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Is  there  a   Small  Skew  Cayley  Transform   with   Zero  Diagonal ?

 

§0:  Abstract

 

The eigenvectors of an  Hermitian  matrix  H  are the columns of some complex unitary matrix  
Q .  For any diagonal unitary matrix  

 

Ω

 

  the columns of  Q·

 

Ω

 

  are eigenvectors too.  Among all 

such  Q·

 

Ω

 

  at least one has a  skew-Hermitian Cayley  transform  S := (I+Q·

 

Ω

 

)

 

–1

 

·(I–Q·

 

Ω

 

)  with 
just zeros on its diagonal.  Why?  The proof is unobvious,  as is the further observation that  

 

Ω

 

  
may also be so chosen that no element of this  S  need exceed  1  in magnitude.  Thus,  plausible 
constraints,  easy to satisfy by perturbations of complex eigenvectors when  Hermitian  matrix  
H  is perturbed infinitesimally,  can be satisfied for discrete perturbations too.  And if  H  is real 
symmetric,  Q  real orthogonal and  

 

Ω

 

  restricted to diagonals of  

 

±

 

1’s,  then that at least one real 
skew-symmetric  S  has every element between  

 

±

 

1  has been proved by  Evan O’Dorney [2014].
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§1:  Introduction

 

After  Cayley  transforms  $(B) := (I+B)

 

–1

 

·(I–B)  have been described in  §2,  a transform with 
only zeros on its diagonal will be shown to exist because it solves this minimization problem:

Among unitary matrices  Q·

 

Ω

 

  with a fixed unitary  Q  and variable unitary diagonal

 

Ω

 

 ,  those matrices  Q·

 

Ω

 

  “nearest”  the identity  I  in a sense defined in  §3  have

skew-Hermitian  Cayley  transforms  S := $(Q·

 

Ω

 

) = –S

 

H

 

  with zero diagonals
and with no element  s

 

jk

 

  bigger than  1  in magnitude.

Now,  why might this interest us?  It’s a long story … .

Let  H  be an  Hermitian  matrix  ( so  H

 

H

 

 = H )  whose eigenvalues are ordered monotonically  
(this is crucial)  and put into a real column vector  v

 

 

 

,  and whose corresponding eigenvectors 
can then be chosen to constitute the columns of some unitary matrix  Q  satisfying the equations

H·Q = Q·Diag(v)   and   Q

 

H

 

 = Q

 

–1

 

 .      (†)

 

( Notational note:

 

  We distinguish diagonal matrices  Diag(A)  and  V = Diag(v)  from column 
vectors  diag(A)  and  v = diag(V) ,  unlike  M

 

ATLAB

 

  whose  

 

diag(diag(A))

 

  is our  Diag(A) .  
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We also distinguish scalar  0  from zero vectors  o  and zero matrices  O .  And  Q

 

H

 

 = Q

 

 T

 

  is the 
complex conjugate transpose of  Q

 

 

 

;  and  

 

ı

 

 = 

 

√

 

–1 ;  and all identity matrices are called  “ I ”.  
The word  “skew”  serves to abbreviate either  “skew-Hermitian”  or  “real skew-symmetric”.

 

)

 

If  Q  and  v  are not known yet but  H  is very near an  Hermitian  H

 

o

 

  with known eigenvalue-
column  v

 

o

 

  (also ordered monotonically)  and eigenvector matrix  Q

 

o

 

  then,  as is well known,  
v  must lie very near  v

 

o

 

 .  This helps us find  v  during perturbation analyses or curve tracing or 
iterative refinement.  However,  two complications can push  Q  far from  Q

 

o

 

 .  First,  (†)  above 
does not determine  Q  uniquely:  Replacing  Q  by  Q·

 

Ω

 

  for any unitary diagonal  

 

Ω

 

  leaves the 
equations still satisfied.  To attenuate this first complication we shall seek a  Q·

 

Ω

 

  “nearest”   
Q

 

o

 

 .  Still,  no  Q·

 

Ω

 

  need be very near  Q

 

o

 

  unless gaps between adjacent eigenvalues in  v  and 
also in  v

 

o

 

  are all rather bigger than  ||H–H

 

o

 

|| ;  this second complication is unavoidable for 

reasons exposed by examples so simple as  H =    and  H

 

o

 

 =   with tiny  

 

θ

 

  and  

 

φ

 

 .

