

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 1/31

(C) W. Kahan version dated April 3, 2012 4:34 am

What has the

Volume of a Tetrahedron

to do with

Computer Programming Languages?

Prof. W. Kahan
Mathematics Dept., and

Elect. Eng. & Computer Science Dept.
University of California at Berkeley

Prepared for
Prof. B.N. Parlett’s Seminar on Computational Linear Algebra

Wed. 21 March 2001
and Stanford’s Scientific Computing Seminar

Tues. 17 April 2001

<http://www.cs.berkeley.edu/~wkahan/VtetLang.pdf>

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 2/31

(C) W. Kahan version dated April 3, 2012 4:34 am

Contents:

 Page Topic Skip on first reading?

 3 Abstract
 4 Too many unanswered questions about simple geometrical computations
 5 How accurate is “About as Accurate as the Data Deserve” ?
 6 Area of a Triangle from its Edge-Lengths
 7 Examples of Computed

Area

s of Triangles, and their Sensitivities to Directed Roundings
 9 How Factorization tends to Attenuate Inaccuracy
11 Volume of a Tetrahedron from its Edge-Lengths
12 How Hard can Computing Determinants and Polynomials be ?
13 Digression: Preconditioning by Diagonal Scaling Skip
14 Digression: Preconditioning by

Exact

 Elementary Operations Skip
15 Digression: Iterative Refinement of Triangular Factors Skip
16 An Unobvious Factorization of a Tetrahedron’s Volume
18 Digression: Whence comes our Factored Form … ? Skip
20 Digression: Why is …

Volume

 Well-Conditioned … Provided … ? Skip
22 Numerical Tests (These will be changed) Skip
24 Our … formula for

Volume

 appears to be new, … I wish it did not exist.
25 How can we defend ourselves … ?
26 How does increased precision reduce the incidence of embarrassment by roundoff?
27 Kernighan-Ritchie C got it right on the PDP-11
28 What few Rules of Thumb can we teach students in Programming classes?
29 Think not of Obeisance to Numerical Analysis, …
30 More stories for another day Skip
31 Relevant Reading Skip

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 3/31

(C) W. Kahan version dated April 3, 2012 4:34 am

What has the Volume of a Tetrahedron to do with Programming Languages?

Abstract:

 The computation of a tetrahedron’s volume has been chosen as a didactic
example elementary enough to be tolerated by the intended audience (who have forgotten
most of the calculus and linear algebra they encountered in college) yet difficult enough to
impart an appreciation of the challenges faced by applications programmers lacking in
numerical experience though clever about other things. These challenges are exacerbated
by programming languages like C++ and Java that perpetuate practices, accepted only
as expedients in the 1960s, that now inflate the languages’ capture cross-section for error.
By treating the tetrahedron’s volume as a case study we can formulate better guidelines for
programming languages to handle floating-point arithmetic in ways compatible with the
few rules of thumb that should be (but are still not being) taught to the vast majority of
programmers, who learn no more about floating-point than they hear in a programming
class or read in a programming language manual. Complaining about education rarely
improves it; our efforts are better spent redesigning computer systems and languages to
attenuate occasional harm caused by well-intentioned ignorance among the multitudes.

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 4/31

(C) W. Kahan version dated April 3, 2012 4:34 am

Many textbooks offer formulas for simple geometrical computations. But they leave …

… too many Questions Unanswered :

If such a formula is copied into a computer program written in a familiar language, say
Java, C++, C, Fortran, Pascal, or …,

how likely will the program yield

satisfactorily accurate

 results despite roundoff?

If results are unsatisfactory, how will the programmer know? And then do what?

(Only a tiny percentage of programmers ever take a competent course in

Numerical Analysis

.)

If results are unsatisfactory, how will the program’s user know? And then do what?

(The World-Wide Web can promulgate a program instantly to a billion unwitting users.)

What does “

satisfactorily accurate

” mean?

• Correct in all but the last digit or two stored? Is this feasible? … practical?
• About as accurate as the data

deserve

 ? What does “

deserve

” mean?

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 5/31

(C) W. Kahan version dated April 3, 2012 4:34 am

How accurate is “About as accurate as the data deserve” ?

Backward Error-Analysis

 :
 Let F(X) be what is delivered by a program F intended to compute a function ƒ(x) .
 Let X+

∆

X range over data regarded as practically indistinguishable from X .
 Then F(X) is deemed “About as accurate as the data deserve” or “Backward Stable”
 just when F(X) – ƒ(X) is not much bigger than ƒ(X+

∆

X) – ƒ(X) can get.

If ƒ(X+

∆

X) – ƒ(X) can get too much bigger than

∆

X we call ƒ(…)

Ill-Conditioned

 at
X and blame the inaccuracy of F(X) upon the data X rather than the program F .

Relative error’s magnification is gauged by a

Condition Number

 like

|

 df(x)/dx

|

/

|

 f(x)/x

|

 .

Example:

Data X := Array [

B

,

c

] ;

ƒ

(X) :=

B

–1

c

 would solve “

B

·

ƒ

 =

c

 ” .

Gaussian Elimination with Pivoting

 computes

F

(X) = (

B

+

∆

B

)

–1

(

c

+

∆

c

) for some tiny roundoff-
induced perturbations

∆

… usually tinier than the data’s uncertainty. If error

F

(X) –

ƒ

(X) is huge
we blame an “ill-conditioned” matrix

B

 rather than the program, nowadays deemed “Backward
Stable” though on rare occasions it isn’t.

