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ABSTRACT:

 

" Everything I know nothing about is equally improbable."

 

exemplifies the illogic that plagues attempts,  by statistical 
means,  to assess error and risk in floating-point computation.

In the early  1980s, the  French Academy of Sciences  awarded 
a prize for a patented method that automated the estimation of 
roundoff's effect upon any computation and dispensed with 
error analysis;  two decades earlier essentially the same method 
had been tried and abandoned as altogether too risky.

In  1994-5  the manufacturer of a very popular micro-processor 
acceded to a recall because its floating-point division was 
defective although the defect was believed to pose less of a 
hazard than cosmic rays do,  and was expected to inflict a 
perceptible error upon its user perhaps once every millennium 
by the manufacturer’s estimate,  once every three weeks by a 
competitor’s. The division algorithm had been  " proved "  
correct,  and had passed a few billion random tests;  afterwards,  
however,  a short test program exhibited over  2000  failures in 
the first million divisions tested.

Perhaps the hazards posed by numerical computation  (and by 
earthquakes and by carcinogens)  would be misjudged less often 
if first courses on statistics spent a little more time on the 
probabilistics of extremely improbable events.  Anyway,  we 
need help from  Statisticians  to avoid these abuses of  Statistics.
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Prudence  demands  Respect  for  Probability  and  Statistics.

Abuse  of  Statistics  undermines that  Respect.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Wishful Thinking  often intrudes into probabilistic assessments 
of hazards posed by errors in numerical computations.  Those 
numerical errors fall into three classes:

Intentional:
Idealized models,  truncated series,  discretization,  ...

Unavoidable:
Rounding errors.

Unintentional:
Bugs,  blunders in software and hardware

Compared with idealizations,
roundoff and bugs are unlikely menaces.

 

How unlikely ?
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Roundoff  in  Floating-Point Arithmetic:

 

Suppose the program asks the computer to calculate

W  :=  X·Y + Z ;

what the computer actually calculates is

w   =  

 

(

 

  (x·y)·(1 + ß)  +  z 

 

)

 

·(1 + 

 

µ

 

) 

in which   ß  and  

 

µ

 

   stand for rounding errors,  tiny values for 
which we know  

 

a priori

 

  bounds like,  say,

| ß |  <  2

 

-53

 

  ,      | 

 

µ

 

 |  <  2

 

-53

 

  ;         2

 

-53

 

  

 

≈

 

  10

 

-16

 

 .

 

( These bounds suit  Double Precision  ( REAL*8 )  on most computers nowadays.)

 

The simplest model of roundoff assumes that nothing more can 
be known about  ß  and  

 

µ

 

 .

The simplest probabilistic model of roundoff assumes that  ß  
and  

 

µ

 

  are independent random variates distributed  Uniformly  

between their bounds   

 

±

 

2

 

-53

 

 .

Both models merely approximate the truth.
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What is an  Error Analysis ?

 

It is a process and its product;  it is an estimate of the error in a 
computation,  and a proof of the estimate’s validity.

 

If the error were known,  it would normally be subtracted off,  so error analysis is 
usually expected only to bound the error.  The best kind of bound is a proved over-
estimate that is not too much too big.  For example,  on most computers nowadays,

"  Y  =  ATAN( X )  "
has been proved by its implementor  ( and tested )  to return

y   =   arctan( x )   

 

±

 

  ( less than  0.7  ulp.)
where an  ulp  is one  Unit in the Last Place  ( last sig. bit or dec. digit )  returned.  
Any bound below  1  ulp  is acceptable here;  the bound always exceeds  0.5  ulp.

There are also  "Backward"  error analyses.  For instance,  given matrices  A  and  
B ,  a good program to solve  A·X = B  for  X  by  Gaussian Elimination   actually 
computes a solution  X+dX  of a perturbed equation  (A+dA)·(X+dX) = B+dB  in 
which  dA  and  dB  are bounded in norm by tiny quantities that depend upon the 
norms of  A  and  B  respectively,  their dimensions,  and the precision of the 
computer’s arithmetic.  These  "tiny quantities"  are inferred by an error analysis.

 

Error analyses start from models of errors,  like  ß  and  

 

µ

 

  in

w   =  

 

(

 

  (x·y)·(1 + ß)  +  z 

 

)

 

·(1 + 

 

µ

 

)  ,
taking more or less of their properties into account,  to infer 
estimates of their subsequent effects.  Some analyses obscure 

their domains of validity by ignoring nonlinear terms like  ß

 

2

 

 ,   

ß·

 

µ

 

  and  

 

µ

 

2

 

 .  Anyway,  inferences entail tedious manipulations 
of numerous inequalities,  only partly mechanizable.