To simplify our exposition we assume  Q

 

o

 

 = I  with no loss of generality;  doing so amounts to 
choosing the columns of  Q

 

o

 

  as a new orthonormal basis turning  H

 

o

 

  into  Diag(v

 

o

 

) .  Now we 
can seek solutions  Q  and  v  of  (†)  above with  v  ordered and  Q  “nearest”  I  in some sense.

 

§2:  The  Cayley  Transform  $(B) := (I+B)

 

–1

 

·(I–B) = (I–B)·(I+B)

 

–1

 

 

 

On its domain it is an  

 

Involution

 

:  $($(B)) = B .  However  $(–$(B)) = B

 

–1

 

  if it exists.  $  maps 
certain unitary matrices  Q  to skew matrices  S  (real if  Q  is real orthogonal)  and back thus:

   If  I+Q  is nonsingular the  Cayley  transform of unitary  Q = Q

 

–1 H

 

  is skew   S := $(Q) = –S

 

H

 

 ;

and then the  Cayley  transform of skew  S = –S

 

H

 

  recovers unitary   Q = $(S) = Q

 

–1 H

 

 .

Thus,  given an algebraic equation like  (†)  to solve for  Q  subject to a nonlinear side-condition 

like  Q

 

H

 

 = Q

 

–1

 

,  we can solve instead an equivalent algebraic equation for  S  subject to a near-
linear and thus simpler side-condition  S = –S

 

H

 

,  though doing so risks losing some solution(s)  
Q  for which  I+Q  is singular and the  Cayley  transform  S  is infinite.  But no eigenvectors 
need be lost that way.  Instead their unitary matrix  Q  can appear post–multiplied harmlessly by 
a diagonal matrix whose diagonal elements are each either  +1  or  –1 .  Here is why: …

 

Lemma:

 

  If  Q  is unitary and if  I+Q  is singular,  then reversing signs of aptly chosen columns
     of  Q  will make  I+Q  nonsingular and provide a finite  Cayley  transform  S = $(Q) .

 

Proof:

 

  I am grateful to  Prof. Jean Gallier  for pointing out that  Richard Bellman  published 
this lemma in  1960  as an exercise;  see  Exs. 7 - 11,  pp. 92-3  in  §4  of  Ch. 6  of his book  

 

Introduction to Matrix Analysis

 

 (2d ed. 1970  McGraw-Hill,  New York).  The non-constructive  

proof hereunder is utterly different.  Let  n  be the dimension of  Q

 

 

 

,  let  m := 2

 

n

 

 – 1 ,  and for 
each  k = 0, 1, 2, ..., m   obtain  n-by-n  unitary  Q

 

k

 

  by reversing the signs of whichever columns 
of  Q  have the same positions as have the nonzero bits in the binary representation of  k .  For 
example  Q

 

0

 

 = Q

 

 

 

,  Q

 

m

 

 = –Q

 

 

 

,  and  Q

 

1

 

  is obtained by reversing the sign of just the last column 
of  Q

 

 

 

.  Were the lemma false we would find every  det(I+Q

 

k

 

) = 0 .  For argument’s sake let us 

suppose all  2

 

n

 

  of these equations to be satisfied.

1 θ+ 0

0 1 θ–

1 φ
φ 1



 

file:  SkCayley                                                                                      Version dated  February 16, 2015 8:50 am

Prof. W. Kahan                                                                                                                                         Page 3/7

 

Recall that  det(...)  is a linear function of each column separately;  whenever  n-by-n   B  and  C  

differ in only one column,  det(B+C) = 2

 

n–1

 

·(det(B) + det(C)) .  Therefore our supposition would 

imply  det(I+Q

 

2i 

 

+

 

 

 

I+Q

 

2i+1

 

) = 2

 

n–1

 

·(det(I+Q

 

2i

 

)

 

 

 

+

 

 

 

det(I+Q

 

2i+1

 

)) = 0  whenever  0 

 

≤

 

 i 

 

≤

 

 (m–1)/2

 

 

 

.  
Similarly  det((I+Q

 

4j

 

 + I+Q

 

4j+1

 

) + (I+Q

 

4j+2

 

 + I+Q4j+3)) = 0  whenever  0 ≤ j ≤ (m–3)/4 .  And so 
on.  Ultimately  det(I+Q0 + I+Q1 + I+Q2 + ... + I+Qm) = 0  would be inferred though the sum 

amounts to  2n·I ,  whose determinant cannot vanish!  This contradiction ends the lemma’s proof.

