CS281A/Stat241A Lecture 16 Multivariate Gaussians and Factor Analysis

Peter Bartlett

Key ideas of this lecture

- Factorizing multivariate Gaussians
- Motivation: factor analysis, Kalman filter.
- Marginal and conditional Gaussians.
- Schur complement.
- Moment and natural parameterizations.
- Sherman/Woodbury/Morrison formula.
- Factor Analysis.
- Examples: stock prices. Netflix preference data.
- Model: Gaussian factors, conditional Gaussian observations.

Factor analysis: modelling stock prices

Suppose that we want to model stock prices, perhaps to choose a portfolio whose value does not fluctuate excessively:
portfolio weights: $\quad w \in \Delta_{n} \quad$ (n-simplex)
growth from $t-1$ to t :
variance of growth:
$w^{\prime} y_{t} \quad\left(y_{t}=\right.$ returns $)$
$w^{\prime} \Sigma w$.

Want to align w with a bet direction ('airline stocks will fall') while minimizing variance.
Need a model for covariance of prices. Can't hope to estimate an arbitrary Σ.

Modelling stock prices

Some observations about stock data:

1. Prices today tend to be close to what they were yesterday. It's the change in price that is interesting: $p_{t}-p_{t-1}$, where p_{t} is the price at time t.
2. The variance of the price increases as the price increases. So it's appropriate to consider a transformation, like the log of the price:

$$
y_{t}=\log \left(\frac{p_{t}}{p_{t-1}}\right) .
$$

Modelling stock prices

3. Stock prices tend to be strongly correlated:

- Market moves.
- Industry sectors (airlines, pharmaceuticals).

We can think of the stock prices as affected by a (relatively small) set of factors:

- The market as a whole
- Technology versus not (NASDAQ vs NYSE)
- Specific industry sectors

These factors have up and down days, and they affect different stocks differently.

Factor analysis

We can model a distribution like this using a directed graphical model:

Typically the number of factors is much smaller than the number of observations: $p \ll q$.

Factor analysis

We consider the local conditionals:

$$
\begin{aligned}
p\left(x_{1}\right) & =\mathcal{N}\left(x_{1} \mid 0, I\right), \\
p\left(x_{2} \mid x_{1}\right) & =\mathcal{N}\left(x_{2} \mid \mu_{2}+\Lambda x_{1}, \Sigma_{2 \mid 1}\right),
\end{aligned}
$$

where the columns of $\Lambda \in \mathbb{R}^{q \times p}$ define the 'factors,' which form a p-dimensional subspace of \mathbb{R}^{q}. These are the directions in which X_{2} varies the most (think of $\Sigma_{2 \mid 1}$ as not too large).

Factor analysis

$$
\begin{aligned}
p\left(x_{1}\right) & =\mathcal{N}\left(x_{1} \mid 0, I\right), \\
p\left(x_{2} \mid x_{1}\right) & =\mathcal{N}\left(x_{2} \mid \mu_{2}+\Lambda x_{1}, \Sigma_{2 \mid 1}\right), \\
\Lambda & =\left[\lambda_{1} \lambda_{2} \cdots \lambda_{p}\right] \quad \text { factors }
\end{aligned}
$$

Factor analysis

This implies that the joint distribution is Gaussian:

$$
\left(X_{1}, X_{2}\right) \sim \mathcal{N}(\mu, \Sigma) .
$$

- What is the relationship between the parameters of the joint distribution and those of the local conditionals?
- The same question arises when studying linear dynamical systems with Gaussian noise.

Factorizing Multivariate Gaussians

Notation:

$$
\begin{aligned}
x_{1} & \in \mathbb{R}^{p}, \\
x_{2} & \in \mathbb{R}^{q} \\
p\left(x_{1}, x_{2}\right) & =(2 \pi)^{-(p+q) / 2}|\Sigma|^{-1 / 2} \exp \left(-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right) \\
\mu & =\binom{\mu_{1}}{\mu_{2}} \\
\Sigma & =\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right) .
\end{aligned}
$$

Factorizing Multivariate Gaussians

Theorem: [Marginal and conditional Gaussian]

$$
\begin{aligned}
p\left(x_{1}\right) & =\mathcal{N}\left(x_{1} \mid \mu_{1}, \Sigma_{11}\right) \\
p\left(x_{2} \mid x_{1}\right) & =\mathcal{N}\left(x_{2} \mid \mu_{2 \mid 1}\left(x_{1}\right), \Sigma_{2 \mid 1}\right) \\
\text { where } \mu_{2 \mid 1}\left(x_{1}\right) & =\mu_{2}-\Sigma_{21} \Sigma_{11}^{-1}\left(x_{1}-\mu_{1}\right) \\
\Sigma_{2 \mid 1} & =\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}
\end{aligned}
$$

$\Sigma_{2 \mid 1}$ is Σ / Σ_{11}, the Schur complement of Σ wrt Σ_{11}.