Probabilistic error analyses estimate errors’ means and standard 
deviations instead of upper bounds for errors.
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Two statistical strategies:    Theoretical   and   Experimental.

1.   Theoretical:   Probabilistic Error-Analyses

 

...   are based upon attempts to approximate each rounding error by a
 random variate of tiny amplitude,  and then estimate how lots of them

will propagate and accumulate in the final computed results.

Such analyses produce means and standard deviations for computed results as if 
these were random samples drawn from a population of similar computations,  each 
in error by roughly a linear combination  ( to first order )  of the individual rounding 
errors.  Probabilistic error-analyses are not much easier than non-probabilistic.

 

2.   Experimental:   Randomized Error-Sampling

 

...  attempts to assay the impact of roundoff upon any computation
by treating that computation as one sample drawn from a population of

similar randomized computations differing only

  either  ...

in the 

 

data

 

,  which are randomly perturbed slightly from the given data
(  cf.  F. Chatelin  and  V. Frayssé  ),

  or  ...

in arithmetic 

 

operations

 

,  which are randomly perturbed slightly
(  cf.  J. Vignes  

 

et al

 

.,  CESTAC,  CADNA;   he has patented  CESTAC,
and also received a prize for it from the  French Academy of Sciences.).

The idea is to re-run the computation a few times,  each time with a different 
randomized perturbation,  and treat the set of results as a sample whose mean and 
standard deviation estimate the intended result and the error in that estimate:

-------x-----x---x-x--o-x--x-x--x--x----x------x-------
|<           m           >|

 

Randomized Error-Sampling appears to obviate Error Analysis !
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What Good are

 

Probabilistic Error-Analyses

 

and

 

Randomized Error-Sampling

?

 

They afford some

 

Corroboration  of what should already be known

 

by  Numerical Analysts  and  Developers of Numerical Software.

To Scientists,  Engineers and other Users of Numerical Software,

 

Probabilistic Estimates  of  Error  are  Probably Useless
or  Worse.

 

Why ?
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Probabilistic Error-Analyses

 

and

 

Randomized Error-Sampling

 

tend to provide

 

unsatisfactory answers

for two crucial questions :

 

1.  Insurance Premiums :

 

How much should a prudent corporation put into reserve to 
cover the expected cost of extraordinarily big numerical 
errors detected too late ?  The answer matters to people who 
have to measure calamities on a monetary scale.

 

2.  Unreliability :

 

How likely is an extraordinarily big numerical error,  if 
one occurs,  to be detected too late despite probabilistic 
analysis and/or randomized error-sampling ?  The answer 
matters to an individual who has his own threshold for 
intolerable risk,  regardless of monetary compensation.

 

Let’s see what goes wrong  ...
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1.  Insurance Premiums :

 

Cost

 

(

 

x

 

)  =  cost induced by an error as big as  

 

x

 

  detected too late.

 

Probability

 

(

 

x

 

)  =  probability density for errors as big as  

 

x

 

  detected too late.

What can we know about  

 

Cost

 

  and  

 

Probability

 

  ?

 

∫

 

  (Inestimable 

 

Cost

 

)·(Unknown 

 

Probability

 

)   -->   Unknowable 

 

Premium 

 

.

Why is the  

 

Probability

 

  unknown ?

Premium Overhead 1 Profit+( ) Cost x( ) Probability x( )⋅( ) xd

0

∞

∫⋅+=

x
Magnitude of Undetected Error

0

Cost

?

x
Magnitude of Undetected Error

0

Probability

?
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2.  Unreliability :

Why is the  Probability  unknown ?

There are three reasons,  all of which call into question the application of the

Central Limit Theorem

to justify approximating  Probability  via a  Normal  or  X2  distribution.

x
Magnitude of Undetected Error

0

Probability

?
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Three reasons:

i.    The  Central Limit Theorem  is generally cited to justify approximating  

Probability  via a  Normal  or  X2  distribution.  But such approximations converge 
very slowly along the tails of the distribution.  Therefore,  where  Probability   is 
tiny  ( and  Cost  may be huge ),  the approximation can be extremely tiny and yet 
wrong by orders of magnitude.

ii.   To justify invoking the  Central Limit Theorem,  rounding errors are generally 
presumed to be ...

random,
weakly correlated,  and
distributed continuously over a tiny interval.

Actually,  they are ...
not random,
often correlated  ( perhaps intentionally ),  and
often behave more like discrete than continuous variables.

iii.  Further to undermine the applicability of the  Central Limit Theorem,  often 
only a few  ( as few as two or three )  rounding errors are the dominant contributors 
to the final error,  especially when it is extraordinarily big because some nearby  
Singularity  amplified them.

