
 

File: Stnfrd50                                                                                                                                                  version dated  June 3, 2008 2:43 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 1/14

 

Why can I Debug some Numerical Programs that
You Can’t ?

 

Why should we care?  What should we do?

 

Presented in  23 min.  on  30 March 2007  to the
“Stanford 50”  celebration of  Stanford University’s
50th Anniversary of  George Forsythe’s founding 
of  Stanford’s Computer Science Dept.,  and also 

in anticipation of  Prof. Gene H. Golub’s  75th birthday
(which,  alas,  he did not quite reach):

 

“The State and Future Directions of Computational Mathematics and Numerical Computing”

 

Abstract: 

 

 The future promises teraflops and terabytes in your laptop,  petaflops
and petabytes in your supercomputer,  and the inability to debug
numerical programs on either.  Why can’t they be debugged?  What 
should we do instead?

 

Though this presentation does include some mathematical symbols and  Greek  letters,  it contains no  Mathematics.

     This is posted at  <www.cs.berkeley.edu/~wkahan/ Stnfrd50.pdf >



 

File: Stnfrd50                                                                                                                                                  version dated  June 3, 2008 2:43 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 2/14

 

Reminiscences

 

I owe a lot to  

 

Gene Golub

 

  and to  

 

George Forsythe

 

.

 

To  Gene:

 

1957 Hospitality at  University of Illinois @ Champaign-Urbana
1959 Shared an office at  Cambridge University
1964 Joint paper on good  Singular Value Decomposition
1966 Arranged for me to visit   Stanford,  where …

 

To George:

 

1966 Encouraged my hobby:  Proofs about Floating-Point Arithmetic

 

I would rather have spent my time solving differential equations.

 

Part 1

 

  of this presentation is to honor  George.    

 

Part 2

 

  is for  Gene.

 

Part 1:

 

“Whoever forgets the past is doomed to repeat its mistakes.”

 

(Not what  George Santayana  said.)

 

Do You Remember …?



 

File: Stnfrd50                                                                                                                                                  version dated  June 3, 2008 2:43 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 3/14

 

Do You Remember?

 

When I started programming computers in  1953,  and for over a decade after,
the consensus among almost all  Numerical  practitioners was that …

 

 “ Floating-Point Error-Analysis is Hopelessly Intractable. ”

 

Do you remember  John Rice’s  

 

Polyalgorithms

 

?   Like the  

 

Alka-Seltzer

 

  advts.:

“

 

Try it!  You’ll like it 

 

!

 

”   And if you don’t,   try something else.

 

e.g.

 

,  For non-symmetric matrix eigenvalues,  try the  Power Method,  or the 
Leverrier-Souriau-Frame-Faddeev Method,  or  Danilewski’s,  or … .

 

(And if one or two seemed to work they often gave excessively inaccurate results.)

 

The first signs that floating-point error-analysis might be feasible for some huge 
calculations,  leading to what came to be called  “Backward Error-Analysis”:

1949 A. Turing,  Teddington.
1954 W. Givens,  Oak Ridge,  later at  Argonne Nat’l Labs.
1957 F. Bauer,  Munich;   J. Wilkinson,  Teddington;  W.K.,  Toronto

 

1958-60 W.K.  visits  J.H.W  often to share new (?) results;  J.H.W.  asks  “And have you this?



 

File: Stnfrd50                                                                                                                                                  version dated  June 3, 2008 2:43 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 4/14

 

We are headed back to the past:

 

Thesis:

 

  Too much of the Numerical Software  developed for  
Scientific and Engineering Computation  is 

now  Impossible to Debug.

Our community needs better support for the
diagnosis of numerical embarrassment,

especially if due to roundoff and 
thus unnoticed until too late

if ever.

Hardware conforming to  IEEE Standard 754 (1985)  for  Binary Floating-Point  
supports better diagnostic tools than you get now from programming languages 
(except perhaps from a few implementations of  C99)  and program-development 
environments.  That hardware support is atrophying for lack of exercise.

 

Use it or lose it.

 

Realistic examples supporting the  

 

Thesis

 

  are too complex for  C.S.  students.  

 

E.g

 

., see 

 

  

 

http://www.cs.berkeley.edu/~wkahan/Math128/GnSymEig.pdf

 

.

