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What has the Volume of a Tetrahedron to do with Programming Languages?

Abstract:

 

  The computation of a tetrahedron’s volume has been chosen as a didactic 
example elementary enough to be tolerated by the intended audience  (who have forgotten 
most of the calculus and linear algebra they encountered in college)  yet difficult enough to 
impart an appreciation of the challenges faced by applications programmers lacking in 
numerical experience though clever about other things.  These challenges are exacerbated 
by programming languages like  C++  and  Java  that perpetuate practices,  accepted only 
as expedients in the  1960s,  that now inflate the languages’ capture cross-section for error.  
By treating the tetrahedron’s volume as a case study we can formulate better guidelines for 
programming languages to handle floating-point arithmetic in ways compatible with the 
few rules of thumb that should be  (but are still not being)  taught to the vast majority of 
programmers,  who learn no more about floating-point than they hear in a programming 
class or read in a programming language manual.  Complaining about education rarely 
improves it;  our efforts are better spent redesigning computer systems and languages to 
attenuate occasional harm caused by well-intentioned ignorance among the multitudes.
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Many textbooks offer formulas for simple geometrical computations.   But they leave …

 

…  too many  Questions Unanswered :

 

If such a formula is copied into a computer program written in a familiar language,  say
Java,    C++,    C,    Fortran,    Pascal,    or  …,

how likely will the program yield  

 

satisfactorily accurate

 

  results despite roundoff?

If results are unsatisfactory,  how will the programmer know?  And then do what?

 

( Only a tiny percentage of programmers ever take a competent course in  

 

Numerical Analysis

 

.)

 

If results are unsatisfactory,  how will the program’s user know?  And then do what?

 

( The  World-Wide Web  can promulgate a program instantly to a billion unwitting users.)

 

What does  “

 

satisfactorily accurate

 

”  mean?

 

•  Correct in all but the last digit or two stored?   Is this feasible?  … practical?
•  About as accurate as the data  

 

deserve

 

 ?    What does  “

 

deserve

 

”  mean?
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How accurate is  “About as accurate as the data deserve” ?

 

Backward Error-Analysis

 

 :
     Let  F(X)  be what is delivered by a program  F  intended to compute a function  ƒ(x) .
     Let  X+

 

∆

 

X  range over data regarded as practically indistinguishable from  X .
     Then  F(X)  is deemed  “About as accurate as the data deserve”  or  “Backward Stable”
         just when   F(X) – ƒ(X)   is not much bigger than   ƒ(X+

 

∆

 

X) – ƒ(X)   can get.

If  ƒ(X+

 

∆

 

X) – ƒ(X)  can get too much bigger than  

 

∆

 

X  we call  ƒ(…)  

 

Ill-Conditioned

 

  at  
X  and blame the inaccuracy of  F(X)  upon the data  X  rather than the program  F .

 

Relative error’s magnification is gauged by a  

 

Condition Number

 

  like   

 

|

 

 df(x)/dx 

 

|

 

/

 

|

 

 f(x)/x 

 

|

 

 .

 

Example:

 

Data  X := Array [

 

B

 

, 

 

c

 

] ;       

 

ƒ

 

(X) := 

 

B

 

–1

 

c

 

   would solve   “ 

 

B

 

·

 

ƒ

 

 = 

 

c

 

 ” .

 

Gaussian Elimination with Pivoting

 

  computes   

 

F

 

(X) = (

 

B

 

+

 

∆

 

B

 

)

 

–1

 

(

 

c

 

+

 

∆

 

c

 

)   for some tiny roundoff-
induced perturbations  

 

∆

 

…  usually tinier than the data’s uncertainty.  If error   

 

F

 

(X) – 

 

ƒ

 

(X)   is huge 
we blame an  “ill-conditioned”  matrix  

 

B

 

  rather than the program,  nowadays deemed  “Backward 
Stable”  though on rare occasions it isn’t.  

 

(See  <www.eecs.berkeley.edu/~wkahan/Math128/FailMode.pdf>

 

) 

 

Warning:

 

  Elimination

 

 without

 

 pivoting misbehaves on many well-conditioned matrices  

 

B

 

  with modest condition-

numbers  ||

 

B

 

||·||

 

B

 

–1

 

|| .  Naive numerical programs are too often numerically unstable at otherwise innocuous data.

•
X+∆X

• ƒ(X)
ƒ(X+∆X)

• F(X)
X ƒ
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Area  of a  Triangle  from its  Edge-Lengths:         

 

  

 

Edges have lengths  u,  v,  w .

    

 

Area

 

 =  

 

√

 

(–

 

det( )

 

)/

 

4  =  

 

√

 

(

 

 s·(s–u)·(s–v)·(s–w) 

 

)

 

    where   s := (u+v+w)

 

/

 

2 .

 

The formula containing  s  is attributed to  Heron  of
Alexandria  though it was known to  Archimedes.

 

These are classical formulas found in many textbooks.  For some data,  roundoff can 
degrade either formula badly,  especially when the triangle is too needle-shaped.  However  

 

Area

 

  is very  Well-Conditioned  for all  

 

acute

 

  triangles,  no matter how needle-shaped.