Reasons   ii   and   iii   are little known,  so they will be expounded here.

To find evidence inconsistent with the presumption of uncorrelatedly random 
behavior of rounding errors,  we need merely plot the errors that arise from an 
innocuous formula:

Insert here  Figures  1  to 4  from  MathCAD  NonRandomRoundoff.
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Figure 1  of  4   on  Non-Random Roundoff 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Using  MathCAD 3.1  on a  Mac. 
W. Kahan                    28 July 1995 

Two of the infinitely many ways to express a rational function are as a   Compact Formula

cf( )x 4
..3 ( )x 2 ( )( )x 5 2 4

( )x .( )x 2 2 ( )( )x 5 2 3

and as a   Ratio of Polynomials  in the customary form

.
rp( )x

622 .x ( )751 .x ( )324 .x ( )59 .4 x

( )112 .x ( )151 .x ( )72 .x ( )14 x

Algebraic manipulation  ( MAPLE V )  simplifies   cf(x) - rp(x)    to  0  by way of confirmation.

Here is their graph  over a range    X  : X ..,1 1 0.01 5

1 0 1 2 3 4 5
0

2

4

6

8

10

cf( )X

X

This graph will be expanded  to explore  roundoff  in the neighborhoods of its extrema.
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Fig. 2  of  4  on  Non-Random Roundoff 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The next picture shows how  much more sensitive  rp(x)  is to  roundoff  than is  cf(x) .  Both 
expressions are plotted at  301   consecutive floating-point numbers in the range  U  defined 
below.  The nearly  smooth graph belongs to  cf(x) ,  the scattered  +  signs to   rp(x) . 

eps 0.552 u 1.60631924 U ..,u u eps u .300 eps

7.10543e-14

-7.81597e-14

cf( )U cf( )u

rp( )U cf( )u

1.606321.60632 U

Roundoff in  rp(x)  does not lookentirely  random;  could  this be a fluke?  Look elsewhere:

v 2.40066610208539 V ..,v v .2 eps v .600 eps

6.25056e-14

-5.90639e-14

cf( )V cf( )v

rp( )V cf( )v

2.400672.40067 V

These patterns should undermine confidence  in the randomness of roundoff.
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Figure 3  of  4   on  Non-Random Roundoff 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The derivative of  rp(x)  is

rp1( )x .3
( )x6 .24 x5 .243 x4 .1302 x3 .3816 x2 .5664 x 3270

( )x4 .14 x3 .72 x2 .151 x 112
2

The derivative of  cf(x)  is  cf1(x)  and is expressed in a compact form thus:

f1( )z .
.( ).( ).( ).( ).( )z 12 z 63 z 158 z 156 z 24 z 26

( )2 z .( )( )z 3 2 3 z2 2
3

cf1( )x f1( )x 2

1 0 1 2 3 4 5
30

20

10

0

10

cf1( )X

0

X

Now  the effect of roundoff upon  rp  and  cf  can be compared over any sufficiently 
 narrow  range of values   X    including a value   y   by plotting  the  near-constant 
 expressions 

Ccf( ),X y ( )cf( )X cf( )y .( )X y cf1( )y

Crp( ),X y ( )rp( )X cf( )y .( )X y cf1( )y

Any  scatter  in  their  graphs  may  be  attributed  to  roundoff.   For example,  ...
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Note how computed values in some sub-ranges can fall into clusters each narrower 
than the values’ error over that sub-range.

Figure 4  of  4   on  Non-Random Roundoff 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

w 2.01 W ..,w .600 eps w .598 eps w

2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01

1.30907e-13

-1.10636e-13

Crp( ),W w

Ccf( ),W w

W

z 3.251 Z . .,z .300 eps z .298 eps z .300 eps

3.251 3.251 3.251 3.251 3.251 3.251 3.251 3.251

3.44859e-14

-2.77006e-14

Crp( ),Z z

Ccf( ),Z z

Z
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Presumed and Expected Continuous Distribution of Errors

Actual Near-Discrete Distribution of Errors

If relatively few samples are drawn they can,  with non-negligible probability,  all 
fall under the same outlying peak,  thus masquerading as closely spaced  ( and 
hence allegedly  "accurate" )  estimates of what is actually an inaccurate result.
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Of course,  the fact that rounding errors are neither random nor uncorrelated will 
not in itself preclude the possibility of modelling them usefully by uncorrelated 
random variables.  What will jeopardize the utility of such models is their failure to 
mimic important properties that actual rounding errors possess.  Two of those 
properties,  chosen for their brevity,  are spelled out in the following  Theorems :