(See <www.eecs.berkeley.edu/~wkahan/Math128/FailMode.pdf>

)

Warning:

 Elimination

 without

 pivoting misbehaves on many well-conditioned matrices

B

 with modest condition-

numbers ||

B

||·||

B

–1

|| . Naive numerical programs are too often numerically unstable at otherwise innocuous data.

•
X+∆X

• ƒ(X)
ƒ(X+∆X)

• F(X)
X ƒ

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 6/31

(C) W. Kahan version dated April 3, 2012 4:34 am

Area of a Triangle from its Edge-Lengths:

Edges have lengths u, v, w .

Area

 =

√

(–

det()

)/

4 =

√

(

 s·(s–u)·(s–v)·(s–w)

)

 where s := (u+v+w)

/

2 .

The formula containing s is attributed to Heron of
Alexandria though it was known to Archimedes.

These are classical formulas found in many textbooks. For some data, roundoff can
degrade either formula badly, especially when the triangle is too needle-shaped. However

Area

 is very Well-Conditioned for all

acute

 triangles, no matter how needle-shaped.

For all acute triangles,

Area

’s Condition Number is 2 .
See “Miscalculating Area and Angles of a Needle-Like Triangle” on my web page.

The next formula is fully

Accurate

 (not merely Backward Stable):

Area

 =

√

(

 (u+v+w)·(v–w+u)·(w–u+v)·(u–v+w)

)

/

4 provided
every

Facial Difference

 like (u–v+w) is computed from an
expression like

(

 max{u, w} – v

)

 + min{u, w} respectively.

(If massive cancellation occurs here it is benign because it involves only data prior to roundoff.)

All three formulas for

Area

 are algebraically equivalent in the absence of roundoff.

How obvious is the last formula’s accuracy

versus

 the others’ inaccuracy ?

u

v
w0 u

2
v

2
1

u
2

0 w
2

1

v
2

w
2

0 1

1 1 1 0

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 7/31

(C) W. Kahan version dated April 3, 2012 4:34 am

Examples of Computed Areas of Triangles

Digits known to be wrong are displayed bold. Triangles marked * have well-conditioned Areas.
Computations were performed by an HP-15C that stores 10 sig. dec. digits; its DET carries 13 .
Note how scaling or permuting the data can degrade the determinantal formula more than the others.

Edge-length
u

Edge-length
v

Edge-length
w

Determinantal
Area

Heron’s
Area

Accurate
Area

* 10 11 12 51.52123350 51.52123349 51.52123349

* 100000 100000 1.00005 50002.50000 50010.0 50002.50003

* 100000 100000 1.5 75000.00000 75000.00000 75000.00000

* 0.1 0.1 0.0000015 7.110–8 7.50000010–8 7.50000010–8

99999.99996 0.00003 99999.99994 1.3 Error 1.118033988

0.00003 99999.99994 99999.99996 1.06 Error 1.118033988

10000 5000.000001 15000 605.8 0 612.3724358

5000.000001 10000 15000 778. 0 612.3724358

99999.99999 99999.99999 200000 Error 0 Error

5278.64055 94721.35941 99999.99996 Error Error 0

100002 100002 200004 Error 0 0

31622.77662 0.000023 31622.77661 0.364 0.447 0.327490458

* 31622.77662 0.0155555 31622.77661 245.95405 246.18 245.9540000

u v w Determinantal Heron’s Accurate

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 8/31

(C) W. Kahan version dated April 3, 2012 4:34 am

Sensitivity to Rounding Directions of two different formulas to calculate
 the Area of a Triangle from the Lengths of its Sides

(calculations performed upon 4-byte float data).

Note that only incorrect results change drastically when the rounding direction changes, and
that old-fashioned Kernighan-Ritchie C gets fine results from an “unstable” formula by
evaluating all subexpressions in double even if they contain only float variables.
(This matters only to double s = (u+v+w)/2 whose rounding error is critical.)

Rounding
direction

Heron’s Formula

(unstable in float)

Accurate Formula

(stable in float)

Heron’s Formula
(all subexpressions

double like K-R C)

Ill-Conditioned u=12345679 > v=12345678 > w=1.01233995 > u–v

to nearest 0.0 972730.06 972730.06

to +∞ 17459428.0 972730.25 972730.06

to –∞ 0.0 972729.88 972730.00

to 0 –0.0 972729.88 972730.00

Well-Conditioned u=12345679 = v=12345679 > w=1.01233995 > u–v

to nearest 12345680.0 6249012.0 6249012.0

to +∞ 12345680.0 6249013.0 6249012.5

to –∞ 0.0 6249011.0 6249012.0

to 0 0.0 6249011.0 6249012.0

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 9/31

(C) W. Kahan version dated April 3, 2012 4:34 am

How Factorization tends to Attenuate Inaccuracy

Suppose E = A·C + B·D and F = A·D + B·C wherein A, B, C, D, E, F are all
positive-valued expressions each computable within a small relative uncertainty ±δ ;
 i.e., the computed value of A is A(1±δ) , of B is B(1±δ) , …, of F is F(1±δ) .

Which of two algebraically equivalent formulas for G , namely
G := E–F and
G := (A–B)·(C–D) ,

is likely to be less inaccurate after severe cancellation? Answer: the factored formula.

“ G := (A–B)·(C–D) ” is uncertain by ±((A+B)·|C–D| + |A–B|·(C+D))δ ignoring δ2 .
“ G := E–F ” is uncertain by ±(E+F)δ = ±(A+B)·(C+D)δ ,

even if computed without first computing A, B, C, D .