 

Instead I must resort to artificial examples created for didactic purposes,  like …



 

File: Stnfrd50                                                                                                                                                  version dated  June 3, 2008 2:43 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 5/14

 

A Didactic Hypothetical Case Study:  

 

Bits Lost in Space

 

 

 

Imagine plans for unmanned astronomical observatories in orbits perpendicular 
to the ecliptic around the sun.  They will (re)position themselves according to 
comparisons of an  

 

Ephemeris

 

  with telescopic observations of stars and planets.  
Extensive simulations exercise three different versions of the software that will 
manage these observatories.  Each version is assembled from modules coming 
from diverse sources.  Many modules come as object-modules precompiled and 
ready to be loaded from,  say,  DLL  libraries.

Many modules come without source-code,
or with source-code nobody desires to read.

Discrepancies appear during the simulations.  Among  

 

millions

 

  of tests are a 
mere handful about which different software versions disagree significantly.

The disagreements are attributed to roundoff because they go away when data—
positions,   attitudes,   time,   calibrations,  …

— are changed slightly.  Otherwise  4-byte 

 

float

 

  arithmetic would be adequate.

 

How do we discover  which  software version  (if any)  is right?  
And what is wrong with the others?      

 

These aren’t rhetorical questions.

 

 



 

File: Stnfrd50                                                                                                                                                  version dated  June 3, 2008 2:43 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 6/14

 

The software is assembled from modules whose inputs are other 
modules’ outputs.  At some level the interfaces between modules 
are accessible to scrutiny and even alteration.  So,  what can I do 
to identify possibly aberrant modules that  You Can’t ?

 

I can  

 

rerun

 

 

 

 the software in question on  

 

exactly

 

  the same precious data as 
generated the disagreements,  but with selected modules altered

WITHOUT ALTERATION NOR ACCESS TO THEIR CODES
to round differently:  all up,  all down,  or all towards zero.  (I dare not change 
some non-default roundings.)  Modules whose four results from four different 
rounding modes disagree too much become  

 

suspected

 

  (but not yet convicted)  
of numerical hypersensitivity to roundoff at the precious data in question.

 

What do I have that you haven’t?  My very old computer systems
from the late  1980s  and early  1990s,

 

hardware,   compilers,   debuggers,   …,
which let me inject control word changes that then over-ride default rounding 
modes with no changes to the program modules whose arithmetic is so altered.

For details see  §11  of  

 

.../Mindless.pdf

 

   on my web page.



 

File: Stnfrd50                                                                                                                                                  version dated  June 3, 2008 2:43 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 7/14

 

The modules that come under suspicion are supposed to compute the angles subtended at 
the observatory by stars or planets whose positions are read from a  table  (an  

 

Ephemeris

 

).

Directions to planets and distant stars are specified by angles named as follows:

 

Names of Angles used for  Spherical Polar Coordinates

 

  

Angles must satisfy  –

 

π

 

 

 

≤

 

 

 

θ

 

 

 

≤

 

 

 

π

 

  and  –

 

π

 

/2 

 

≤

 

 

 

φ

 

 

 

≤

 

 

 

π

 

/2 ,  and similarly for  

 

Θ

 

  and  

 

Φ

 

 .

Two stars whose coordinates are  (

 

θ

 

, 

 

φ

 

)  and  (

 

Θ

 

, 

 

Φ

 

)  subtend an angle  

 

ψ

 

  at the observer’s 
eye.  This  

 

ψ

 

  is a function  

 

ψ

 

(

 

θ

 

–

 

Θ

 

, 

 

φ

 

, 

 

Φ

 

)  that depends upon  

 

θ

 

  and  

 

Θ

 

  only through their 
difference  | 

 

θ

 

–

 

Θ

 

 | mod 2

 

π

 

 

 

.  Three implementations of this function  

 

ψ

 

  will be compared; 
they are called  u,  v  and  w

 

 

 

.  Of millions of tests,  here are the few that aroused suspicion:

Which digits are  

 

wrong 

 

?   Which  (if any)  of subprograms  u,  v  and  w  dare you trust ?

Angle Symbols Relative to Horizon Relative to Ecliptic Plane Relative to Equatorial Plane

 

θ,  Θ

 

Azimuth Right Ascension Longitude

 

φ,  Φ

 

Elevation Declination Latitude

 

θ

 

–

 

Θ :

 

0

 

.

 

00123456784 0

 

.

 

000244140625 0

 

.

 

000244140625 1

 

.