The  Exact Cancellation Theorem :
If   p  and  q   are floating-point variables of the same  type  or  
format  ( both  Single-Precision,  or both  Double-Precision,  on 
the same hardware ),  and if   1/2  ≤  p/q  ≤  2 ,  then   p - q  is 
computable exactly  ( without any rounding error )  in that format
unless it  Underflows  ( which it cannot if the hardware conforms to  IEEE Standard 754 or 
854  for floating-point arithmetic,  as do practically all commercially significant  North 
American  computers )  or the computer  is a  CRAY X-MP/Y-MP/C90/J90 .

This theorem figures crucially in some algorithms that compute eigensystems,  in 
others that solve differential equations,  in some that compute transcendental 
functions,   and in others that extend the hardware’s precision.

A Theorem about Five Tame Rounding Errors :
In the expression   arccos( x / √(x2 + y2) ) ,   the argument of  
arccos  is always valid  ( between  -1  and  +1  inclusive )  despite 
five rounding errors  ( unless it suffers Division-by-Zero or  Over/Underflow )  on 
all  Hewlett-Packard  calculators and on all commercially 
significant  North American  computers except  CRAY X-MP/Y-
MP/C90/J90.

This theorem is non-trivial first because its proof is different for every different 
family of computers,  and second because it fails on  CRAYs.  That failure struck 
down a program written by  Prof. J. Sethian,  and it cost him two weeks to locate it.  
Randomly perturbed rounding errors would violate the theorem too.

By disregarding theorems like these,  random models of 
roundoff can grossly exaggerate the effects of roundoff.
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Recall ...
iii.  Further to undermine the applicability of the  Central Limit Theorem,

often only a few  ( as few as two or three )  rounding errors are 
the dominant contributors to the final error,

especially when it is extraordinarily big because some nearby  Singularity  
amplified them.

Example:  The first subtractions performed in the numerator and 
denominator of  rp(x)  above contribute two rounding errors that 
dominate all the rest.

Example:  Gaussian Elimination  to solve  A·x = b .
Often,  when  A  is nearly singular for systematic reasons,  it agrees with a matrix of 
rank  1  in its first few sig. dec.  Then the first pass of  Gaussian Elimination,  which 
subtracts multiples of one row from all others to put zeros into their first column,  
inflicts substantial cancellation upon all other rows.  As  Gaussian Elimination  
continues to act upon the diminished array,  subsequent rounding errors contribute 
negligibly compared with those in the first pass.  The final pivot,  which can be quite 
small when  A  is nearly singular,  will then be affected far more by the earliest two 
rounding errors than by all that follow.  During back-substitution,  the first element 
of the solution  x  to be computed is obtained by division by that pivot,  and then 
dominates the computation of all subsequent elements.  Therefore the computed 
solution  x  is in error by preponderantly the contributions of three rounding errors.

When this phenomenon occurs,  it especially undermines the 
validity of  Randomized Perturbation  of arithmetic operations,  
because then only a few of those perturbations can affect the final 
result significantly,  and therefore its perturbed distribution 
becomes more nearly discrete than smoothly continuous.
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How can  Rounding Errors be  “Randomly Perturbed” ?

Worst way  (1959):  IBM 7030  “Stretch”
Setting a control-bit to  1  turns on  “Noisy Mode”  which forces a  1  onto the last 
bit of every floating-point operation’s result;  toggle that control bit at random.

Worse way  (late  1970s):  J. Vignes’  patented  “CESTAC”
Randomly add  ±1  or  0  to the last bit of every floating-point operation’s result.

The foregoing schemes violate both  Theorems  on a previous page.  
The following scheme conserves the  Exact Cancellation Theorem.

Bad way  (1980s):  Toggle  IEEE 754/854’s  Directed Roundings
Control bits can be set  ( from some compilers )  to round every floating-point 
operation towards  +∞ ,  or  towards  -∞ ,  instead of the default  “to nearest”.  
Toggle those control bits at random.  ( This method circumvents  Vignes’  patent.)

All of these schemes can spoil algorithms that would have worked well without 
random perturbation.  None of these schemes escapes from the discrete behavior 
that often befalls roundoff.  Consequently,  repeated recalculation with randomly 
perturbed roundoff generates a population of randomized results of which neither 
the desired  ( infinitely precise )  result nor the result from ordinary floating-point 
computation need be typical members.