 

For all acute triangles,  

 

Area

 

’s  Condition Number  is  2 .
See  “Miscalculating Area and Angles of a Needle-Like Triangle”  on my web page.

 

The next formula is fully  

 

Accurate

 

  (not merely  Backward Stable):

 

Area

 

 = 

 

√

 

(

 

 (u+v+w)·(v–w+u)·(w–u+v)·(u–v+w) 

 

)

 

/

 

4   provided
every  

 

Facial Difference

 

  like  (u–v+w)  is computed from an
expression like   

 

(

 

 max{u, w} – v 

 

)

 

 + min{u, w}  respectively.

 

( If massive cancellation occurs here it is benign because it involves only data prior to roundoff.)

 

All three formulas for  

 

Area

 

  are algebraically equivalent in the absence of roundoff.

 

How obvious is the last formula’s  accuracy 

 

versus

 

  the others’  inaccuracy ?

u

v
w0 u

2
v

2
1

u
2

0 w
2

1

v
2

w
2

0 1

1 1 1 0
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Examples  of  Computed  Areas  of  Triangles

Digits known to be wrong are displayed  bold.  Triangles marked  *  have well-conditioned  Areas.  
Computations were performed by an  HP-15C  that stores  10  sig. dec. digits;  its  DET  carries  13 .  
Note how scaling or permuting the data can degrade the determinantal formula more than the others.

Edge-length
u

Edge-length
v

Edge-length
w

Determinantal
Area

Heron’s
Area

Accurate
Area

* 10 11 12 51.52123350 51.52123349 51.52123349

* 100000 100000 1.00005 50002.50000 50010.0 50002.50003

* 100000 100000 1.5 75000.00000 75000.00000 75000.00000

* 0.1 0.1 0.0000015 7.110–8 7.50000010–8 7.50000010–8

99999.99996 0.00003 99999.99994 1.3 Error 1.118033988

0.00003 99999.99994 99999.99996 1.06 Error 1.118033988

10000 5000.000001 15000 605.8 0 612.3724358

5000.000001 10000 15000 778. 0 612.3724358

99999.99999 99999.99999 200000 Error 0 Error

5278.64055 94721.35941 99999.99996 Error Error 0

100002  100002 200004 Error 0 0

31622.77662 0.000023 31622.77661 0.364 0.447 0.327490458

* 31622.77662 0.0155555 31622.77661 245.95405 246.18 245.9540000

u v w Determinantal Heron’s Accurate



VtetLang.pdf                                                                  WORK IN PROGRESS  –  SUBJECT TO CHANGE                                                                       Page 8/31

(C) W. Kahan                                                                                                                                                                                 version dated    April 3, 2012 4:34 am

Sensitivity to  Rounding Directions  of two different formulas to calculate
 the  Area  of a Triangle  from the  Lengths of its Sides

( calculations performed upon  4-byte  float   data ).

Note that only incorrect results change drastically when the rounding direction changes,  and
that old-fashioned  Kernighan-Ritchie C  gets fine results from an  “unstable”  formula by
evaluating all subexpressions in  double   even if they contain only  float   variables.
( This matters only to  double  s = (u+v+w)/2   whose rounding error is critical.)

Rounding
direction

Heron’s Formula

(unstable in  float  )

Accurate Formula

(stable in  float  )

Heron’s Formula
( all subexpressions

double   like  K-R C)

Ill-Conditioned         u=12345679  >   v=12345678  >   w=1.01233995  >  u–v

to nearest 0.0 972730.06 972730.06

to +∞ 17459428.0 972730.25 972730.06

to –∞ 0.0 972729.88 972730.00

to 0 –0.0 972729.88 972730.00

Well-Conditioned         u=12345679  =   v=12345679  >   w=1.01233995  >  u–v

to nearest 12345680.0 6249012.0 6249012.0

to +∞ 12345680.0 6249013.0 6249012.5

to –∞ 0.0 6249011.0 6249012.0

to 0 0.0 6249011.0 6249012.0
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How  Factorization  tends to  Attenuate Inaccuracy

Suppose   E = A·C + B·D   and   F = A·D + B·C   wherein  A, B, C, D, E, F  are all 
positive-valued expressions each computable within a small relative uncertainty  ±δ ;
 i.e.,  the computed value of  A  is  A(1±δ) ,  of  B  is  B(1±δ) ,  …,  of  F  is  F(1±δ) .

Which of two algebraically equivalent formulas for  G ,  namely
G := E–F and
G := (A–B)·(C–D) , 

is likely to be less inaccurate after severe cancellation?      Answer:  the factored formula.

“ G := (A–B)·(C–D) ”   is uncertain by   ±( (A+B)·|C–D| + |A–B|·(C+D) )δ   ignoring  δ2 .
“ G := E–F ” is uncertain by   ±(E+F)δ =  ±(A+B)·(C+D)δ ,

even if computed without first computing  A, B, C, D .