The lemma lets us replace any search for a unitary or real orthogonal matrix  Q  of eigenvectors 
by a search for a skew matrix  S  from which a  Cayley  transform will recover one of the sought 

eigenvector matrices  Q := (I+S)–1·(I–S) .  Constraining the search to  skew-Hermitian  S  with  
diag(S) = o  is justified in  §3.  A further constraint keeping every  |sjk| ≤ 1  to render  Q  easy to 
compute accurately is justified in  §5  for complex  S .  Real  Q  and  S  require something else.

Substituting  Cayley  transform  Q = $(S)  into  (†)  turns them into equations more nearly linear:
(I+S)·H·(I–S) = (I–S)·Diag(v)·(I+S)   and   SH = –S .      (‡)

If all off-diagonal elements  hjk  of  H  are so tiny compared with differences  hjj  – hkk  between 
diagonal elements that  3rd-order terms  S·(H–Diag(H))·S  can be neglected,  equations (‡)  have 
approximate solutions  v ≈ diag(H)  and  sjk ≈  hjk/(hjj  – hkk)  for  j ≠ k .  Diagonal elements  sjj   

can be arbitrary imaginaries but small lest  3rd-order terms be not negligible.  Forcing  sjj  := 0  
seems plausible.  But if done when,  as happens more often,  off-diagonal elements are too big 
for the foregoing approximations for  v  and  S  to be acceptable,  how do we know equations  
(‡)  must still have at least one solution  v  and  S  with  diag(S) = o  and no huge elements in  S ?

Now the question that is this work’s title has been motivated:  Every unitary matrix  G  of  H ’s  
eigenvectors spawns an infinitude of solutions  Q := G·Ω  of  (†)  whose  skew-Hermitian  
Cayley  transforms  S := $(G·Ω)  satisfying  (‡)  sweep out a continuum as  Ω  runs through all 
complex unitary diagonal matrices for which  I+G·Ω  is nonsingular.  This continuum happens to
include at least one skew  S  with  diag(S) = o  and no huge elements,  as we’ll see in  §3 and §5.

Lacking this continuum,  an ostensibly simpler special case turns out not so simple:  When  H  is 
real symmetric and  G  is real orthogonal then,  whenever  Ω  is a real diagonal of  –1’s  and/or  
+1’s  for which the  Cayley  transform  $(G·Ω)   exists,  it is a real skew matrix with zeros on its 
diagonal.  The  Lemma  above ensures that some such  $(G·Ω)  exists.  O’Dorney [2014]  has 
proved that at least one such  $(G·Ω)  has every element between  ±1 .  Examples in  §4  are on 
the brink;   these are  n-by-n  real orthogonal matrices  G  for which  every  off-diagonal element 

of  every  (there are  2n–1  of them)  such  $(G·Ω)  is  ±1 .

The continuum swept out in the complex case helps us answer our questions.  For any given real 
or complex unitary  G ,  as  Ω  ranges through all complex unitary diagonal matrices for which  
I+G·Ω  is nonsingular,  the unitary  G·Ω  that comes nearest the identity matrix  I  in a peculiar 
sense to be explained forthwith has a  Cayley  transform  $(G·Ω)  with only zeros on its diagonal 
and no element bigger than  1  in magnitude.

1
2
---
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§3:  £(Q)  Gauges How  “Near”  a  Unitary  Q  is to  I 
The function   £(B) := –log(det( (2I + B + B–1)/4 )) = –log(det( (I+B–1)·(I+B)/4 ))   will be used 

to gauge how  “near”  any unitary matrix  Q = Q–1 H  is to  I .  The closer is  £(Q)  to  0 ,  the  
“nearer”  shall  Q  be deemed to  I .  The following digression explores properties of  £(Q) :

When  (I+Q)  is nonsingular,  every eigenvalue of unitary  Q  has magnitude  1  but none is  –1 ,  

so matrix  (2I + Q + Q–1)/4  =  (I+Q)H·(I+Q)/4  is  Hermitian  with real eigenvalues all positive 
and no bigger than  1 .  Therefore its determinant,  their product,  is also positive and no bigger 
than  1 ;  therefore  £(Q) ≥ 0 .  Only  £(I) = 0 .  Another way to confirm this is to observe that  

£(Q) = log(det( I – $(Q)2 ))  =  log(det( I + $(Q)H·$(Q) ))  > 0  (or  +∞ )  for every unitary  Q ≠ I .