Here follow some simple examples showing how  CESTAC  can fail:
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PROSOLVEUR's  Welcoming Screen:
=============================================================================

      (c) Copyright 1987 - LA COMMANDE ELECTRONIQUE - Tous droits réservés

PROSOLVEUR

             »  ProSolveur Version 1.1  par Stephan G. POPOVITCH  «

                       Frappez une touche pour continuer

=============================================================================

This software tries to solve small systems of equations on an  IBM PC,  and uses  
Vignes’  CESTAC  scheme,  i.e.  Randomized Recomputation,  to assay the 
accuracies of results.  ProSolveur  then displays only those figures it  "knows"  to 
be correct.  Of the many ways  ProSolveur  can go astray,  only those we believe 
characteristic of  CESTAC  are exposed by the examples exhibited here.

ProSolveur  displays its results and the user’s data and equations in two panels 
under headings of which only the following need be explained:

st Status of an entry: p    means  parameter  ( constant );
i     means  "inconnu"  ( unknown ).

entrée Initially,  user’s guess;    afterwards,  ProSolveur’s   résultat.

±(%) Percentage uncertainty  ProSolveur  attributes to  entrée  or  résultat.

unité Unit  ( $, Km, Kg, sec., ... )  if one is chosen by the user.

id Line number for an equation,  or for a comment starting with  * .

fichier Name of the disk(ette)-file containing this line.

The command line beneath the panels displays the  id  numbers of equations that  
ProSolveur  has been asked to solve,  and also its warning messages.
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2x2  Problem  submitted thrice to  ProSolveur :
 ====================== variables =====================================
 st   entrée          ± (%)       nom          unité       résultat
 p      4194304.000               A
 i                                x
 p      4194303.000               B
 i                                y
 p      4194302.000               C
 p            3.000               p
 i                                X
 i                                Y
 i                                µ
 i                                ß
 ====================== équations =====================================
 id    équation                                               fichier
 (1)                                                          << ? >>
 (2)   A*x + B*y = 0                                          2X2
 (3)   B*x + C*y = p                                          2X2
 (4)                 A*X + B*Y = 0                            2X2
 (5)                 B*X + C*Y = p                            2X2
 (6)                               A*µ + B*ß = 0              2X2
 (7)                               B*µ + C*ß = p              2X2
 ======================================================================
 no des équations du système à résoudre : 2:7

Results  delivered by  ProSolveur :
 ====================== variables =====================================
 st   entrée          ± (%)       nom          unité       résultat
 p      4194304.000               A
 i         1.3E+007   1           x                        1.3E+7
 p      4194303.000               B
 i        -1.3E+007   1           y                       -1.3E+7
 p      4194302.000               C
 p            3.000               p
 i         1.2E+007   1           X                        1.2E+7
 i        -1.2E+007   1           Y                       -1.2E+7
 i     12509610.504               µ                        1.2509611E+7
 i    -12509613.487               ß                       -1.2509613E+7
 ======================================================================

Comment:   Since the determinant of the equations is  A*C-B*B = -1 ,  the   
correct results for this ill-conditioned system should be
        x = X = µ = 3B = 12582909   and   y = Y = ß = -3A = -12582912 .
                            ~~~~~                               ~~~~~

ProSolveur's  extravagantly optimistic claims for the accuracies of  µ  and  ß 
indicate that the three  "random"  samples drawn by  CESTAC are far too few 
because they are drawn from a nearly  discrete  rather than continuously 
distributed population.
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Presumed and Expected Continuous Distribution of Errors

Actual Near-Discrete Distribution of Errors

Relatively few samples were drawn,  so they succumbed to the non-negligible risk 
that all may fall under the same outlying peak,  thus posing as closely spaced  
( and hence allegedly  "accurate" )  estimates of an actually inaccurate result.
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ProSolveur  miscalculates  the ratio of areas of two narrow triangles:
 ====================== variables =====================================
 st   entrée          ± (%)       nom          unité       résultat
 i    1.              10          r                        1.
 p    1.234567E+6                 x
 p    1.234567E+6                 y
 p    1.043E-8                    z
 ====================== équations =====================================
 id    équation                                                 fichier
 (1)                                                            << ? >>
                   (x+y+z)*(z-(x-y))*(z+(x-y))*(x+(y-z))
 (2)   r = sqrt( ----------------------------------------- )    RATAREA
                 (x+y+2z)*(2z-(x-y))*(2z+(x-y))*(x+(y-2z))
 ======================================================================

Comment:   Equation  (2)  defines
            r  = Area_of_Triangle(x, y, z) / Area_of_Triangle(x, y, 2z) .
The triangles exist provided sorted side-lengths  x, y, 2z, z  satisfy
                              x ≥ y ≥ 2z ≥ 2(x-y)  ,
and then roundoff cannot significantly degrade this formula's accuracy on any 
commercially significant  North American  computer except most  CRAYs.   
Moreover,  then  0 ≤ r ≤ √(5/16) = 0.5590169944 .  But  ProSolveur  alleges that   
r = 1 ± 0.1  when the correct result above should be  r = 0.5000 .