The two formulas’ uncertainties differ substantially only when both  |A–B|/(A+B)  and  
|C–D|/(C+D)  are tiny,  and then the factored formula is substantially less uncertain than 
the other.  In short,  the factored form of  G  is never much more uncertain,  and can be far 
less uncertain when severe cancellation leaves   |G| = |E–F| << E+F .

The factored formula’s advantage is substantial only when  both  factors are small after cancellation;
then each factor’s rounding errors get attenuated by multiplication by the other factor.
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How  Factorization  tends to  Attenuate Inaccuracy   …  continued …

In the event that roundoff is followed by severe cancellation,
“ G := (A–B)·(C–D) ”   can be far less uncertain than   “ G := E–F ” .

Locus  in  Data-Space  where  G = 0 :     

This argues in favor of of factored formulas whenever a function  G  to be computed …
•  vanishes on  (self-)intersecting  surfaces in the space of all eligible data,  provided
•  the factored form is not too much more expensive to compute than the other form,
•  no other unfactored expression for  G  far less uncertain than  E–F  is known.

The idea is illustrated  (too)  well by the triangle’s
 Area = √( (u+v+w)·(v–w+u)·(w–u+v)·(u–v+w) )/4  .
 Area = 0  wherever one edge-length equals the other two’s sum.

But,  to make matters more interesting,  factored formulas need not exist;  and when they 
do exist they need not be determinable uniquely,  not even for polynomial functions of 
given data,  as we shall see later when we factor the formula for a tetrahedron’s volume.

A=B

C=D

•

Region in  Data-
Space  where 
Factorization 
helps most.
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Volume  of a  Tetrahedron  from its  Edge-Lengths:    
Edge-lengths are  u, U, v, V, w, W  in any order that pairs
opposite edges’ lengths thus:  (u, U),  (v, V),  (w, W) .

 Volume =  √( det( )/288 )        

=  √(  4u2v2w2 – u2(v2+w2–U2)2 – v2(w2+u2–V2)2 – w2(u2+v2–W2)2 + 

 + (v2+w2–U2)(w2+u2–V2)(u2+v2–W2)  )/12 .

These classical formulas come from textbooks like  D.M.Y. Sommerville’s Analytical 
Geometry of Three Dimensions, Cambridge Univ. Press, 1951.  Neither formula need be  
Backward Stable  when the tetrahedron is flat  (like an arrow-head)  or needle-shaped.

Volume  is a well-conditioned  ( Cond. No. = 3 )  function of edge-lengths whenever every vertex 
projects perpendicularly to the inside of the opposite face,  no matter how nearly the tetrahedron may 
resemble a javelin.  This is why  Volume  can be difficult to compute as accurately as the data deserve.

The polynomial inside  √(…)  was published by  Euler  in  1752.  It has no nontrivial 
factors that are  polynomials  in the six edge-lengths;  but we shall factor it later anyway.

u
v

w
U

V
W

0 u
2

v
2

w
2

1

u
2

0 W
2

V
2

1

v
2

W
2

0 U
2

1

w
2

V
2

U
2

0 1

1 1 1 1 0

   This computation is infrequent.
The volume of a tetrahedron is computed 
far  more  often from the coordinates of 
its vertices than from its edge-lengths.
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How Hard can  Computing Determinants and Polynomials Accurately  Be ?

Accuracy of algebraic computations is limited  NOT  by the precision of a computer’s 
floating-point hardware,  but by its  Over/Underflow  thresholds.  Within those limits,  
arbitrarily high precision floating-point can be simulated by exclusively floating-point 
operations built into hardware,  though the cost rises like the square of the high precision.

See thesis and paper by  Doug Priest [1991],  and consequent work by  Prof. J. Shewchuk  at
  www.cs.berkeley.edu/~jrs/…   and  www.cs.cmu.edu/~quake/robust.html .

Thus,  the feasibility of computing a tetrahedron’s  Volume  accurately is not in question;
only the  costs  of doing so  (or failing to do so)  are at issue:

•  Cost to the programmer —  time spent on development and testing;
•  Cost to the user —  execution time and impact of inaccuracy.

Programs that run too slow don’t get run.

Usually determinants are computed well enough with ordinary precision provided …
•  Precondition by diagonal scaling to avoid severely disadvantageous pivot choices.
•  Precondition by  exact  elementary operations inferred from an approximate inverse.
•  Iteratively refine the triangular factors from which the determinant is computed.

Three Digressions:  These three unfamiliar techniques will be explained to numerical practitioners
curious about them,  though they are palliatives at best,  and often they are no help at all.
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Digression:  Preconditioning  by  Diagonal Scaling.
Its purpose is to prevent severely disadvantageous pivot choices.  For instance,

Volume = √( det( )/288 )  =  √( det( )/288 ) ,

would normally be computed by  Gaussian Elimination  (triangular factorization)  but the selection of 
pivots could be quite different for these two determinants.  However,  if all edge-lengths  u, U, …, W
are tiny enough,  the latter determinant will so closely resemble

√( det( )/288 )  = 0

that the first pivot selection will disregard the data,  thereby spoiling it if edge-lengths have widely 
different magnitudes,  even though they do determine the  Volume  relatively well;  it would be 
homogeneous of degree  3  in edge-lengths if roundoff did not interfere.  (Unfortunate pivot selection 
can afflict the first determinant too,  but the explanation takes longer.)  If some permutations of the 
tetrahedron’s vertices produce  Volumes  too different from the others,  suspect poor pivot selection.