The two formulas’ uncertainties differ substantially only when both |A–B|/(A+B) and
|C–D|/(C+D) are tiny, and then the factored formula is substantially less uncertain than
the other. In short, the factored form of G is never much more uncertain, and can be far
less uncertain when severe cancellation leaves |G| = |E–F| << E+F .

The factored formula’s advantage is substantial only when both factors are small after cancellation;
then each factor’s rounding errors get attenuated by multiplication by the other factor.

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 10/31

(C) W. Kahan version dated April 3, 2012 4:34 am

How Factorization tends to Attenuate Inaccuracy … continued …

In the event that roundoff is followed by severe cancellation,
“ G := (A–B)·(C–D) ” can be far less uncertain than “ G := E–F ” .

Locus in Data-Space where G = 0 :

This argues in favor of of factored formulas whenever a function G to be computed …
• vanishes on (self-)intersecting surfaces in the space of all eligible data, provided
• the factored form is not too much more expensive to compute than the other form,
• no other unfactored expression for G far less uncertain than E–F is known.

The idea is illustrated (too) well by the triangle’s
 Area = √((u+v+w)·(v–w+u)·(w–u+v)·(u–v+w))/4 .
 Area = 0 wherever one edge-length equals the other two’s sum.

But, to make matters more interesting, factored formulas need not exist; and when they
do exist they need not be determinable uniquely, not even for polynomial functions of
given data, as we shall see later when we factor the formula for a tetrahedron’s volume.

A=B

C=D

•

Region in Data-
Space where
Factorization
helps most.

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 11/31

(C) W. Kahan version dated April 3, 2012 4:34 am

Volume of a Tetrahedron from its Edge-Lengths:
Edge-lengths are u, U, v, V, w, W in any order that pairs
opposite edges’ lengths thus: (u, U), (v, V), (w, W) .

 Volume = √(det()/288)

= √(4u2v2w2 – u2(v2+w2–U2)2 – v2(w2+u2–V2)2 – w2(u2+v2–W2)2 +

 + (v2+w2–U2)(w2+u2–V2)(u2+v2–W2))/12 .

These classical formulas come from textbooks like D.M.Y. Sommerville’s Analytical
Geometry of Three Dimensions, Cambridge Univ. Press, 1951. Neither formula need be
Backward Stable when the tetrahedron is flat (like an arrow-head) or needle-shaped.

Volume is a well-conditioned (Cond. No. = 3) function of edge-lengths whenever every vertex
projects perpendicularly to the inside of the opposite face, no matter how nearly the tetrahedron may
resemble a javelin. This is why Volume can be difficult to compute as accurately as the data deserve.

The polynomial inside √(…) was published by Euler in 1752. It has no nontrivial
factors that are polynomials in the six edge-lengths; but we shall factor it later anyway.

u
v

w
U

V
W

0 u
2

v
2

w
2

1

u
2

0 W
2

V
2

1

v
2

W
2

0 U
2

1

w
2

V
2

U
2

0 1

1 1 1 1 0

 This computation is infrequent.
The volume of a tetrahedron is computed
far more often from the coordinates of
its vertices than from its edge-lengths.

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 12/31

(C) W. Kahan version dated April 3, 2012 4:34 am

How Hard can Computing Determinants and Polynomials Accurately Be ?

Accuracy of algebraic computations is limited NOT by the precision of a computer’s
floating-point hardware, but by its Over/Underflow thresholds. Within those limits,
arbitrarily high precision floating-point can be simulated by exclusively floating-point
operations built into hardware, though the cost rises like the square of the high precision.

See thesis and paper by Doug Priest [1991], and consequent work by Prof. J. Shewchuk at
 www.cs.berkeley.edu/~jrs/… and www.cs.cmu.edu/~quake/robust.html .

Thus, the feasibility of computing a tetrahedron’s Volume accurately is not in question;
only the costs of doing so (or failing to do so) are at issue:

• Cost to the programmer — time spent on development and testing;
• Cost to the user — execution time and impact of inaccuracy.

Programs that run too slow don’t get run.

Usually determinants are computed well enough with ordinary precision provided …
• Precondition by diagonal scaling to avoid severely disadvantageous pivot choices.
• Precondition by exact elementary operations inferred from an approximate inverse.
• Iteratively refine the triangular factors from which the determinant is computed.

Three Digressions: These three unfamiliar techniques will be explained to numerical practitioners
curious about them, though they are palliatives at best, and often they are no help at all.

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 13/31

(C) W. Kahan version dated April 3, 2012 4:34 am

Digression: Preconditioning by Diagonal Scaling.
Its purpose is to prevent severely disadvantageous pivot choices. For instance,

Volume = √(det()/288) = √(det()/288) ,

would normally be computed by Gaussian Elimination (triangular factorization) but the selection of
pivots could be quite different for these two determinants. However, if all edge-lengths u, U, …, W
are tiny enough, the latter determinant will so closely resemble

√(det()/288) = 0

that the first pivot selection will disregard the data, thereby spoiling it if edge-lengths have widely
different magnitudes, even though they do determine the Volume relatively well; it would be
homogeneous of degree 3 in edge-lengths if roundoff did not interfere. (Unfortunate pivot selection
can afflict the first determinant too, but the explanation takes longer.) If some permutations of the
tetrahedron’s vertices produce Volumes too different from the others, suspect poor pivot selection.

Many people regard matrices as well-scaled when every row and every column has at least one
element roughly the same in magnitude as the biggest element. This criterion is mistaken.

A better criterion is that every column-sum and row-sum of magnitudes be nearly the same;
this criterion can be satisfied only approximately and only by iteration. It’s a story for another day.