ProSolveur's  troubles may be attributable to  CESTAC's  disregard for the Exact 
Cancellation Theorem,  not to mention parentheses.  In some extreme cases,  
ProSolveur  may even declare data to be invalid when it isn't:

 ====================== variables =====================================
 st   entrée          ± (%)       nom          unité       résultat
 i    1.75657E-5                  r
 p    1.234568E+6                 x
 p    1.234567E+6                 y
 p    1.00000000023               z

 ====================== équations =====================================
               . . .
 ======================================================================
 Nombre indéfini => ( racine d'un nombre négatif )
 ======================================================================

The correct result should be  r = 1.238278374E-5  without any  √(negative) .
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Wrong  by several  Orders of Magnitude:
 ====================== variables =====================================
 st   entrée          ± (%)       nom          unité       résultat
 i    3E+8                        t                        3.0000000E+8
 i    3E+8                        L                        3.0000001E+8
 i    3.3E+9                      M                        3.3000000E+9
 i    9E+9                        N                        9.0000000E+9
 i    5.590164        1E-5        z                        5.590164
 i    61/11                       y                        61/11
 i    11/2                        x                        11/2
 p    6                           b
 p    5                           c
 p    3E+8                        a
 ====================== équations =====================================
 id    équation                                                     fichier
                        (M-N/(L-(M-N/z)/(L-(M-N/y)/z)))
 (2)   t = L -  -------------------------------------------------    J-MM
                (L-(M-N/(L-(M-N/y)/z))/(L-(M-N/z)/(L-(M-N/y)/z)))
 (3)   z = L - (M - N/x)/y                                           J-MM
 (4)   y = (b*b+c*c)/(b+c)                                           J-MM
 (5)   x = (b+c)/2                                                   J-MM
 (6)   L = a+b+c                                                     J-MM
 (7)   M = a*(b+c)+b*c                                               J-MM
 (8)   N = a*b*c                                                     J-MM
 ======================================================================

This example is adapted from one constructed by  Jean-Michel Muller.  The 
correct value for  t  is not  3.0000000 E+8  as claimed so confidently,  but
          t = (b^7 + c^7)/(b^6 + c^6) = 358061/62281 = 5.7491209197 .
This was confirmed by using  DERIVE  on a  PC.

Why does  ProSolveur  get  t  so wrong,  yet claim it is so accurate?  The same 
thing happens with every computation that is virulently unstable but in a way that 
almost always diverges to the same wrong destination,  so randomized 
recomputation almost always yields the same wrong result.  A similar 
phenomenon is found among certain unstable differential equations.

( This example is really a numerically unstable recurrence
       x[n+1]  =  L - (M - N/x[n-1])/x[n]  for  n = 2, 3, 4, ...
whose particular solution is
       x[n]  =  ( b^(n+1) + c^(n+1) )/( b^n + c^n )  -->  b ,
but whose perturbed solution is
   x[n]  =  ( ∂*a^(n+1) + b^(n+1) + c^(n+1) )/( ∂*a^n + b^n + c^n )
         -->  a  as  n --> +∞ .
Here  ∂  is like roundoff,  about  1E-16 .)



IM PROBER                                                                                                    June 10, 1998 12:36 pm

Page 25

Our examples must weigh heavily upon the mind of anyone who attempts to 
assess how accurate a computation is merely by repeating it on different machines 
or on the same machine with different precisions or with different rounding 
procedures.  The examples confirm a truism:

Nobody can know even roughly how wrong a computation is 
without knowing at least roughly what would have been right.

Analogous difficulties afflict recomputation from randomly perturbed input data,  
though perhaps less severely.  The worst risk is that a program will wrongly be 
declared numerically stable only because the data that would upset it has yet to be 
discovered.  A less dangerous risk is that data perturbations will destroy data 
correlations that would,  if preserved,  allow a program to get correct results.

There is no substitute for mathematically correct error-analysis.  
Approximate arithmetic cannot cohabit safely with approximate logic;  on the 
contrary,  as an old  Jewish  saying warns,

"Almost All True"  =  "Entirely a Lie."

Why then do the advocates of  Randomized Recomputation  push it so zealously ?