Many people regard matrices as well-scaled when every row and every column has at least one 
element roughly the same in magnitude as the biggest element.  This criterion is mistaken.

A better criterion is that every column-sum and row-sum of magnitudes be nearly the same;
this criterion can be satisfied only approximately and only by iteration.  It’s a story for another day.
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Digression:  Preconditioning by  exact  elementary operations.
These are inferred from an approximate inverse and performed in somewhat extra-precise arithmetic.

Suppose  det(B)  is tiny because of massive cancellation;  then  B–1  must be huge and  B–1·B = I  

must largely cancel.  Therefore rows of  B–1  computed approximately provide linear combinations of 
rows of  B  that all almost vanish by cancellation.  Choose one of the bigger rows  b'   of a computed  

B–1  so that  b'B ≈ o'   after cancellation;  it would be a row of  I  if it weren’t approximate.

Now let   r'  := round(µb')   scaled and rounded to integers small enough that  r'B  is computed exactly.  
“Small enough”  depends upon how many bits of precision are available in excess of those needed to 
represent the given data  B  exactly.  The more extra bits,  the bigger are the integers in  r'  ,  and the 
better they work.  Now   r'B  is an exact linear combination of the rows of  B  that almost cancels out.

Replacing a row of  B  by such a linear combination computed  exactly  replaces  B  by a new matrix  
B  whose determinant is a known multiple of  det(B) .  Let  ß  be an element of biggest magnitude in  
r'  ,  and let  j  be its column index.  The replacing row  j  in  B  by  r'B  yields a new matrix  B  with  
det(B) = ß·det(B) ,  and easier to compute accurately after preconditioning by diagonal scaling.

The process may be repeated so long as  r'B  can be computed exactly;  each repetition moves more 
cancellation from inside the determinant calculation to ahead of it where the cancellation is harmless.

This process is one of the arcane motives for introducing the  Inexact  flag into  IEEE Standard 754  for Floating-
Point Arithmetic.  The process dates back to the days of desk-top  (electro-)mechanical calculators whose operators 
could see easily whether computations of  r'B  had been performed exactly.  For another application see the  
Advanced Functions Handbook  [1982]  for the  HP-15C  calculator.
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Digression:  Iterative refinement of triangular factors.
In order to compute  det(B)  given square matrix  B ,  Gaussian Elimination  or the  Crout-Doolittle  
method first obtains an approximate triangular factorization  L·U ≈ PB .  Here  L  is unit lower 
triangular,  U  is upper triangular,  and  P  is a permutation matrix determined by pivotal exchanges;  
det(L) = 1  and  det(P) = ±1 ,  so  det(B) = det(P)·det(U)  can be computed from the product of  U’s  
diagonal elements.  But they are contaminated by accrued roundoff that we wish to attenuate.  What 
follows does so with extra-precise arithmetic confined to the computation of the  Residual .

Compute the residual  P∆B := PB – L·U  accumulating products extra-precisely.  To estimate a strictly 
lower triangular  ∆L  (with zeros on its diagonal)  and an upper triangular  ∆U  satisfying the equation  
(L+∆L)·(U+∆U) = PB  more nearly exactly,  solve the equation   (L+∆L)·∆U + ∆L·U = P∆B  using 
just working-precision arithmetic.  This equation seems nonlinear,  but it can be solved for the rows of  
∆U  and columns of  ∆L  in interlaced order:  row#1 of ∆U ,  then column#1 of ∆L ,  then  row#2 of 
∆U ,  then column#2 of ∆L , …  as illustrated below:

  P∆B  =       (L+∆L) ·   ∆U           +         ∆L      ·   U   .

  P∆B  =   ·   +  ·  .
Compute first  a’s,

then  b’s,  then  c’s,
…,  then  h .    .

(There are other workable orderings.)  The process then writes  L+∆L over  L   and  U+∆U  over  U ,  
rounding them off to working precision,  and recomputes  det(U) .  This process may be repeated until 
it encounters a  Law of Diminishing Returns,  which sets in soon enough to vitiate repetitions after the 
first or second.  The result’s utimate accuracy is limited by the residual’s accuracy after cancellation.

1     

a 1    

a c 1   

a c e 1  

a c e g 1

     

 b b b b

  d d d

   f f

    h

     

a     

a c    

a c e   

a c e g  

u u u u u

 u u u u

  u u u

   u u

    u
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An  Unobvious  Factorization  of a  Tetrahedron’s  Volume 

First compute nine  Facial Differences  belonging to three of the tetrahedron’s four faces:
XU := w–U+v , Xv := U–v+w , Xw := v–w+U ,    (Recall from  Area  how

YV := u–V+w , Yw := V–w+u , Yu := w–u+V ,      to compute all  Facial

ZW := v–W+u , Zu := W–u+v , Zv := u–v+W .      Differences  accurately.)