£(Q)  and  $(Q)  are differentiable functions of  Q  except at their poles,  where  $(Q)  is infinite 
and  £(Q) = +∞  because  det(I+Q) = 0 .  The differential of  £(Q)  is simpler to derive than its 

derivative is because of  Jacobi’s  formula  d log(det(B)) = trace(B–1·dB)  and another formula  

d(B–1) = –B–1·dB·B–1 ,  and because  trace(B·C) = trace(C·B)  whenever both matrix products  
B·C  and  C·B  are square.  By applying these formulas we find that

d £(B) = –trace((2I + B + B–1)–1·(dB – B–1·dB·B–1))  

=  trace((I+B)–1·(I–B)·B–1·dB)  =  trace($(B)·B–1·dB) .

How does  £(Q·Ω)  behave for any fixed unitary  Q  as   Ω  runs through the set of all diagonal 

unitary matrices?  This set is swept out by  Ω := eıDiag(x)  as real vector  x  runs throughout any 

hypercube with side-lengths bigger than  2π ;  and    £(Q·eıDiag(x))  must assume its minimum 

value at some real vector(s)  x  strictly inside such a hypercube.  Such a minimizing  Q·eıDiag(x)  
is a unitary  Q·Ω  “nearest”  I .  Let’s investigate the  Cayley  transform of a  “nearest”  Q·Ω .

Abbreviate  Diag(x) = X  and  Diag(dx) = dX ;  and note that  X  and  dX  commute,  so that  

d Ω = d eıX = ıeıX·d X = ıΩ·dX ,  and therefore

d £(Q·Ω) = trace( $(Q·Ω)·e–ıXQ–1·Q·ıeıX·d X ) = ı diag($(Q·Ω))T dx .
Since this  d £  must vanish at a minimum of  £  for every real  dx ,  so  diag($(Q·Ω)) = o  there.  
Thus the question that is this work’s title must have an affirmative answer,  namely …

Theorem:  For each unitary  Q  there exists at least one unitary diagonal  Ω  for which the skew-

      Hermitian  Cayley  transform   S := (I + Q·Ω)–1·(I – Q·Ω) = –SH   has  diag(S) = o .

The theorem’s  “ at least one ”  tends to understate how many such diagonals  Ω  exist.  To see 

why,  set  Ω := eıDiag(x)  again  and consider the locus of poles of the function  £(Q·eıDiag(x))  of 

the real column  x .  These poles are the zeros  x  of  det(I + Q·eıDiag(x)) .  Substitution of the  
Cayley  transform  Z := $(Q) = –ZH ,  perhaps after shifting  x’s  origin by applying  §2’s  
Lemma,  transforms the determinantal equation for the locus of poles into an equivalent equation

det( cos(Diag(x/2)) – ı Z·sin(Diag(x/2)) )  = 0 .       (*)
Despite first appearances,  the left-hand side of this equation is a real function of the real vector  

x  because matrix  cot(Diag(x/2)) – ı Z  is  Hermitian  wherever it is finite.  Moreover that left-
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hand side reverses sign somewhere because it takes both positive and negative values at vectors  
x  whose elements are various integer multiples of  2π .  Therefore the space of real vectors  x  is 
partitioned into cells by the locus of poles of  £ ;  inside each cell  £  is finite and nonnegative,  
and the left-hand side of  (*)  takes on a constant nonzero sign probably opposite to the sign in 
adjacent cells.  Inside every cell each local minimum  (or any other  critical point  x  where  

∂£/∂x = oT )  of  £  provides another of the theorem’s diagonals  Ω := eıDiag(x) .  These are likely 
to be numerous,  as we shall see next.

§4:  Examples
For every integer  n > 1  examples exist for which the number of the theorem’s diagonals  Ω  is 

infinite in the general complex case,  2n–1  in the restricted-to-real case.  All these diagonals  Ω  
minimize  £ ;  all of them provide skew  Cayley  transforms  S  whose  diag(S) = o  and whose  
every  off-diagonal element has magnitude  1 .  Here is such an example:

Define  n-by-n  real orthogonal  G :=  ,  and 

let  Ω  run through unitary diagonal matrices with  det(Ω) ≠ –1 .  Then unitary  Q := G·Ω  has a 

skew-Hermitian  Cayley  transform  S = $(Q) := (I+Q)–1·(I–Q) = –ST  which,  as we shall show,  
has off-diagonal elements all of the same magnitude  2/|1 + det(Ω)| .  Moreover this magnitude 
is minimized just when  det(Ω) = +1 ,  the minimized magnitude is  1 ,  and  diag(S) = o .  In 
particular,  for every real orthogonal diagonal  Ω  of  ±1’s  with an even number of  –1’s ,  S  is a 
real skew matrix all of whose off-diagonal elements are  ±1’s .  We’ll prove these claims next.