It usually works;  and when they see it fail they study and revise the computation 
until they get their scheme to work.  Still,  their scheme is liable to fail in just 
those rare situations when we most need to be warned that computation has gone 
astray;  how then can we know that their scheme has failed to give a warning?

Something ostensibly similar could be said about  Interval Arithmetic,  which 
always provides pessimistic error bounds;  when those bounds are outrageously 
pessimistic,  zealots study and revise the computation until the pessimism abates 
to a tolerable level.  However,

Interval Arithmetic  never  lulls its users into a false sense of 
security.
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Now for something entirely different:

Bugs
How likely is one to bite you ?

Example:
  Bug in  MicroSoft’s  spreadsheet   EXCEL

versions  3.0  to  7.0
for   Macintosh,  Windows,  OS/2.

Type in number   1.40737488355328 ;  it turns into  0.64  .

Similar troubles afflict any number with the same  15  digits:
14.0737488355328
140.737488355328
1407.37488355328

. . .
14073748835532.8
140737488355328

and similarly     281474976710656    and    562949953421312   
when entered or resulting from certain computations.

How hazardous is this bug ?
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Does your assessment of risk change when you learn that

140737488355328   =   247

281474976710656   =   248

562949953421312   =   249        ?

( These are the only digit strings believed to pose a hazard;  and 
patches are available from  MicroSoft  to correct this bug in 
Excel  versions  5.0c  and later.)

Subjective Probabilities:
Some people behave as if they believed that the probability of 
encountering any preassigned noninteger real number in the 
course of a computation is practically zero,  and the probability 
of encountering any nonzero integer  N  is slightly smaller than 
some  Constant / N .  Therefore,  they take the  Excel  bug much 
more seriously after they discover that those  15-digit  numbers 
can be generated from such simple expressions.
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FIST   bugs:
( Floating-point -->  Integer  convert and STore )

Symptoms:  My program misbehaved mysteriously,  but
in the same way,  on two different machines,   ...

Intel 386  with  Cyrix  83D87  numeric coprocessor
designed in  1984  near  Dallas  TX .

Intel Pentium  with on-chip floating-point
designed in  1988  near  San Francisco.

Except for last-( 64th-)bit differences in transcendental
functions,  their arithmetics should be identical.

Inference:  My program’s logic is  defective ?

But the defect eluded capture.

It turned out that both machines disliked numbers   65535.xxxx ;
the  Cyrix  chip disliked  -65535.xxxx  too;  and  Pentium  
disliked  0.0625 ,  0.125  and  0.1875 .

( See my  "Beastly Numbers"  in  http://http.cs.berkeley.edu/~wkahan/tests/numbeast.ps  etc.)

( These bugs are absent from current production.)
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FIST  bugs,  continued.

Acting on a tip,  I investigated the following program:

INTEGER*2   J       ...   16-bit integer:  -215 ≤ J < 215

REAL*8         X
. . .

   J  =  ceil( X )      ...   = least integer no less than  X .
. . .

Overflow  occurs if   X ≤ -215 - 1   or   X >  215 - 1 .

Intel’s  Convention:   Overflow to    J = -215 .

Bug:       J = 0  instead of  -215   when   ...

on both machines,     216 - 1 < X < 216 .

on  Cyrix 83D87,   -216 < X < 1 - 216 .
on  Pentium,     X = 1/16 ,  1/8  or  3/16  .

How likely are two machines,
designed so far apart in time and space,

both to dislike   65535.xxxx   ?

These bugs bit some purchasers of the chips.
How likely is such a bug to bite you ?

If your job is to find bugs on such chips before they go into 
production,  what are your chances of finding bugs like these ?   
...  by random testing ?

What can be done to enhance the likelihood that such bugs will 
be revealed by tests before production begins?
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Validation of Designs and their Implementations

A problem at  Many Levels.

Certainty  is unachievable;  Proofs  and  Tests  merely  Corroborate each other.

Proof:  A computation,  vulnerable to error,  therefore incapable of conveying 
certainty,  but designed to enhance confidence and understanding,  if it is short.

Test:  A computation,  vulnerable to error,  intended to expose errors.

Where should tests be concentrated to enhance their yield of design errors ?

At  and  Near  Singularities  and  Interfaces .

( Some singularities can be reduced or hidden;  cf.  Meromorphic functions.)

=> Only implementations designed with testing in mind can be
tested economically;  they have fewer singularities.

=> Random testing is unavoidable lest some singularities be overlooked.

=> Personnel policies determine the return on validation:
• Designers  <—>  Testers.
• Know history lest it repeat.

Ideally,  all  engineers should be rotated through
Design,  Testing,  Production,  Customer support,  Marketing support.