0 u
2

v
2

w
2

1

u
2

0 W
2

V
2

1

v
2

W
2

0 U
2

1

w
2

V
2

U
2

0 1

1 1 1 1 0

0 1 1 1 1

1 0 U
2

V
2

w
2

1 U
2

0 W
2

v
2

1 V
2

W
2

0 u
2

1 w
2

v
2

u
2

0

0 1 1 1 1

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 14/31

(C) W. Kahan version dated April 3, 2012 4:34 am

Digression: Preconditioning by exact elementary operations.
These are inferred from an approximate inverse and performed in somewhat extra-precise arithmetic.

Suppose det(B) is tiny because of massive cancellation; then B–1 must be huge and B–1·B = I

must largely cancel. Therefore rows of B–1 computed approximately provide linear combinations of
rows of B that all almost vanish by cancellation. Choose one of the bigger rows b' of a computed

B–1 so that b'B ≈ o' after cancellation; it would be a row of I if it weren’t approximate.

Now let r' := round(µb') scaled and rounded to integers small enough that r'B is computed exactly.
“Small enough” depends upon how many bits of precision are available in excess of those needed to
represent the given data B exactly. The more extra bits, the bigger are the integers in r' , and the
better they work. Now r'B is an exact linear combination of the rows of B that almost cancels out.

Replacing a row of B by such a linear combination computed exactly replaces B by a new matrix
B whose determinant is a known multiple of det(B) . Let ß be an element of biggest magnitude in
r' , and let j be its column index. The replacing row j in B by r'B yields a new matrix B with
det(B) = ß·det(B) , and easier to compute accurately after preconditioning by diagonal scaling.

The process may be repeated so long as r'B can be computed exactly; each repetition moves more
cancellation from inside the determinant calculation to ahead of it where the cancellation is harmless.

This process is one of the arcane motives for introducing the Inexact flag into IEEE Standard 754 for Floating-
Point Arithmetic. The process dates back to the days of desk-top (electro-)mechanical calculators whose operators
could see easily whether computations of r'B had been performed exactly. For another application see the
Advanced Functions Handbook [1982] for the HP-15C calculator.

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 15/31

(C) W. Kahan version dated April 3, 2012 4:34 am

Digression: Iterative refinement of triangular factors.
In order to compute det(B) given square matrix B , Gaussian Elimination or the Crout-Doolittle
method first obtains an approximate triangular factorization L·U ≈ PB . Here L is unit lower
triangular, U is upper triangular, and P is a permutation matrix determined by pivotal exchanges;
det(L) = 1 and det(P) = ±1 , so det(B) = det(P)·det(U) can be computed from the product of U’s
diagonal elements. But they are contaminated by accrued roundoff that we wish to attenuate. What
follows does so with extra-precise arithmetic confined to the computation of the Residual .

Compute the residual P∆B := PB – L·U accumulating products extra-precisely. To estimate a strictly
lower triangular ∆L (with zeros on its diagonal) and an upper triangular ∆U satisfying the equation
(L+∆L)·(U+∆U) = PB more nearly exactly, solve the equation (L+∆L)·∆U + ∆L·U = P∆B using
just working-precision arithmetic. This equation seems nonlinear, but it can be solved for the rows of
∆U and columns of ∆L in interlaced order: row#1 of ∆U , then column#1 of ∆L , then row#2 of
∆U , then column#2 of ∆L , … as illustrated below:

 P∆B = (L+∆L) · ∆U + ∆L · U .

 P∆B = · + · .
Compute first a’s,

then b’s, then c’s,
…, then h . .

(There are other workable orderings.) The process then writes L+∆L over L and U+∆U over U ,
rounding them off to working precision, and recomputes det(U) . This process may be repeated until
it encounters a Law of Diminishing Returns, which sets in soon enough to vitiate repetitions after the
first or second. The result’s utimate accuracy is limited by the residual’s accuracy after cancellation.

1

a 1

a c 1

a c e 1

a c e g 1

 b b b b

 d d d

 f f

 h

a

a c

a c e

a c e g

u u u u u

 u u u u

 u u u

 u u

 u

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 16/31

(C) W. Kahan version dated April 3, 2012 4:34 am

An Unobvious Factorization of a Tetrahedron’s Volume

First compute nine Facial Differences belonging to three of the tetrahedron’s four faces:
XU := w–U+v , Xv := U–v+w , Xw := v–w+U , (Recall from Area how

YV := u–V+w , Yw := V–w+u , Yu := w–u+V , to compute all Facial

ZW := v–W+u , Zu := W–u+v , Zv := u–v+W . Differences accurately.)

(These nine are not linearly independent.) Also needed are three facial sums
X0 := U+v+w = XU+Xv+Xw ,

Y0 := V+w+u = YV+Yw+Yu ,

Z0 := W+u+v = ZW+Zu+Zv .

Next combine these 12 facial sums and differences in pairs into 6 products:
X := XU·X0 = (w–U+v)·(U+v+w) , x := Xv·Xw = (U–v+w)·(v–w+U) ,

Y := YV·Y0 = (u–V+w)·(V+w+u)), y := Yw·Yu = (V–w+u)·(w–u+V) ,

Z := ZW·Z0 = (v–W+u)·(W+u+v) , z := Zu·Zv = (W–u+v)·(u–v+W) .

(Subscripts are no longer needed.) The 6 products are independent positive variables from which
all 6 edge-lengths can always be recovered; for instance

u = √((Y+y)·(Z+z)/(X+x))/2 , and

U = √((X·(Y+y–Z–z)2 + x·(Y+y+Z+z)2)/((Y+y)·(Z+z)))/2 .

