analysi$2d ed. 1970 McGraw-Hill, New York). The non-constructive

proof hereunder is utterly different. Let n be the dimension ofled m:=2 -1, and for
each k=0,1, 2,...,m obtain n-by-n unitary 16y reversing the signs of whichever columns

of Q have the same positions as have the nonzero bits in the binary representation of k. For
example @Q=Q, Q,=-Q, and Q is obtained by reversing the sign of just the last column

of Q. Were the lemma false we would find every det{#©0 . For argument’s sake let us
suppose all 2 of these equations to be satisfied.
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Recall that det(...) is a linear function of each column separately; whenever n-by-n B and C
differ in only one column, det(B+C) 22\ (det(B) + det(C)) . Therefore our supposition would
imply det(1+Qy; + 1+Qyiy1) = 2% (det(1+Qy) + det(I1+Qiz1)) = 0 whenever & i< (m-1)/2.

Similarly det((1+Qy + 1+Qgj+1) + (I+Q4j42 + 1+Q4543)) = 0 whenever 8 j<(m-3)/4. And so

on. Ultimately det(I+@Q+ 1+Q; + I+Q, + ... + 1+Q,) = 0 would be inferred though the sum

amounts to 21, whose determinant cannot vanish! This contradiction ends the lemma’s proof.

The lemma lets us replace any search for a unitary or real orthogonal matrix Q of eigenvectors
by a search for a skew matrix S from which a Cayley transform will recover one of the sought

eigenvector matrices Q := (I+'§)(I—S). Constraining the search to skew-Hermitian S with
diag(S) = o isjustified in 8§3. A further constraint keeping evegy<|& to render Q easy to

compute accurately is justified in 85 for complex Beal Q and S require something else.

Substituting Cayley transform Q = $(S) into (1) turns them into equations more nearly linear:
(1+S)-H-(1-S) = (I-S)-Diag(v)-(1+S) and"S-S. (€3]

If all off-diagonal elements jh of H are so tiny compared with differencgs—hy, between

diagonal elements that 3rd-order terms S-(H-Diag(H))-S can be neglected, equations () have

approximate solutions « diag(H) and = % hy/(h; —hq) for j#k . Diagonal elements;; s

can be arbitrary imaginaries but small lest 3rd-order terms be not negligible. Fgycm@ s

seems plausible. But if done when, as happens more often, off-diagonal elements are too big

for the foregoing approximations for v and S to be acceptable, how do we know equations
() must still have at least one solution v and S with diag(S) = o and no huge elementsin S ?

Now the question that is this work’s title has been motivated: Every unitary matrix Gsof H
eigenvectors spawns an infinitude of solutions Q & &f () whose skew-Hermitian

Cayley transforms S :=$(Q) satisfying (¥) sweep out a continuum@sruns through all

complex unitary diagonal matrices for which 1€X5is nonsingular. This continuum happens to
include at least one skew S with diag(S) = o and no huge elements, as we’ll see in 83 and 85.

Lacking this continuum, an ostensibly simpler special case turns out not so simple: When H is
real symmetric and G is real orthogonal then, when€¥vas a real diagonal of —1's and/or

+1’s for which the Cayley transform $(0)- exists, itis a real skew matrix with zeros on its
diagonal. The Lemma above ensures that some suc®)$exists. O’'Dorney [2014] has

proved that at least one such p-has every element betweetl . Examples in 84 are on

the brink; these are n-by-n real orthogonal matrices G for wduehy off-diagonal element

of every (there are 1 of them) such $(®) is +1 .