First we must confirm that  $(Q)  exists;  it will follow from  Ω–1 = Ω  (the complex conjugate):
det(I+Q) = det(I + G·Ω) = det(Ω + G)·det(Ω) = (det(Ω) + 1)·det(Ω) = 1 + det(Ω) ≠ 0 .

Next confirm that the powers  Q0 = I ,  Q, Q2, Q3, …, Qn–1  are linearly independent because 

their nonzero elements occupy non-overlapping positions in the matrix.  Just as  Gn = (–1)n–1·I ,  

so does  Qn  turns out to be a scalar multiple of  I .  Our next task is to determine this scalar.

Start by defining the  n-vector  u := diag(Ω)  so that  Ω = Diag(u)  and the elements of  u  all 
have magnitude  1  and product  det(Ω) .  Next observe that  G·Diag(v) = Diag(G·v)·G  for any  
n-vector  v .  Use this to confirm by induction that

   (G·Ω)k = Diag(G·u)·Diag(G2·u)·Diag(G3·u)·…·Diag(Gk·u)·Gk   for each  k = 1, 2, 3, …  in turn.

In particular,  when  k = n  we find that  Qn = (G·Ω)n = (–1)n–1·∏1≤k≤n Diag(Gk·u) .  Each 
diagonal element of this product includes the product of all the elements of  u  each once,  and 

their product is  det(Ω) .  Factor it out to obtain  Qn = det(Ω)·(G·I)n = det(Ω)·(–1)n–1·I .

The last equation figures in the confirmation of an explicit formula for the  Cayley  transform:

0 1      

 0 1     

  … …    

   … …   

    0 1  

     0 1

1–( )n 1–
     0
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$(Q) = (I+Q)–1·(I–Q) =  ( (1 – det(Ω))·I  +  2∑1≤k≤n–1 (–1)k Qk )/(1 + det(Ω)) .
To confirm it multiply by  I+Q  and collect terms.  This formula validates every claim uttered 
above for  $(Q)  because every unitary diagonal  Ω  has  |det(Ω)| = 1 .

£(Q) ,  the gauge of  “nearness”  to  I ,  is minimized when  det(Ω) = 1  and  diag(S) = o  since   
£(Q) = n·log(4) – 2·log|1 + det(Ω)|  ≥  (n–1)·log(4)  with equality just when  det(Ω) = 1 .

Here is a different example  Q := $( ) = /13 .  Six unitary diagonals  Ω  satisfy the 

theorem.  Four are real:  Ω = I ,  Diag([–1; –1; 1]) ,  Diag([1; –1; –1])  and  Diag([–1; 1; –1]) .  

Typical of the last three is  $(Q·Diag([–1; 1; –1])) =  ;  none of them minimizes  £(Q·Ω) .

It is minimized by two complex scalar diagonals  Ω := (–5 ± 12ı)I/13  for which respectively  

$(Q·Ω) = /4  and its complex conjugate.  Note that its every element is strictly 

smaller than  1  in magnitude,  unlike the theorem’s four real instances.

§5:  Why  Minimizing  £(Q·Ω)  Makes  $(Q·Ω)  Small.
In general,  can the theorem’s  S := $(Q·Ω)  be huge for a  Q·Ω  “nearest”  I ?  No;  here is why:  
Once again abbreviate  Diag(x+∆x) = X+∆X  for real columns  x+∆x ,  and set unitary diagonal  

Ω := eıX ,  and abbreviate  $(Q·Ω) = S .  The second term of the  Taylor  series expansion

£(Q·Ω·eı∆X) =  £(Q·Ω) + (∂£(Q·Ω)/∂x)·∆x + (∂2£(Q·Ω)/∂x2)·∆x·∆x/2 + O(∆x)3 
must vanish and the third must be nonnegative for all  ∆x  at a local minimum  x  of  £ .  We 

already have  ∂£(Q·Ω)/∂x = ı diag(S)T ,  and next we shall compute  ∂2£(Q·Ω)/∂x2 .

The next two paragraphs serve only to introduce my notation to readers unacquainted with it.  Others may skip them.