(These nine are not linearly independent.)   Also needed are three facial sums
X0 := U+v+w  =  XU+Xv+Xw ,

Y0 := V+w+u  =  YV+Yw+Yu ,

Z0 := W+u+v  =  ZW+Zu+Zv .

Next combine these  12  facial sums and differences in pairs into  6  products:
X := XU·X0 = (w–U+v)·(U+v+w) , x := Xv·Xw = (U–v+w)·(v–w+U) ,

Y := YV·Y0 = (u–V+w)·(V+w+u)), y := Yw·Yu = (V–w+u)·(w–u+V) ,

Z := ZW·Z0 = (v–W+u)·(W+u+v) , z := Zu·Zv = (W–u+v)·(u–v+W) .

(Subscripts are no longer needed.)  The  6  products are independent positive variables from which 
all  6  edge-lengths can always be recovered;  for instance

u =  √( (Y+y)·(Z+z)/(X+x) )/2 ,    and

U =  √(  ( X·(Y+y–Z–z)2 + x·(Y+y+Z+z)2 )/( (Y+y)·(Z+z) )  )/2 .
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So far we have computed accurately the six products               
X := (w–U+v)·(U+v+w) , x := (U–v+w)·(v–w+U) ,
Y := (u–V+w)·(V+w+u)), y := (V–w+u)·(w–u+V) ,
Z := (v–W+u)·(W+u+v) , z := (W–u+v)·(u–v+W) .

Next compute four square roots of four products of products:
ξ := √xYZ , η := √yZX , ζ := √zXY and λ := √xyz .

Then the tetrahedron’s volume turns out to be
Volume =  √( (ξ+η+ζ–λ)·(λ+ξ+η–ζ)·(η+ζ+λ–ξ)·(ζ+λ+ξ–η) )/(192 u·v·w) .
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

All factors turn out to be positive for a non-degenerate tetrahedron.  Because this unobvious property 
is invisible to automated algebra systems like  Derive,  Maple  and  Mathematica,  they cannot prove 
our formula for  Volume  valid with just one  Simplify   command.

Our factored  Volume  formula is  Backward Stable  provided  the edge-length pairs are so 
ordered that the three smallest of twelve facial differences lie among the nine used.

This claim’s proof is utterly unobvious yet crucial since  Volume  can be a well-conditioned function  
(Cond. No. = 3)  of edge-lengths for certain javelin-shaped tetrahedra despite numerical cancellation.

Digressions:
When is  Volume’s Condition Number  so small as  3 ?
Whence comes our factored form of  Euler’s  formula for a tetrahedron’s  Volume ?

u
v

w
U

V
W
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Whence comes our factored form of  Euler’s  formula for a tetrahedron’s Volume ?
Let column-vectors  u, v, w  be edges emanating from a vertex at  o ,
with lengths  u, v, w  respectively;  and let the angles between those
edges be  2θ, 2φ, 2ψ  as shown opposite edges with squared lengths

U2 := (v–w)'(v–w) ,  V2 := (w–u)'(w–u) ,  W2 := (u–v)'(u–v)  resp.
Angles can be obtained from edge-lengths via the face-triangles’
Half-Angle-Tangent-Law:

      (U–v+w)(v–w+U)       (V–w+u)(w–u+V) (W–u+v)(u–v+W)
 tan2θ = ––––––––––––––– ,   tan2φ = ––––––––––––––– ,   tan2ψ = ––––––––––––––– .

      (w–U+v)(U+v+w)       (u–V+w)(V+w+u) (W–u+v)(u–v+W)

Half-angles   θ,  φ,  ψ   must satisfy ten inequalities,
first these four:  θ+φ+ψ ≤ π ,   θ ≤ φ+ψ ,   φ ≤ ψ+θ   and   ψ ≤ θ+φ ,
and consequently six more:      0 ≤ θ ≤ π/2 ,  0 ≤ φ ≤ π/2  and  0 ≤ ψ ≤ π/2 .

Equality in place of any of these ten inequalities signifies a degenerate tetrahedron.  For instance,  if  θ+φ+ψ = π  
then vertex  o  falls into the triangle whose vertices are at the ends of  u,  v  and  w ;  or if  θ = φ+ψ  then  u  runs 
through the triangle with vertices at  o,  v  and  w .  Violation of any inequality is geometrically infeasible.

The tetrahedron’s  Volume  is a sixth the volume  Ω := |det([u, v, w])|  of a parallelepiped 
whose three edges emanating from a vertex at  o  are  u, v, w .

Why  “a sixth” ?  Cut a cube into six congruent tetrahedra each another’s reflection in a diagonal cutting plane.

Now  Ω2  can be expressed as a cubic polynomial in the squares of the six edge-lengths:

u

v

wU

V
W

o2θ
2φ2ψ
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   Ω2 =  det([u, v, w]' [u, v, w])  =  det( ) ;

and substitute   u'v  = (u2+v2–W2)/2  etc.  to get

   4Ω2 =        =  det( )/2 .