 

92608738 2.58913445 3.14160085

φ : 0.300587952 0.000244140625 0.785398185 -1.57023454 1.57074428 1.10034931

Φ : 0.299516767 0.000244140654 0.785398245 -1.57079506 -1.56994033 -1.09930503

ψ ≈ u : 0.00158221229 0.0 0.0003452669770.000598019978 3.14082050 3.14055681

ψ ≈ v : 0.00159324868 0.000244140610 0.000172633489 0.000562231871 3.14061618 3.14061618

ψ ≈ w : 0.00159324868 0.000244140610 0.000172633489 0.000562231871 3.14078044 3.14054847



File: Stnfrd50                                                                                                                                                  version dated  June 3, 2008 2:43 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 8/14

Which if any of subprograms  u,  v  and  w  dare you trust?  They were rerun on the suspect 
data in different rounding modes mandated by  IEEE Standard 754.  Fortunately,  they 
were rerun on a system that permitted the directions of all default roundings  (to nearest)  
to be changed without recompilation of the subprograms.  Here are some results:

Only subprogram  w  seems practically indifferent to changes in rounding’s 
direction.  It uses an unobvious formula stable for all admissible  float   data.  
Subprogram  u  uses a naive formula easy to derive but numerically unstable for 
subtended angles too near  0  or  π .  Subprogram  v  uses a formula familiar to 
astronomers though it loses half the digits carried when the subtended angle is 
too near  π ,  where astronomers are most unlikely to have tried it.  See  §11  of  
.../Mindless.pdf   for the formulas.  If not for roundoff all three would agree.

Without access to source code,  nor to another subprogram known to be 
reliable,  how else might you decide which program(s) to scrutinize first?

θ–Θ : 0.000244140625 2.58913445

φ : 0.000244140625 1.57074428

Φ : 0.000244140654 -1.56994033

ψ ≈ u : 0.000598019920NaN arccos(>1) 0.000598019920 3.14061594 3.14067936 3.14082050

ψ ≈ v : 0.000244140581 0.000244140683 0.000244140581 3.14039660 3.14159274 3.14039660

ψ ≈ w : 0.000244140610 0.000244140683 0.000244140610 3.14078045 3.14078069 3.14078045

Rounded: To Zero To +Infinity To –Infinity To Zero To +Infinity To –Infinity



File: Stnfrd50                                                                                                                                                  version dated  June 3, 2008 2:43 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 9/14

The ability to redirect rounding is mandated by  IEEE Standard 754 (1985)  for 
floating-point arithmetic.  It is a valuable diagnostic aid albeit far from foolproof.  
We need it to help debug schemes contrived to exploit parallelism agressively.

Some compilers have supported dynamically redirected rounding,  but almost no 
programming languages and their debuggers support it.  Except maybe  C99 ?

Java  outlaws redirected rounding.
See  http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf  .

The lack of use of this capability is leading to its atrophy.   Use it or lose it. 

For other desirable debugging tools we may wish were provided by program-
development environments,  tools that employ high-precision floating-point and 
interval arithmetic combined  (they are not helpful enough by themselves),  see  
§14  of my    http://www.cs.berkeley.edu/~wkahan/Mindless.pdf  .

For better exception-handling than provided by current programming languages 
other than  C99  and perhaps  Fortran 2003,  see my  …/Grail.pdf   and  
…/ARITH_17U.pdf  .  Floating-point exception-handling is a crucially important 
story for another day.



File: Stnfrd50                                                                                                                                                  version dated  June 3, 2008 2:43 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 10/14

What’s Holding Up Progress towards  Numerical Reliability?

Compared with  50  years ago,  today’s computers run millions of times faster,  
and hold millions of times more memory.  More important,   now floating-point 
computation  is so much  cheaper  than it was then as to be almost free.  So it is 
used now mostly for games and entertainment.  (E.g.: the  IBM-Sony-Toshiba  Cell computer.)

The Tragedy of the Commons:  Every free good is destined for abuse.
 E.g.:  Spammers and phishers abuse e-mail because it is free.

Now only a tiny fraction of floating-point computations 
are worth the cost of ascertaining their validity,

much less the cost of correcting them if found wrong.

Unintended numerical anomalies in computer games become  Features  celebrated in  BLOGS.

Gresham’s Law:
“Bad money  (debased or counterfeit)  drives out the Good”  (from circulation).

Sir Thomas Gresham  (1519-1579)

Gresham’s Law for Computing:
The  Fast  drives out the  Slow  even if the  Fast  is  Wrong.



File: Stnfrd50                                                                                                                                                  version dated  June 3, 2008 2:43 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 11/14

PART 2:   A  Bad Example  for a  Bad Policy:

MATLAB  7  now  “supports”  floating-point arithmetic with  4-byte-wide  single -
precision variables as well as the previously supported  8-byte-wide  double -
precision variables.   But  MATLAB   evaluates any expression that mixes  single - 
with  double -precision variables entirely in  single -precision arithmetic because 
it goes faster this way on the most popular architectures.  Actually,  …

This policy can slow down large-scale computations.