A continuously differentiable scalar function  ƒ(x)  of a column-vector argument  x  has a first  derivative denoted 
by  ƒ'(x) = ∂ƒ(x)/∂x .  It must be a row vector since scalar  dƒ(x) = ƒ'(x)·dx .  Sometimes this  differential  is easier 
to derive than the derivative;  it means that,  for every differentiable vector-valued function  x(µ)  of any scalar 
variable  µ ,  the chain rule yields a derivative  dƒ(x(µ))/dµ = ƒ'(x(µ))·x'(µ) .  For any fixed  x  this  ƒ'(x)  is a  
linear functional  acting linearly upon vectors in the same space as  x  and represented by a row often called  “The 

Jacobian Array of First partial Derivatives”.  Such is  ∂£(Q·eı Diag(x))/∂x = ı diag(S)T .

If  ƒ(x)  is continuously twice differentiable its second derivative,  denoted by  ƒ"(x) = ∂2ƒ(x)/∂x2 ,  is a  symmetric 
bilinear operator  acting upon pairs of vectors in the same space as  x .  “Symmetric”  means  ƒ"(x)·y·z = ƒ"(x)·z·y  
because of  H.A. Schwarz’s  lemma that tells when the order of differentiation does not matter.  The  “Hessian  

Array of Second partial Derivatives”  is a symmetric matrix  H(x)  that yields  ƒ"(x)·y·z = zT·H(x)·y .  Sometimes 

we can derive the differential  dƒ'(x)·y = ƒ"(x)·y·dx = dxT·H(x)·y  more easily than the derivative.  Such will be the 

case for the second derivative  ∂2£(Q·eı Diag(x))/∂x2  derived hereunder.

Recall that the differential of the unitary diagonal  Ω := eıX  is   dΩ = ı Ω·dX .  Then rewrite

0 2 2–

2– 0 2

2 2– 0

3– 4 12

12 3– 4

4 12 3–

0 1–
1
2
---

1 0 1

1
2
---– 1– 0

0 1– 3ι– 1 3ι–

1 3ι– 0 1– 3ι–

1– 3ι– 1 3ι– 0
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 S = $(Q·Ω) = (I+Q·Ω)–1(I–Q·Ω) = 2(I+Q·Ω)–1 – I  
to see easily why

d S = –2(I+Q·Ω)–1·Q·dΩ·(I+Q·Ω)–1  =  –2ı (I+Q·Ω)–1·Q·Ω·dX·(I+Q·Ω)–1 

      =  –ı (I+S)·(I+S)–1·(I–S)·dX·(I+S)/2  =  –ı (I–S)·dX·(I+S)/2 .

Next,  (∂£(Q·Ω)/∂x)·∆x = ı diag(S)T·∆x = ı trace(S·∆X)   for any fixed column  ∆x  and therefore

      (∂2£(Q·Ω)/∂x2)·dx·∆x =  d (∂£(Q·Ω)/∂x)·∆x  =  ı d trace(S·∆X)  =  ı trace(d S·∆X)  
 =  ı trace(–ı (I–S)·dX·(I+S)·∆X)/2  =  trace(dX·∆X – S·dX·∆X + dX·S·∆X – S·dX·S·∆X)/2
 =  trace(dX·∆X + (SH·dX)·(S·∆X))/2  =  dxT·(I + |S|2)·∆x/2   

wherein  |S|2  is obtained elementwise by substituting   |sij |
2  for each element  sij   in  S .

Thus we have derived the first three terms of the  Taylor Series  expansion 

£(Q·Ω·eı∆X) =  £(Q·Ω)  +  ı diag(S)T·∆x  +  ∆xT·(I + |S|2)·∆x/4  +  O(∆x)3 .

Since  diag(S) = o  and  I + |S|2  must be a positive (semi)definite  matrix at a minimum of  £ ,  
every  |sij | ≤ 1  there.  Consequently …

Corollary:   At least one of the  Theorem’s  complex skew-Hermitian Cayley  transforms 
 S := $(Q·Ω)   with  diag(S) = o  also has every element  |sij | ≤ 1 .

§6:  Conclusion:
Perturbing a complex  Hermitian  matrix  H  changes its unitary matrix  Q  of eigenvectors to a 

perturbed unitary  Q·(I+S)–1·(I–S)  in which the skew-Hermitian  S = –SH  can always be chosen 
to be small  ( no element bigger than  1  in magnitude )  and to have only zeros on its diagonal.  
When  H  is real symmetric,  Q  is real orthogonal,  and  S  is restricted to be real skew-
symmetric,  Evan O’Dorney [2014]  has proved  S  can always be chosen to have every element 
between  ±1 .  But how to construct such skews  S  efficiently and infallibly is not known yet.
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