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 17/31

(C) W. Kahan version dated April 3, 2012 4:34 am

So far we have computed accurately the six products
X := (w–U+v)·(U+v+w) , x := (U–v+w)·(v–w+U) ,
Y := (u–V+w)·(V+w+u)), y := (V–w+u)·(w–u+V) ,
Z := (v–W+u)·(W+u+v) , z := (W–u+v)·(u–v+W) .

Next compute four square roots of four products of products:
ξ := √xYZ , η := √yZX , ζ := √zXY and λ := √xyz .

Then the tetrahedron’s volume turns out to be
Volume = √((ξ+η+ζ–λ)·(λ+ξ+η–ζ)·(η+ζ+λ–ξ)·(ζ+λ+ξ–η))/(192 u·v·w) .
~ ~

All factors turn out to be positive for a non-degenerate tetrahedron. Because this unobvious property
is invisible to automated algebra systems like Derive, Maple and Mathematica, they cannot prove
our formula for Volume valid with just one Simplify command.

Our factored Volume formula is Backward Stable provided the edge-length pairs are so
ordered that the three smallest of twelve facial differences lie among the nine used.

This claim’s proof is utterly unobvious yet crucial since Volume can be a well-conditioned function
(Cond. No. = 3) of edge-lengths for certain javelin-shaped tetrahedra despite numerical cancellation.

Digressions:
When is Volume’s Condition Number so small as 3 ?
Whence comes our factored form of Euler’s formula for a tetrahedron’s Volume ?

u
v

w
U

V
W

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 18/31

(C) W. Kahan version dated April 3, 2012 4:34 am

Whence comes our factored form of Euler’s formula for a tetrahedron’s Volume ?
Let column-vectors u, v, w be edges emanating from a vertex at o ,
with lengths u, v, w respectively; and let the angles between those
edges be 2θ, 2φ, 2ψ as shown opposite edges with squared lengths

U2 := (v–w)'(v–w) , V2 := (w–u)'(w–u) , W2 := (u–v)'(u–v) resp.
Angles can be obtained from edge-lengths via the face-triangles’
Half-Angle-Tangent-Law:

 (U–v+w)(v–w+U) (V–w+u)(w–u+V) (W–u+v)(u–v+W)
 tan2θ = ––––––––––––––– , tan2φ = ––––––––––––––– , tan2ψ = ––––––––––––––– .

 (w–U+v)(U+v+w) (u–V+w)(V+w+u) (W–u+v)(u–v+W)

Half-angles θ, φ, ψ must satisfy ten inequalities,
first these four: θ+φ+ψ ≤ π , θ ≤ φ+ψ , φ ≤ ψ+θ and ψ ≤ θ+φ ,
and consequently six more: 0 ≤ θ ≤ π/2 , 0 ≤ φ ≤ π/2 and 0 ≤ ψ ≤ π/2 .

Equality in place of any of these ten inequalities signifies a degenerate tetrahedron. For instance, if θ+φ+ψ = π
then vertex o falls into the triangle whose vertices are at the ends of u, v and w ; or if θ = φ+ψ then u runs
through the triangle with vertices at o, v and w . Violation of any inequality is geometrically infeasible.

The tetrahedron’s Volume is a sixth the volume Ω := |det([u, v, w])| of a parallelepiped
whose three edges emanating from a vertex at o are u, v, w .

Why “a sixth” ? Cut a cube into six congruent tetrahedra each another’s reflection in a diagonal cutting plane.

Now Ω2 can be expressed as a cubic polynomial in the squares of the six edge-lengths:

u

v

wU

V
W

o2θ
2φ2ψ

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 19/31

(C) W. Kahan version dated April 3, 2012 4:34 am

 Ω2 = det([u, v, w]' [u, v, w]) = det() ;

and substitute u'v = (u2+v2–W2)/2 etc. to get

 4Ω2 = = det()/2 .

This polynomial is irreducible. However, substituting u'v = uv·cos(2ψ) etc. yields

 Ω2 = det() =

 = (uvw)2·(1 – cos2(2θ) – cos2(2φ) – cos2(2ψ) + 2·cos(2θ)·cos(2φ)·cos(2φ)) =
 = 4·(uvw)2·sin(θ+φ+ψ)·sin(φ–ψ+θ)·sin(ψ–θ+φ)·sin(θ–φ+ψ) .

Except for the determinants, everything on this page down to here was known to Euler in the 1750s.

Substituting θ = arctan(√…) etc. produces our factored backward stable formula for
Volume after laborious simplification assisted by a computerized algebra system.

u'u u'v u'w

v'u v'v v'w

w'u w'v w'w

 4u2v2w2 – u2(v2+w2–U2)2 –

 – v2(w2+u2–V2)2 – w2(u2+v2–W2)2 +

 + (v2+w2–U2)(w2+u2–V2)(u2+v2–W2)

0 u
2

v
2

w
2

1

u
2

0 W
2

V
2

1

v
2

W
2

0 U
2

1

w
2

V
2

U
2

0 1

1 1 1 1 0

u
2

 uv cos 2ψ() uw cos 2ϕ()

vu cos 2ψ() v
2

vw cos 2θ()

wu cos 2ϕ() wv cos 2θ() w
2

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 20/31

(C) W. Kahan version dated April 3, 2012 4:34 am

Digression: Why is a tetrahedron’s Volume a well-conditioned function of edge-lengths
 provided its every vertex projects perpendicularly to a point inside its opposite face?

