
1

A Framework for Certified
Program Analysis and Its

Applications to Mobile-Code
Safety

Adam Chlipala
Bor-Yuh Evan Chang

George C. Necula

UC Berkeley

2

Trustworthy Program Analysis

■ We depend on program analysis results for
assurances of program security and reliability.
 Verifying properties of software from untrusted sources

■ How can you be sure that your analysis
guarantees what it's supposed to guarantee?
 And how can the users of your analysis be sure, if they

don't want to trust you?
■ Proof-carrying code (PCC) provides a general way

of achieving such guarantees.
■ We suggest some techniques for applying PCC to

program analysis implementations...
 ...and then apply the results to construct a more

efficient PCC system!

3

Proof-Carrying Code

Program Binary

Proof
of

Safety

User Developer

Safety
Policy

Proof
Checker Model Extractor

λ
Logical Model

Reusable Trusted Code Base

4

Certifying Program Analyses

Traditional PCC PCC for Certified Analyses

Prove memory safety and other
low-level properties

Prove abstract interpretation soundness
and other high-level correctness
properties

Input programs fall into classes
to which the same proof
technique applies, thanks to the
use of certifying compilers, etc.

Most analyses require new proof ideas

Must analyze every detail of the
input program to prevent it
from circumventing the safety
policy

Program analyses usually decompose
naturally into soundness-critical and
non-soundness-critical parts

5

Our Strategy

■ We want to verify the correctness of program
analyses written in general purpose programming
languages that support imperative state.

■ Verify implementations at the source level
■ Generate models in constructive type theory

 These models can be almost identical to the original
source code in most cases.

 Model extraction takes advantage of common ways of
decomposing analyses into find and check pieces.

6

Models of ML Programs
n≥0Precondition:

Postcondition: result=2 n

∀ n , n≥0⇒
n=0⇒0=2 n

∧n≠0⇒∀ r ,r=2 n−1⇒2 2r =2 n

Verification Condition

Fixpoint double (n : nat) : nat :=
match n with
 O => O
| S(n) => S (S (double n))
end.

Coq Definition

let rec double (n : int) : int =
if n = 0 then

0
else

2 + double (n - 1)

7

Keeping a Close Correspondence

■ We want to produce models that are as readable
and close to the original program as possible...
 ...because the theorems we need to prove about them

are too hard for automated deduction tools.
■ There are two main problems:

 Recursion. Coq doesn't allow unrestricted recursive
definitions, since they would threaten consistency.

 Mutable state. Coq's functions are pure, so they can't
support mutation without pervasive modification.

■ Base on knowledge of our domain, we are able to
approximate both of these in a nice way.
 Relevant question: Do we really care whether analyses

terminate and how they use imperativity?

8

Recursion Example

let rec subClass (c1 : class, c2 : class) : bool =
 c1 = c2 ||
 (match super c1 with
 None -> false
 | Some sup -> subClass (sup, c2))

9

Producing Primitive Recursion

let rec f (n : nat) : t1 = ... f n ... g n ...
 and g (n : nat) : t2 = ... f n ... g n ...

3

2 2

f g

1

g

1 1

f g

0

g

...

...

...

A, B

......

subClass

A, C

subClass

...

39

39

38 38

37

10

Producing Primitive Recursion

■ Add an extra argument to each function whose
termination isn't clear.
 This is a natural number giving an upper bound on the

remaining call stack depth.
■ Decrement this argument at each recursive call.
■ For any terminating execution of the whole

program, we can use the real call stack depth as
the initial value for this parameter in the model.

■ Non-terminating executions of program analyzers
have no soundness consequences, so we don't
need to worry about them!

11

Recursion Example Solution

let rec subClass (n : nat, c1 : class, c2 : class)
 : bool option =
 if c1 = c2 then
 Some true
 else match super c1 with
 None -> Some false
 | Some sup ->
 if n = 0 then
 None
 else
 subClass (n-1, sup, c2)

12

Mutation Example

let checkProgram (p : program) : bool =
 let fixedPoint = findFixedPoint p in
 checkFixedPoint p fixedPoint

13

Mutation Example Solution I

let checkProgram (s : state) (p : program)
 : bool * state =
 let (fixedPoint, s) = findFixedPoint s p in
 checkFixedPoint s p fixedPoint

14

Underdetermining Mutation

Imperative state Functional state

... ...

?

?

? ?

? ?

...

?

Functional, underdetermined model

15

Modeling It Functionally

8

0

g(0)

1

h(1)

2 1

h(1)h(2)

3

i(3)

f(8)A:

B: C:

D: E: F:

A

A, B A, C

A, B, D A, B, E A, C, F

16

Mutation Example Solution II

let checkProgram (s : stack) (p : program) : bool =
 let fixedPoint = findFixedPoint (call1 s) p in
 checkFixedPoint (call2 s) p fixedPoint

17

Application: Certified Verifiers

Proof
of

Soundness

DeveloperUser

Proof
Checker Model Extractor

λ
Logical Model Verifier Source

Verifier Binary

Com
pile

r

Untrusted Binary

Untrusted Binary

18

Soundness Proof Obligations

Initial states

Fixed point

Concrete

Abstract

Initialization

Concrete

Abstract

Progress Preservation

Concrete

Abstract

19

Implementation

■ A 3000-line model extraction tool for a subset of
OCaml
 Hooks into the standard OCaml compiler
 Produces Coq theorem statements, which we prove

interactively
■ About 2000 lines of OCaml for the core abstract

interpretation framework
 Including decoding assembly code, finding a fixed

point with the provided abstract interpretation, etc.

20

Case Study: Typed Assembly Language

■ We've written and proved sound a verifier for x86
assembly programs compiled from TALx86.
 Includes continuation, universal, existential, recursive,

product, sum, stack, and array types.
■ Our implementation uses the provided TAL type

system and compilers unchanged.
■ We're able to verify memory safety of all of the test

cases included with the distribution...
■ ...about as efficiently as the non-certified type

checker can.

21

Running Times of TAL Verifiers

0 2000 4000 6000 8000
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Conventional

CPV

PCC

Number of Instructions

R
u

n
n

in
g

 t
im

e
 (

s)

22

Related Work

■ Rhodium [Lerner et al.]
 Works well for traditional compiler optimization

problems, but isn't expressive enough for verification
■ Foundational proof checkers [Wu et al.]

 Proves goals using a trusted Prolog interpreter
 Still forces everything to fit into one logic at run-time,

which brings the usual performance penalty
■ Extracting trustworthy verifiers from logical

developments [Bertot, Cachera et al., Klein et
al., ...]
 No published performance figures

23

Future Work

■ Decreasing the amount of trusted code
 Reason about compiled verifiers instead of their

source code
 Perhaps using translation validation?

■ Exploring ways to get some of the same benefits
with techniques based on program extraction
 Extraction has many nice theoretical and practical

properties...
 ...but we need an “optimizing extractor” to maintain the

performance levels we've shown in this work.
➔ E.g., data structure representation

24

Conclusion

■ Certified program analyses provide strong
soundness guarantees without sacrificing
efficiency.

■ We've used this idea to implement a Proof-
Carrying Code-style system with performance
comparable to an uncertified verifier.