This polynomial is irreducible.  However,  substituting  u'v  = uv·cos(2ψ)  etc.  yields

   Ω2 =  det( )  = 

 =  (uvw)2·( 1 – cos2(2θ) – cos2(2φ) – cos2(2ψ) + 2·cos(2θ)·cos(2φ)·cos(2φ) )  =
 =  4·(uvw)2·sin(θ+φ+ψ)·sin(φ–ψ+θ)·sin(ψ–θ+φ)·sin(θ–φ+ψ)  .

Except for the determinants,  everything on this page down to here was known to  Euler  in the  1750s.

Substituting  θ = arctan(√…)  etc.  produces our factored backward stable formula for  
Volume  after laborious simplification assisted by a computerized algebra system.

u'u u'v u'w

v'u v'v v'w

w'u w'v w'w

         4u2v2w2  – u2(v2+w2–U2)2 –

   – v2(w2+u2–V2)2 – w2(u2+v2–W2)2 +

   + (v2+w2–U2)(w2+u2–V2)(u2+v2–W2)

0 u
2

v
2

w
2

1
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2
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 uv cos 2ψ( )  uw cos 2ϕ( )
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wu cos 2ϕ( )  wv cos 2θ( ) w
2



VtetLang.pdf                                                                  WORK IN PROGRESS  –  SUBJECT TO CHANGE                                                                       Page 20/31

(C) W. Kahan                                                                                                                                                                                 version dated    April 3, 2012 4:34 am

Digression:  Why is a tetrahedron’s  Volume  a well-conditioned function of edge-lengths
      provided its every vertex projects perpendicularly to a point inside its opposite face?

Such a tetrahedron’s  Volume  must be an increasing function of each edge-length:
Top view     Edge-on view 

    

In such cases,   Volume =: ¥(u, U, v, V, w, W)   is a function with first partial derivatives
    ¥u := ∂¥/∂u > 0 ,   ¥U := ∂¥/∂U > 0 ,   ¥v := ∂¥/∂v > 0 ,   …,   ¥W := ∂¥/∂W > 0 .

Changing all edge-lengths by factors no farther from  1  than  (1±δ)  changes  Volume  by 

an amount no worse than   ±(u·¥u + U·¥U + v·¥v + … + W·¥W)δ   if terms of order  δ2  are 

ignored.  Now,  ¥  is  Homogeneous of degree  3 ;  this means for every  λ > 0  that  

¥(λu, λU, λv, λV, λw, λW) = λ3·¥(u, U, v, V, w, W) .  Therefore  Euler’s  identity  says 
that   u·¥u + U·¥U + v·¥v + … + W·¥W = 3¥ = 3·Volume ,  whence it follows that  Volume  

changes by a factor no worse than  (1 ± 3δ)  when its data change by  (1±δ) .

Under these circumstances,  Volume’s  Condition Number  is  3 .

u
v

w
U

V
W

u & v

U & VW

w

Volume  is a third the product of
Base Area  times  Altitude,  which
increases with edge-length  w  so
long as the top vertex projects
perpendicularly to the base’s 
interior,  as shown here. 
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The foregoing analysis of  Volume’s  condition number inspires another way to 
compute  Volume  as the square root of an unfactored polynomial:

Volume = √( H(u2, U2, v2, V2, w2, W2) )/12  where  H  is the homogeneous polynomial

  H(x,X,y,Y,z,Z) := 4xyz – x(y+z–X)2 – y(z+x–Y)2 – z(x+y–Z)2 + (y+z–X)(z+x–Y)(x+y–Z)
of degree  3 .  This  H  satisfies  Euler’s  identity  

3H = x ∂H/∂x + X ∂H/∂X + y ∂H/∂y + Y ∂H/∂Y + z ∂H/∂z + Z ∂H/∂Z
in which each partial derivative  ∂H/∂…  is a homogeneous polynomial of degree  2 .  For 
instance,

∂H/∂x =  K(x, X, y, Y, z, Z) :=  (x–z–Y)(x–y–Z) – (x–z + X–Z)(x–y + X–Y) .
Moreover,  because  H  is unchanged by certain permutations of its arguments,  namely 
those that correspond to the  24  permutations of the tetrahedron’s vertices,  we find that
   ∂H/∂x = K(x,X,y,Y,z,Z) ,    ∂H/∂y = K(y,Y,z,Z,x,X) ,    ∂H/∂z = K(z,Z,x,X,y,Y) ,
   ∂H/∂X = K(X,x,y,Y,Z,z) ,    ∂H/∂Y = K(Y,y,z,Z,X,x) ,    ∂H/∂Z = K(Z,z,x,X,Y,y) .

Consequently all six derivatives can be computed from six invocations of one program that 

computes  K(u2, U2, v2, V2, w2, W2)  from,  say,  the carefully crafted expression
   ((u–w)(u+w) – V2)((u–v)(u+v) – W2) – ((u–w)(u+w)+(U–W)(U+W))((u–v)(u+v)+(U–V)(U+V)) .

It yields another way to obtain  Volume = √3H/432  with no division and one square root.

Why this method suffers less than the other unfactored expressions do from roundoff is not yet clear.
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Numerical Tests:                                          (These will be changed.)
A problem not yet fully solved is the generation of test data consisting of edge-lengths with known  
Volumes  that reveal the weaknesses of the various formulas available to test.  The six formulas
tested and compared here were these:

• Two  5-by-5 determinants   det( )   and   det( ) .