Such a tetrahedron’s Volume must be an increasing function of each edge-length:
Top view Edge-on view

In such cases, Volume =: ¥(u, U, v, V, w, W) is a function with first partial derivatives
 ¥u := ∂¥/∂u > 0 , ¥U := ∂¥/∂U > 0 , ¥v := ∂¥/∂v > 0 , …, ¥W := ∂¥/∂W > 0 .

Changing all edge-lengths by factors no farther from 1 than (1±δ) changes Volume by

an amount no worse than ±(u·¥u + U·¥U + v·¥v + … + W·¥W)δ if terms of order δ2 are

ignored. Now, ¥ is Homogeneous of degree 3 ; this means for every λ > 0 that

¥(λu, λU, λv, λV, λw, λW) = λ3·¥(u, U, v, V, w, W) . Therefore Euler’s identity says
that u·¥u + U·¥U + v·¥v + … + W·¥W = 3¥ = 3·Volume , whence it follows that Volume

changes by a factor no worse than (1 ± 3δ) when its data change by (1±δ) .

Under these circumstances, Volume’s Condition Number is 3 .

u
v

w
U

V
W

u & v

U & VW

w

Volume is a third the product of
Base Area times Altitude, which
increases with edge-length w so
long as the top vertex projects
perpendicularly to the base’s
interior, as shown here.

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 21/31

(C) W. Kahan version dated April 3, 2012 4:34 am

The foregoing analysis of Volume’s condition number inspires another way to
compute Volume as the square root of an unfactored polynomial:

Volume = √(H(u2, U2, v2, V2, w2, W2))/12 where H is the homogeneous polynomial

 H(x,X,y,Y,z,Z) := 4xyz – x(y+z–X)2 – y(z+x–Y)2 – z(x+y–Z)2 + (y+z–X)(z+x–Y)(x+y–Z)
of degree 3 . This H satisfies Euler’s identity

3H = x ∂H/∂x + X ∂H/∂X + y ∂H/∂y + Y ∂H/∂Y + z ∂H/∂z + Z ∂H/∂Z
in which each partial derivative ∂H/∂… is a homogeneous polynomial of degree 2 . For
instance,

∂H/∂x = K(x, X, y, Y, z, Z) := (x–z–Y)(x–y–Z) – (x–z + X–Z)(x–y + X–Y) .
Moreover, because H is unchanged by certain permutations of its arguments, namely
those that correspond to the 24 permutations of the tetrahedron’s vertices, we find that
 ∂H/∂x = K(x,X,y,Y,z,Z) , ∂H/∂y = K(y,Y,z,Z,x,X) , ∂H/∂z = K(z,Z,x,X,y,Y) ,
 ∂H/∂X = K(X,x,y,Y,Z,z) , ∂H/∂Y = K(Y,y,z,Z,X,x) , ∂H/∂Z = K(Z,z,x,X,Y,y) .

Consequently all six derivatives can be computed from six invocations of one program that

computes K(u2, U2, v2, V2, w2, W2) from, say, the carefully crafted expression
 ((u–w)(u+w) – V2)((u–v)(u+v) – W2) – ((u–w)(u+w)+(U–W)(U+W))((u–v)(u+v)+(U–V)(U+V)) .

It yields another way to obtain Volume = √3H/432 with no division and one square root.

Why this method suffers less than the other unfactored expressions do from roundoff is not yet clear.

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 22/31

(C) W. Kahan version dated April 3, 2012 4:34 am

Numerical Tests: (These will be changed.)
A problem not yet fully solved is the generation of test data consisting of edge-lengths with known
Volumes that reveal the weaknesses of the various formulas available to test. The six formulas
tested and compared here were these:

• Two 5-by-5 determinants det() and det() .

• Three arrangements of Euler’s polynomial: Euler’s identity, No divide, One divide.
• The new allegedly backward stable factored expression with four extra square roots.

All data was submitted permuted all 24 ways to find the worst harm due to roundoff.
All data was representable Exactly in 4-byte float s (24 sig. bits).
Test Data:

Case u U v V w W Volume Cond.#

1 66 66 66 66 66 66 33881.72852733461 3

2 777 222 444 666 444 555 8205786 6.347

3 1332 666 1443 555 1443 555 65646288 3

4 240 125 117 244 44 267 205920 3

5 4444 3535 3232 7676 3333 7070 3090903 5.2107

6 2121 5858 3232 7676 5656 4747 3090903 5.0107

7 16000001 5656.875 16000000 8000 15999999 5657.25 85339610684978.15 3.000

0 u
2

v
2

w
2

1

u
2

0 W
2

V
2

1

v
2

W
2

0 U
2

1

w
2

V
2

U
2

0 1

1 1 1 1 0

0 1 1 1 1

1 0 U
2

V
2

w
2

1 U
2

0 W
2

v
2

1 V
2

W
2

0 u
2

1 w
2

v
2

u
2

0

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 23/31

(C) W. Kahan version dated April 3, 2012 4:34 am

Test Results: Correct sig. bits for Worst Permutations of Edge-Lengths

All results above were obtained from arithmetic rounded to float precision (24 s.b.).
Results obtained from arithmetic all rounded to double precision (53 s.b.) were

CaseDet1 Det2 E’s Ident. No Div. One Div. New way Cond.#
1 21 22 24 24 24 24 3

2 21 21 24 20 21 22 6.347

3 21 21 24 20 22 22 3

4 21 21 24 20 22 24 3

5 0 0 1 0 0 4 1.5225

6 1 0 0 0 0 4 1.5225

7 20 4 6 3 3 22 3.000

CaseDet1 Det2 E’s Ident. No Div. One Div. New way Cond.#
1 53 53 53 53 53 53 3

2 50 49 53 51 52 52 6.347

3 50 49 53 53 52 53 3

4 51 50 53 53 53 53 3

5 29 29 31 27 30 33 1.5225

6 29 29 31 29 32 32 1.5225

7 49 32 33 9 31 51 3.000

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 24/31

(C) W. Kahan version dated April 3, 2012 4:34 am

Our backward stable factored formula for Volume appears to be new.