At the same time,  someone has to take responsibility for a valuable accumulation 
of experience derived from tests and blunders,  and its continual refinement into 
something that aids design rather than inhibits it.  Someone special.

Danger:  Long exposure to self-serving  " Realities of the Marketplace "  breeds
Cynicism  and  Shortsightedness.
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Man’s instinctive urge to cover up his mistakes is as strong as a 
dog’s instinctive urge to bury its bone.

=> When a mistake is discovered,  engineers come under
intense pressure to  "Assess our Exposure"
and hence to invent probabilities.

=> Excuses are found to postpone correcting mistakes;

if you wait long enough,  they may become
"Features" .

=> The longer you postpone corrections,
the more they cost,

probably someone else.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The best defence against these temptations is
strength of character.
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Example:   Pentium’s  FDIV  Bug  of  1994-5 :
( Floating-point DIVision )

A new  ( for Intel )  and faster division algorithm was devised.

Its correctness was  "Proved"  by a slightly defective proof.

A transcription error introduced a flaw in the implementation.

This flaw was hidden by the proof’s defect.

Nobody thought to create new tests appropriate 
for the new division algorithm.

Because of measures taken to speed up the division process,  
the flaw would affect roughly one division in eight or nine 
billion divisions generated at random;  it could not be expected 
to be revealed by the few billion random and other tests that the 
old division algorithm had passed.  The new division passed too.

The flaw went unnoticed for about a year;  it was revealed first 
during  Intel’s  tests of a successor chip’s division compared 

with  Pentium’s.  The flaw’s  "probability"  of less than  10-10  
was interpreted as  "inconsequential"  so it was kept secret.

The flaw was rediscovered a few months later by a customer,  
Prof. T.M. Nicely,  and made its way to the  Wall St. Journal.
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Later,  a test program  SRTEST,  focussing its search at and 
near known singularities for  "SRT"  division algorithms of the 
kind used in  Pentiums,  found  the  FDIV  flaw after the  356th  
division tested,  and found it  2294  times in the first million 
divisions tested.  Was this just luck ?  ( For  Intel  it would have 
been  $450,000,000  luckier if I had written it  3  years earlier.)

The inner loop of the test consists of about a dozen arithmetic 
operations,  half of them devoted to deciding whether a quotient 
is correct.  Therefore,  each test datum  { Numer., Denom.}  
costs only about six arithmetic operations to generate from what 
has to be a comparatively simple formula.  Evidently ...

Algebraic sets may look complicated until we 
discover how they were generated.

=> The probability of an unwelcome occurrence is best
 not estimated out of ignorance.

Postscript:
So far as I know,  nobody besides  Prof. Nicely  has reported a  
"Natural"  occurrence of the flaw although there are still over a 
million defective  Pentiums  out there.  Intel  now offers to 
replace defective  Pentiums,  and publishes known flaws.
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Epilogue:  Has any real calamity ever been traced to an 
under-estimated rounding error?

The decaying accuracy of  Patriot  anti-missile batteries,  and their consequent 
failure to intercept  Scud  missiles after more than several hours in action during 
the  Gulf War  of  1995,  could be attributed to accumulating roundoff,  though not 
in floating-point.

More typical of losses to roundoff is the experience of the  Vancouver  BC  stock 
exchange about two decades ago.  Their published stock index,  intended to reflect 
the average of current mining stock prices on that exchange,  was falling ever 
farther below the actual average.  The trouble was traced to chopped floating-point 
arithmetic on an  IBM /370 ;  every transaction updated the index by a small 
amount,  but every such update was chopped to the machine’s  REAL*4  format,  
thus incurring a loss on average of  0.5 ulp  per transaction.  The updates are now 
rounded instead of chopped;  a slight bias will cause the published index to exceed 
the actual average by an amount that grows very slowly over time.  I expect that 
bias to persist until the computer is replaced by one that rounds updates without 
bias according to  IEEE Standard 754  for  Binary Floating-Point Arithmetic.

Competent engineers rightly distrust all numerical computations 
and seek corroboration from alternative numerical methods,  
from scale models,  from prototypes,  from experience,  ... .

The most likely hazard from roundoff to  Scientific  and  Engineering  work arises 
during simulations intended to predict how a proposed device will behave.  If 
roundoff changes a prediction from  "success"  to  "failure"  then the proposal may 
well be abandoned before the error is discovered.  Then the error may stay hidden 
until later someone else succeeds with a device similar to the abandoned proposal 
and the question  "How did they do that?"  arises.

See my paper  "A Survey of Error Analysis" (1972)  in  Information Processing ’71 ( Elsevier ).