• Three arrangements of  Euler’s  polynomial:  Euler’s identity,  No divide,  One divide.
• The new allegedly backward stable factored expression with four extra square roots.

All data was submitted permuted all  24  ways to find the worst harm due to roundoff.
All data was representable  Exactly  in  4-byte  float s  (24 sig. bits).
Test Data: 

Case u U v V w W Volume Cond.#

1 66 66 66 66 66 66 33881.72852733461 3

2 777 222 444 666 444 555 8205786 6.347

3 1332 666 1443 555 1443 555 65646288 3

4 240 125 117 244 44 267 205920 3

5 4444 3535 3232 7676 3333 7070 3090903 5.2107

6 2121 5858 3232 7676 5656 4747 3090903 5.0107

7 16000001 5656.875 16000000 8000 15999999 5657.25 85339610684978.15 3.000
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Test Results:    Correct sig. bits for  Worst Permutations  of  Edge-Lengths

All results above were obtained from arithmetic rounded to  float   precision  (24 s.b.).
Results obtained from arithmetic all rounded to  double   precision  (53 s.b.)  were 

CaseDet1 Det2 E’s Ident. No Div. One Div. New way Cond.#
1 21 22 24 24 24 24 3

2 21 21 24 20 21 22 6.347

3 21 21 24 20 22 22 3

4 21 21 24 20 22 24 3

5 0 0 1 0 0 4 1.5225

6 1 0 0 0 0 4 1.5225

7 20 4 6 3 3 22 3.000

CaseDet1 Det2 E’s Ident. No Div. One Div. New way Cond.#
1 53 53 53 53 53 53 3

2 50 49 53 51 52 52 6.347

3 50 49 53 53 52 53 3

4 51 50 53 53 53 53 3

5 29 29 31 27 30 33 1.5225

6 29 29 31 29 32 32 1.5225

7 49 32 33 9 31 51 3.000
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Our backward stable factored formula for  Volume  appears to be new.

Since a backward stable formula has been sought for a long time,  our formula must be too 
unobvious for even expert programmers who seek such a thing to be expected to find it.

I wish it did not exist,  because then I could make a stronger case for supporting
floating-point variables of arbitrarily high dynamically adjustable precision

fully in all programming languages promoted,  like  Java,  for general-purpose use.

( Why not program in  Derive,  Macsyma,  Maple,  Mathematica, …  ?
Programs that run too slow don’t get run.

Besides,  these systems lack competent  Interval Arithmetic  to assist 
error analysis without which we can’t know what precision to use.)

Floating-point computation has been changed drastically by …
•  Profound declines in the costs of memory and arithmetic hardware,
•  Near-zero time to perform hardware arithmetic,  but still slow memory access,
•  The  Internet  broadcasts software from many sources fast,  far and wide.

Most by far of the floating-point operations in programs were put there by programmers 
exposed to at most an hour or two of instruction in the nature of floating-point arithmetic.

How can we defend ourselves against their well-intentioned ignorance?
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Most by far of the floating-point operations in programs were put there by programmers 
exposed to at most an hour or two of instruction in the nature of floating-point arithmetic.

How can we defend ourselves against their well-intentioned ignorance?

Competent error-analysis is expensive of talent and time;  the expense cannot be justified 
for most numerical software,  so it it distributed after perfunctory analysis and testing.

How can we defend ourselves against this predictable omission of  Due Diligence ?

There is a defense.  It is based soundly upon  Error-Analysis.

There are two kinds of numerical instability:

•  Numerical instability for a substantial fraction of valid data.
e.g.:  unstable formulas for differential equations and matrix computations.

This need not concern us because even perfunctory testing is likely to expose it and
thus inhibit its promulgation.   (Otherwise such programs are grist for lawyers’ mills.) 

•  Numerical instability for so tiny a fraction of valid data that its discovery is unlikely.
This is the threat against which we need a defense,  even if it’s not impermeable.

The defense:  Use the widest precision that does not run too slow.
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How does increased precision reduce the incidence of embarrassment by roundoff?

Look at the space of all data for a computed function:

    

All accuracy is lost at data lying on a locus of singularities either of the function being computed  
(near which locus the function is deemed ill-conditioned)  or else of the algorithm executed by the 
program  (which is therefore deemed numerically unstable near such data).  At data far enough 
away from this  Pejorative Locus  of singularities,  the program’s accuracy is adequate.  Between 
such data and the  Pejorative Locus  is a threshold shown as a  dashed line  above.

Increasing the precision of  all intermediate computation  (but not the data)  reduces the  
content  (number,  area,  volume,  …)  between the threshold and the  Pejorative Locus,  
thus reducing the incidence of data for which the program’s accuracy is inadequate.

Every extra three sig. dec. or ten sig. bits of intermediate precision reduces that incidence 
by a factor typically of  1/1000  or less,  often much less.  ( 1/1000000  for complex arithmetic.)

Accuracy 
in here is
adequate.

All
accuracy 
is lost
here.