Since a backward stable formula has been sought for a long time, our formula must be too
unobvious for even expert programmers who seek such a thing to be expected to find it.

I wish it did not exist, because then I could make a stronger case for supporting
floating-point variables of arbitrarily high dynamically adjustable precision

fully in all programming languages promoted, like Java, for general-purpose use.

(Why not program in Derive, Macsyma, Maple, Mathematica, … ?
Programs that run too slow don’t get run.

Besides, these systems lack competent Interval Arithmetic to assist
error analysis without which we can’t know what precision to use.)

Floating-point computation has been changed drastically by …
• Profound declines in the costs of memory and arithmetic hardware,
• Near-zero time to perform hardware arithmetic, but still slow memory access,
• The Internet broadcasts software from many sources fast, far and wide.

Most by far of the floating-point operations in programs were put there by programmers
exposed to at most an hour or two of instruction in the nature of floating-point arithmetic.

How can we defend ourselves against their well-intentioned ignorance?

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 25/31

(C) W. Kahan version dated April 3, 2012 4:34 am

Most by far of the floating-point operations in programs were put there by programmers
exposed to at most an hour or two of instruction in the nature of floating-point arithmetic.

How can we defend ourselves against their well-intentioned ignorance?

Competent error-analysis is expensive of talent and time; the expense cannot be justified
for most numerical software, so it it distributed after perfunctory analysis and testing.

How can we defend ourselves against this predictable omission of Due Diligence ?

There is a defense. It is based soundly upon Error-Analysis.

There are two kinds of numerical instability:

• Numerical instability for a substantial fraction of valid data.
e.g.: unstable formulas for differential equations and matrix computations.

This need not concern us because even perfunctory testing is likely to expose it and
thus inhibit its promulgation. (Otherwise such programs are grist for lawyers’ mills.)

• Numerical instability for so tiny a fraction of valid data that its discovery is unlikely.
This is the threat against which we need a defense, even if it’s not impermeable.

The defense: Use the widest precision that does not run too slow.

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 26/31

(C) W. Kahan version dated April 3, 2012 4:34 am

How does increased precision reduce the incidence of embarrassment by roundoff?

Look at the space of all data for a computed function:

All accuracy is lost at data lying on a locus of singularities either of the function being computed
(near which locus the function is deemed ill-conditioned) or else of the algorithm executed by the
program (which is therefore deemed numerically unstable near such data). At data far enough
away from this Pejorative Locus of singularities, the program’s accuracy is adequate. Between
such data and the Pejorative Locus is a threshold shown as a dashed line above.

Increasing the precision of all intermediate computation (but not the data) reduces the
content (number, area, volume, …) between the threshold and the Pejorative Locus,
thus reducing the incidence of data for which the program’s accuracy is inadequate.

Every extra three sig. dec. or ten sig. bits of intermediate precision reduces that incidence
by a factor typically of 1/1000 or less, often much less. (1/1000000 for complex arithmetic.)

Accuracy
in here is
adequate.

All
accuracy
is lost
here.

Accuracy is
inadequate
in here.

Pejorative
Locus

(The width of
 this region
 has been
 exaggerated.
 Actually it is so tiny that it is hard to find.)

Examples of Pejorative Loci:

 For matrix inversion:
 Singular matrices.

 For tetrahedra’s volume:
 Volume = 0 .

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 27/31

(C) W. Kahan version dated April 3, 2012 4:34 am

The moral of this story:

By default, all intermediate computations not explicitly narrowed by the programmer for
cause should be carried out in the machine’s widest precision that does not run too slow.

Old Kernighan-Ritchie C got it right on the PDP-11 :
It evaluated all floating-point Anonymous Variables (subexpressions, literal constants
not representable exactly, functions’ actual arguments) in double even if the
declared variables’ precisions were all float . (The PDP-11 ran faster that way.)

The widest precision that’s not too slow on today’s most nearly ubiquitous “Wintel”
computers is not double (8 bytes wide, 53 sig. bits) but IEEE 754 double
extended or long double (≥10 bytes wide, 64 sig. bits). This is the format in
which all local scalar variables should be declared, in which all anonymous variables
should be evaluated by default. C99 would permit this (not require it, alas), but …

• Microsoft’s compilers for Windows NT, 2000, … disable that format.
• Java disallows it. Most ANSI C, C++ and Fortran compilers spurn it.

(Apple’s SANE got it right for 680x0-based Macs, but lost it upon switching to Power-Macs.)

Most language designers and implementors ignorantly perpetuate unsound practices that
error-analysts tolerated only reluctantly as expedients in the mid-1960s when computer
memories were small and compilers had to work in one pass in a batch environment.

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 28/31

(C) W. Kahan version dated April 3, 2012 4:34 am

What few Rules of Thumb can we teach students in Programming classes?

Four Rules of Thumb for Best Use of Modern Floating-point Hardware
all condensed to one page, to be supported by programming languages for a mass market

0. All Rules of Thumb but this one are fallible. Good reasons to break rules arise occasionally.

1. Store large volumes of data and results no more precisely than you need and trust.
Storing superfluous digits wastes memory holding them and time copying them.

2. Evaluate arithmetic expressions and, excepting too huge arrays, declare temporary
 (local) variables all with the widest finite precision that doesn’t run too slow.