The continuum swept out in the complex case helps us answer our questions. For any given real
or complex unitary G, a8 ranges through all complex unitary diagonal matrices for which
I+G-Q is nonsingular, the unitary G-that comes nearest the identity matrix | in a peculiar
sense to be explained forthwith has a Cayley transformQ$(@&ith only zeros on its diagonal

and no element bigger than 1 in magnitude.
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83: £(Q) Gauges How “Near” a Unitary Q isto |
The function £(B) := —log(dé2l + B + B™Y/4)) = —log(def (I+B~Y-(1+B)/4)) will be used

to gauge how “near” any unitary matrix Q =X isto |. The closeris £(Q) to 0, the
“nearer” shall Q be deemedto |I. The following digression explores properties of £(Q) :

When (I+Q) is nonsingular, every eigenvalue of unitary Q has magnitude 1 but noneis -1,

so matrix (21 +Q + QY)/4 = (I+Q)-(1+Q)/4 is Hermitian with real eigenvalues all positive
and no bigger than 1. Therefore its determinant, their product, is also positive and no bigger
than 1; therefore £(@0. Only £(I) = 0. Another way to confirm this is to observe that

£(Q) = log(det! —$(QY)) = log(det! + $(Q)*-$(Q))) >0 (or +o) for every unitary G 1.

£(Q) and $(Q) are differentiable functions of Q except at their poles, where $(Q) is infinite
and £(Q) = + because det(I+Q) =0 . The differential of £(Q) is simpler to derive than its

derivative is because of Jacobi’s formula d log(det(B)) = tré&e{B) and another formula

d(B™Y) =-B1.dB-B!, and because trace(B-C) = trace(C-B) whenever both matrix products
B-C and C:-B are square. By applying these formulas we find that

d £(B) = —trace((2l + B + B)1.(dB — B1.dB-BY))
= trace((1+By-(I-B)-B1.dB) = trace($(B)-B-dB) .

How does £(Q2) behave for any fixed unitary Q aQ runs through the set of all diagonal
unitary matrices? This set is swept out@y=e&P@9X) a5 real vector x runs throughout any
hypercube with side-lengths bigger thart;2and  £(Q@'P'29%) must assume its minimum

value at some real vector(s) x strictly inside such a hypercube. Such a minimie’iﬂiﬁg@-
is a unitary QR “nearest” |. Let's investigate the Cayley transform of a “neares?’. Q-

Abbreviate Diag(x) = X and Diag(dx) = dX ; and note that X and dX commute, so that
dQ = deX =1eX.dX =1Q-dX , and therefore

d£(QQ) = trace( $(Q)-e *Q1-Q1eX-dX ) = 1 diag($(QQ))" dx .
Since this & must vanish at a minimum of £ for every real, do diag($(Q@2)) = o there.
Thus the question that is this work’s title must have an affirmative answer, namely ...

Theorem: For each unitary Q there exists at least one unitary diagon@r which the skew-
Hermitian Cayley transform S := (I +«@%(- QQ)=-3' has diag(S)=o.

The theorem’s “ at least one ” tends to understate how many such diagoradst. To see
why, setQ :=¢&Pa9(X) again and consider the locus of poles of the functione£@9®) of

the real column x . These poles are the zeros x of detd@3X) . Substitution of the

Cayley transform Z := $(Q) = YZ perhaps after shifting x’s origin by applying 82's

Lemma, transforms the determinantal equation for the locus of poles into an equivalent equation
def( cos(Diag(x/2)) +Z-sin(Diag(x/2))) =0 . *)

Despite first appearances, the left-hand side of this equation is a real function of the real vector

X because matrix cot(Diag(x/2))Z is Hermitian wherever it is finite. Moreover that left-
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hand side reverses sign somewhere because it takes both positive and negative values at vectors
X whose elements are various integer multiplesof Zherefore the space of real vectors x is
partitioned into cells by the locus of poles of £ ; inside each cell £ is finite and nonnegative,

and the left-hand side of (*) takes on a constant nonzero sign probably opposite to the sign in
adjacent cells. Inside every cell each local minimum (or any attigcal point x where

0£/ox = o' ) of £ provides another of the theorem’s diagomls= €P29X) | These are likely
to be numerous, as we shall see next.