Accuracy is
inadequate
in here.

Pejorative
Locus

(The width of
  this region
  has been
  exaggerated.
  Actually it is so tiny that it is hard to find.)

Examples of  Pejorative  Loci:

     For matrix inversion:
           Singular matrices.

     For tetrahedra’s volume:
            Volume = 0 .
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The moral of this story:

By default,  all intermediate computations not explicitly narrowed by the programmer for 
cause should be carried out in the machine’s widest precision that does not run too slow.

Old  Kernighan-Ritchie  C  got it right on the  PDP-11 :
It evaluated all floating-point  Anonymous Variables  (subexpressions,  literal constants 
not representable exactly,  functions’ actual arguments)  in  double   even if the 
declared variables’ precisions were all  float  .  (The  PDP-11  ran faster that way.)

The widest precision that’s not too slow on today’s most nearly ubiquitous  “Wintel”  
computers is not  double   (8 bytes wide,  53 sig. bits)  but  IEEE 754 double 
extended   or  long double   (≥10 bytes wide,  64 sig. bits).  This is the format in 
which all local scalar variables should be declared,  in which all anonymous variables 
should be evaluated by default.   C99  would permit this  (not require it,  alas),  but …

•  Microsoft’s  compilers for  Windows  NT,  2000,  …  disable that format.
•  Java  disallows it.    Most  ANSI  C,  C++  and  Fortran  compilers spurn it.

( Apple’s  SANE  got it right for  680x0-based  Macs,  but lost it upon switching to  Power-Macs.)

Most language designers and implementors ignorantly perpetuate unsound practices that 
error-analysts tolerated only reluctantly as expedients in the mid-1960s  when computer 
memories were small and compilers had to work in one pass in a batch environment.
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What few  Rules of Thumb  can we teach students in  Programming  classes?

Four  Rules of Thumb  for  Best Use  of  Modern Floating-point Hardware
all condensed to one page,  to be supported by programming languages for a mass market

0. All  Rules of Thumb  but this one are fallible.  Good reasons to break rules arise occasionally.

1. Store large volumes of data and results no more precisely than you need and trust.
Storing superfluous digits wastes memory holding them and time copying them.

2. Evaluate arithmetic expressions and,  excepting too huge arrays,  declare temporary
   (local)  variables  all  with the widest finite precision that doesn’t run too slow.

Compiler optimizations mitigate a performance penalty incurred by following this rule naively.

3. Objects represented by numbers should ideally have a parsimonious representation,
called  “fiducial”  and rounded as rule  1  says,  from which all other representations
and attributes are computed using wider precision as rule  2  says.

     For instance,  a triangle can be represented fiducially by  float   vertices from which edges are computed in
     double ,  or by  float   edges from which vertices are computed in  double .  Computing either in  float   

from the other may render them inconsistent if the triangle is too obtuse.  In general,  a satisfactory fiducial
representation can be hard to determine.  Moreover,  an object in motion may require  two  representations,
both a moving  double   and,  obtained from it by a cast  (rounding down),  a  float   fiducial snapshot.

For more details see some of the postings on my web page.

Programming Language  texts can explain these rules in a short  Floating-Point  chapter.
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Times have changed.

Numerical computation for  Science,  Engineering,  and  (differently)  Business  used to 
be the  raison d’être  for computers.  Now most of them serve merely to entertain;  and  
Computer Science  treats  Numerical Analysis  as if it were a sliver under its fingernail.

Here is my call to the  Programming Language  community:

Think not of obeisance to  Numerical Analysis;
think about  Self-Defence.

You too will unwittingly execute programs the  World-Wide Web  brings you from 
programmers whose acquaintance with  Floating-Point,  Numerical Analysis  and  Error-
Analysis  is no closer than yours,  maybe far more remote.  What are your chances?

Do you remember a time when the ability to change tires and spark-plugs,  to clean out a carburettor float-bowl,  
and to adjust ignition timing and choke was required to drive a car?  So far as  Floating-Point  is concerned,  Java  
is still stuck back in that era.
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More Stories for Another Day:

How likely is a programmer to find an unobvious numerically stable algorithm?

How likely is a programmer to use an unobviously numerically unstable algorithm?

How can a software user diagnose a rare affliction by numerical instability? (Directed roundings)

And what can he do about it without crippling performance?   (Consult an  Error-Analyst) 

How should  Rules of Thumb for Floating-Point Computation  be taught to programmers 
while they are students still innocent of any interest in the subject?  (With  $$$  examples.) 

How are the prospects for correct computation enhanced by the provision of … 
•  Dynamically adjustable precisions for floating-point variables ?
•  Proper management of mixed-precision expressions and precision-inheritance ?
•  Tools like  Interval Arithmetic  for the proper choice of higher precisions ?

How should languages like  Java,  C,  Fortran, …  handle floating-point variables declared
wider than the widest that does not run too slow?  (See citations in  Farnum [1988]  etc.)

Why is  “About as accurate as the data deserve”  too inaccurate for most situations?
“Use every man after his desert,  and who should ‘scape whipping?”

(Hamlet  iv. 561)
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