For instance, consider the discretization of an elliptic boundary-value problem

Div(p(x)•Grad U(x)) + q(x, U(x))·U(x)  = b(x, U(x)) .

When discretized this boundary-value problem turns into a system of linearized 
equations

(A + Diag(q))·u = b .
Here matrix  A  represents the discretization of  Div(p(x)•Grad …) .  For many 
reasons not necessarily spawned by roundoff,  the solution  u  has to be computed 
by an iteration,  and that  always  entails the computation of a residual

  r  := b – (A + Diag(q))·u 
The final accuracy of the computed  u  is limited by the accuracy with which the 
residual  r   can be computed.  The accuracy of  u ,  which is typically a potential,  
has to be sufficient to support differencing to estimate the  Gradient  Grad U(x),  
a field strength,  without too much loss of accuracy to cancellation.



File: Stnfrd50                                                                                                                                                  version dated  June 3, 2008 2:43 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 12/14

   Residual    r  := b – (A + Diag(q))·u 

If all data,  variables and arithmetic have the same precision,  and if  r   is 
computed from literally the foregoing formula,  then  u  cannot be computed 
more accurately than to about half as many sig. digits as the arithmetic carries.  If 
everything is  double -precision  (≈16 sig. dec),  that is accurately enough.

But the speed of computation is limited mostly by the speed at which data and 
variables travel through the memory system.  Arithmetic  (other than division)  is 
almost instantaneous by comparison.

Single -precision  moves through the memory system twice as fast as  double .

But losing half of single -precision’s digits (≈7 sig. dec.) leaves too few for Grad.

If all array data and variables,  except possibly the diagonal of  A ,  are declared 
single ,  but all arithmetic is performed in  double   before being rounded off to be 
assigned to  single -precision elements of an array,  u  can be computed to almost  
6  sig. dec.  Kernighan-Ritchie  C  used to do this by default.  Not  Java …

When arithmetic more precise than single  data is unavailable or too slow 
the programmer must resort to  trickery  to achieve  6 sig. dec.  accuracy.

See  http://www.cs.berkeley.edu/~wkahan/Math128/FloTrik.pdf  .

How likely is the programmer to know about this trickery?  Should he have to?
I think it best that programmers  NOT  have to know about numerical trickery.



File: Stnfrd50                                                                                                                                                  version dated  June 3, 2008 2:43 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 13/14

“In every army large enough there is always someone who
  does not get the message,  or gets it wrong,  or forgets it.”
Whatever students learn gets forgotten if not exercised soon enough afterwards.

Applied Math.  students at  Berkeley  have to learn some Numerical Analysis,  
though probably not the aforementioned trickery.  CS  grads from  Berkeley,  
Stanford  and most other places don’t have to know more about floating-point 
than an hour’s worth in a programming language course.  Apparently …

Numerical Analysis  has become a sliver 
under the fingernail of  Computer Science.

No  Numerical Analysis  appears in  Educational Testing Service’s  COMPUTER 
SCIENCE Major Field Test (4CMF)  of students’ mastery of a  CS  curriculum.

Therefore we must (re)design computer architectures,  languages 
and program-development environments to diminish rather than 
enlarge the capture cross-section for numerical misadventure of 
programs written by clever but numerically naive programmers.

See my innumerable web postings on the subject:
www.cs.berkeley.edu/~wkahan/MxMulEps.pdf,  …/Mindless.pdf,
…/JAVAhurt.pdf,  …/MktgMath.pdf,  …/MathH110/Cross.pdf,  …/… 



File: Stnfrd50                                                                                                                                                  version dated  June 3, 2008 2:43 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 14/14

Epilogue for the Younger Reader

The foregoing  Jeremiad  exhorts you,  the reader,  to do something:–  to read,  research,  
reflect,  and react.  Can you see what needs doing?  Why?  Who should do it?  Who’ll pay?

If you see what needs doing,  will you do your part?  Will you exert your influence?

What needs doing will take several years.  I am willing to help,  but I cannot lead the charge.

According to life-insurance premiums,  actuaries seem to have estimated that the death rate 
for non-smokers of my age is roughly  1/2 % per month and increasing rapidly with age.  
How likely am I to be still active when what needs doing has been done?   Not very.

You’ll have to do it.

Prof. W. Kahan