84: Examples

For every integer n > 1 examples exist for which the number of the theorem’s diaGoimals
infinite in the general complex cas€) 2 in the restricted-to-real case. All these diagortals
minimize £ ; all of them provide skew Cayley transforms S whose diag(S) = o and whose
every off-diagonal element has magnitude 1. Here is such an example:

Define n-by-n real orthogonal G |= , and
0 1

0 1
(1" 0
let Q run through unitary diagonal matrices with @9t¢ —1 . Then unitary Q := @ has a
skew-Hermitian Cayley transform S = $(Q) := (I#)OI—Q) = -3 which, as we shall show,
has off-diagonal elements all of the same magnitude +2detQ)| . Moreover this magnitude
is minimized just when de®) = +1, the minimized magnitudeis 1, and diag(S)=o0. In
particular, for every real orthogonal diagorfal of +1's with an even number of -1's, S isa
real skew matrix all of whose off-diagonal elements atés . We'll prove these claims next.

First we must confirm that $(Q) exists; it will follow fro@1=0Q (the complex conjugate):
det(I+Q) = det(l + Q) = detQ) + G)-detQ) = (detQd) + 1)-detQ) = 1 + detQ) # 0 .

Next confirm that the powers°@ 1, Q, &, @, ..., @1 are linearly independent because
their nonzero elements occupy non-overlapping positions in the matrix. JuStag-13" %1,
so does ® turns out to be a scalar multiple of 1. Our next task is to determine this scalar.

Start by defining the n-vector u := di&)( so thatQ = Diag(u) and the elements of u all
have magnitude 1 and product @gt( Next observe that G-Diag(v) = Diag(G-v)-G for any
n-vector v . Use this to confirm by induction that

(GQ)X = Diag(G-u)-Diag(&u)-Diag(G-u)-...-Diag(&-u)-& foreach k=1, 2,3, ... inturn.
In particular, when k =n we find that"@ (GQ)" = (1) 1<k Diag(G-u) . Each
diagonal element of this product includes the product of all the elements of u each once, and
their product is de€f) . Factor it out to obtain G detQ) (G-I}’ = detQ)-(-1)" %1 .

The last equation figures in the confirmation of an explicit formula for the Cayley transform:
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$(Q) = (+Q(-Q) = ((1 - det@))| + 2 1qen-1 (-1} Q)/(1 + det@)) .
To confirm it multiply by 1+Q and collect terms. This formula validates every claim uttered
above for $(Q) because every unitary diagaRahas |def@)| =1.

£(Q), the gauge of “nearness” to |, is minimized whenet(l and diag(S) = o since
£(Q) = n-log(4) — 2-log|1 + d€1f| = (n—1)-log(4) with equality just when d@)(=1 .

Here is a different example Q :=

5&(3 _% )F_“g Zj /13 . Six unitary diagonal§ satisfy the
2-20 4 12—

theorem. Four are read = |, Diag([-1; -1; 1]) , Diag([1; -1;-1]) and Diag([-1; 1; -1]) .
0-11

Typical of the last three is $(Q-Diag([-1; 1; —1])) =, 21 ; none of them minimizes £(Q) .

1
5-10

It is minimized by two complex scalar diagondbs:= (-5+ 12)I/13 for which respectively

$(QQ) = { LA s

-1-31 1-3 0

/4 and its complex conjugate. Note that its every element is strictly

smaller than 1 in magnitude, unlike the theorem’s four real instances.

85: Why Minimizing £(Q-Q) Makes $(QQ) Small.

In general, can the theorem’s S := §}be huge fora @ “nearest” | ? No; here is why:

Once again abbreviate Diagft) = X+AX for real columns xAx , and set unitary diagonal

Q :=¢* | and abbreviate $(Q) =S . The second term of the Taylor series expansion
£(QQ-e2X) = £(QQ) + (0£(QQ)/0x)-Ax + (9%£(QQ)/0x?) -Ax-Ax/2 + O(Ax)3

must vanish and the third must be nonnegative foAallat a local minimum x of £. We

already haved£(QQ)/dx = 1diag(SY , and next we shall compu#£(QQ)/dx? .