Compiler optimizations mitigate a performance penalty incurred by following this rule naively.

3. Objects represented by numbers should ideally have a parsimonious representation,
called “fiducial” and rounded as rule 1 says, from which all other representations
and attributes are computed using wider precision as rule 2 says.

 For instance, a triangle can be represented fiducially by float vertices from which edges are computed in
 double , or by float edges from which vertices are computed in double . Computing either in float

from the other may render them inconsistent if the triangle is too obtuse. In general, a satisfactory fiducial
representation can be hard to determine. Moreover, an object in motion may require two representations,
both a moving double and, obtained from it by a cast (rounding down), a float fiducial snapshot.

For more details see some of the postings on my web page.

Programming Language texts can explain these rules in a short Floating-Point chapter.

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 29/31

(C) W. Kahan version dated April 3, 2012 4:34 am

Times have changed.

Numerical computation for Science, Engineering, and (differently) Business used to
be the raison d’être for computers. Now most of them serve merely to entertain; and
Computer Science treats Numerical Analysis as if it were a sliver under its fingernail.

Here is my call to the Programming Language community:

Think not of obeisance to Numerical Analysis;
think about Self-Defence.

You too will unwittingly execute programs the World-Wide Web brings you from
programmers whose acquaintance with Floating-Point, Numerical Analysis and Error-
Analysis is no closer than yours, maybe far more remote. What are your chances?

Do you remember a time when the ability to change tires and spark-plugs, to clean out a carburettor float-bowl,
and to adjust ignition timing and choke was required to drive a car? So far as Floating-Point is concerned, Java
is still stuck back in that era.

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 30/31

(C) W. Kahan version dated April 3, 2012 4:34 am

More Stories for Another Day:

How likely is a programmer to find an unobvious numerically stable algorithm?

How likely is a programmer to use an unobviously numerically unstable algorithm?

How can a software user diagnose a rare affliction by numerical instability? (Directed roundings)

And what can he do about it without crippling performance? (Consult an Error-Analyst)

How should Rules of Thumb for Floating-Point Computation be taught to programmers
while they are students still innocent of any interest in the subject? (With $$$ examples.)

How are the prospects for correct computation enhanced by the provision of …
• Dynamically adjustable precisions for floating-point variables ?
• Proper management of mixed-precision expressions and precision-inheritance ?
• Tools like Interval Arithmetic for the proper choice of higher precisions ?

How should languages like Java, C, Fortran, … handle floating-point variables declared
wider than the widest that does not run too slow? (See citations in Farnum [1988] etc.)

Why is “About as accurate as the data deserve” too inaccurate for most situations?
“Use every man after his desert, and who should ‘scape whipping?”

(Hamlet iv. 561)

VtetLang.pdf WORK IN PROGRESS – SUBJECT TO CHANGE Page 31/31

(C) W. Kahan version dated April 3, 2012 4:34 am

Relevant Reading:
Carl B. Boyer [1989] A History of Mathematics 2d ed. rev. by Uta C. Mehrbach for Wiley, New York.

Heinrich Dörrie [1965] 100 Great Problems of Elementary Mathematics translated by David Antin for Dover, New
York. See pp. 285-9

K.L. Dove & J.S. Sumner [1992] “Tetrahedra with Integer Edges and Integer Volume” pp. 104-111 of Mathematics
Magazine 65. See also http://mathworld.wolfram.com/HeronianTetrahedron.html and citations there.

Farnum, Charles [1988] “Compiler Support for Floating-Point Computation” pp. 701-789 of Software - Practice &
Experience 18. See also Joseph Darcy’s Borneo proposal for Java at http://cs.berkeley.edu/~darcy .

HP [1982] HP-15C Advanced Functions Handbook, part # 00015-90011, Hewlett-Packard Co. A scanned version
stored as a .pdf file on a CD-ROM is available, CD1 for $15, from the Museum of HP Calculators:
http://www.hpmuseum.org/software/swcd.htm .

W. Kahan [2000] “Miscalculating Area and Angles of a Needle-like Triangle” posted at http://http.cs

.berkeley.edu/~wkahan/Triangle.pdf . Also posted there is “How Java’s Floating-Point Hurts Everyone
Everywhere” …/JAVAhurt.pdf , “Marketing vs. Math.” …/MktgMath.pdf , “Huge Generalized Inverses of Rank-
Deficient Matrices” …/MathH110/GIlite.pdf , and “Matlab’s Loss is Nobody’s Gain” …/MxMulEps.pdf .

MTHCP [1959] “Mathematical Tables from Handbook of Chemistry & Physics” 11th. Ed. edited by S.M.Shelby
inter alia, Chemical Rubber Publ. Co., Cleveland. Germane pages are 340-356; but add 2 to page numbers cited
herein for subsequent reprintings like the fifth of 1963.

M. Pichat [1972] “Correction d’une Somme en Arithmétique à Virgule Flottant” p. 400-406, Numerische
Mathematik 19.

D.M. Priest [1991] “Algorithms for Arbitrary Precision Floating Point Arithmetic” pp. 132-143, Proc. 10th IEEE
Symposium on Computer Arithmetic, IEEE Computer Soc. Press Order # 2151, Los Alamitos, Calif.

D.M.Y. Sommerville [1951] Analytical Geometry of Three Dimensions, Cambridge Univ. Press. Pp. 34-6 & 77.

I. Todhunter [1929] Spherical Trigonometry for the Use of Colleges and Schools rev. by J.G. Leatham, MacMillan
& Co., London. Pp. 19, 28, 238 problem 11.