The next two paragraphs serve only to introduce my notation to readers unacquainted with it. Others may skip them.

A continuously differentiable scalar function f(x) of a column-vector argument x has @efirgitivedenoted

by f(x)=0f(x)/ox . It must be a row vector since scalar df(x)®)fdx . Sometimes thiglifferential is easier

to derive than the derivative; it means that, for every differentiable vector-valued fungtjoofxeny scalar

variable u, the chain rule yields a derivative df(R(du = f'(x(1))-X (W) . For any fixed x this 'x) is a

linear functional acting linearly upon vectors in the same space as x and represented by a row often called “The

Jacobian Array of First partial Derivatives”. Suchdg(Q € P'29%)/ox = diag(SY .

If f(x) is continuously twice differentiable its second derivative, denoted by f3f(x)/dx?, is a symmetric
bilinear operator acting upon pairs of vectors in the same space as x. “Symmetric” means f"(x)-y-z = f"(x)-z-y
because of H.A. Schwarz’'s lemma that tells when the order of differentiation does not matter. The “Hessian

Array of Second partial Derivatives” is a symmetric matrix H(x) that yields f"(x)-y'#4d-y . Sometimes
we can derive the differential 'qx)-y = f"(x)-y-dx = d%-H(x)-y more easily than the derivative. Such will be the
case for the second derivatid8£(Q € P1a9)/ox2 derived hereunder.

Recall that the differential of the unitary diagor@l:=eX is d2 =1Q-dX . Then rewrite
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S =$(QQ) = (+QQ) (I-QQ) = 2(+QQ) ™ - |
to see easily why

dS = -2(1+QQ) L Q--(1+QQ) ™! = -2 (I+Q-Q)1QQ-dX-(1+QQ)™?
= +(1+S)-(1+Sy L (I-S)-dX-(1+S)2 = ~+ (1-S)-dX-(1+S)2 .
Next, (3£(QQ)/0x)-Ax =1 diag(SY -Ax = 1trace(SAX) for any fixed columnAx and therefore
(0°£(QQ)/0x?)-dxAx = d(0£(QQ)/0x)-Ax = 1dtrace(SAX) = Itrace(dSAX)
= 1trace(+(I-S)-dX-(I+S)AX)/2 = trace(dXAX —S-dXAX +dX-SAX —S-dX-SAX)/2
= tracddX-AX + (SH-dX)-(SAX))/2 = dX-(I + |SP)-Ax/2
wherein |$] is obtained elementwise by substitutingj|2|§or each element;sin S.

Thus we have derived the first three terms of the Taylor Series expansion
£(QQ-e®) = £(QQ) + 1diag(SY-Ax + AXT-(I + |SP)-Ax/4 + O@AX)3 .

Since diag(S) =0 and | +%S||nust be a positive (semi)definite matrix at a minimum of £,
every |§|<1 there. Consequently ...

Corollary: At least one of the Theorem’s complex skew-Hermitian Cayley transforms
S :=$(QQ) with diag(S) = o also has every elemegtdd .

86: Conclusion:

Perturbing a complex Hermitian matrix H changes its unitary matrix Q of eigenvectors to a
perturbed unitary Q-(I+S}(I-S) in which the skew-Hermitian S =H-8an always be chosen

to be small ( no element bigger than 1 in magnitude ) and to have only zeros on its diagonal.
When H is real symmetric, Q is real orthogonal, and S is restricted to be real skew-
symmetric, Evan O’'Dorney [2014] has proved S can always be chosen to have every element
betweenzl . But how to construct such skews S efficiently and infallibly is not known yet.
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