Conditional Gaussians

Factorizing Multivariate Gaussians

Conditional Gaussian:

$$
\begin{aligned}
\mu_{2 \mid 1}\left(x_{1}\right) & =\mu_{2}-\Sigma_{21} \Sigma_{11}^{-1}\left(x_{1}-\mu_{1}\right) \\
\Sigma_{2 \mid 1} & =\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}
\end{aligned}
$$

- $\mu_{2 \mid 1} \neq \mu_{2}$.
- $\Sigma_{2 \mid 1} \leq \Sigma_{22}$.
- $x_{1} \Perp x_{2} \Rightarrow \Sigma_{2 \mid 1}=\Sigma_{22}$.

Factorizing Multivariate Gaussians

- Marginal parameters are simple for moment parameterization.
- Conditional parameters are simple for natural parameterization.
- Natural parameterization:

$$
\begin{aligned}
\Lambda=\Sigma^{-1} & \eta=\Sigma^{-1} \mu . \\
(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)= & \mu^{\prime} \Sigma^{-1} \mu-2 \mu^{\prime} \Sigma^{-1} x+x^{\prime} \Sigma^{-1} x \\
= & \eta^{\prime} \Lambda^{-1} \eta-2 \eta^{\prime} x+x^{\prime} \Lambda x .
\end{aligned}
$$

Factorizing Multivariate Gaussians

Corollary: [Marginal and conditional in natural parameters]

$$
\begin{aligned}
p\left(x_{1}\right) & =\mathcal{N}\left(x_{1} \mid \eta_{1}^{m}, \Lambda_{1}^{m}\right) \\
p\left(x_{2} \mid x_{1}\right) & =\mathcal{N}\left(x_{2} \mid \eta_{2 \mid 1}^{c}\left(x_{1}\right), \Lambda_{2 \mid 1}^{c}\right)
\end{aligned}
$$

where $\eta_{1}^{m}=\eta_{1}-\Lambda_{12} \Lambda_{22}^{-1} \eta_{2}$

$$
\begin{aligned}
\Lambda_{1}^{m} & =\Lambda_{11}-\Lambda_{12} \Lambda_{22}^{-1} \Lambda_{21}\left(=\Lambda / \Lambda_{22}\right) \\
\eta_{2 \mid 1}^{c}\left(x_{1}\right) & =\eta_{2}-\Lambda_{21} x_{1} \\
\Lambda_{2 \mid 1}^{c} & =\Lambda_{22}
\end{aligned}
$$

Factorizing Multivariate Gaussians

Proof Idea:

- To split $p(x)$ into $p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right)$, we need to express

$$
(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)
$$

as a sum of similar quadratic forms involving x_{1} and x_{2}. For this, we need to decompose Σ^{-1}.

- We consider the block LDU decomposition of Σ^{-1}. LDU is lower triangular-diagonal-upper triangular. This relies on the idea of a Schur complement of a block matrix.

hur complements and LDU decompositio

Definition: [Schur complement]

For

$$
M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right],
$$

where $|A|,|D| \neq 0$,
define

$$
\begin{aligned}
& M / A=D-C A^{-1} B, \\
& M / D=A-B D^{-1} C .
\end{aligned}
$$

hur complements and LDU decompositio

Lemma: [UDL decomposition]

$$
\begin{aligned}
{\left[\begin{array}{cc}
A & 0 \\
0 & M / A
\end{array}\right] } & =\left[\begin{array}{cc}
I & 0 \\
-C A^{-1} & I
\end{array}\right]\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
I & -A^{-1} B \\
0 & I
\end{array}\right] \\
M^{-1} & =\left[\begin{array}{cc}
I & -A^{-1} B \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A^{-1} & 0 \\
0 & (M / A)^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
-C A^{-1} & I
\end{array}\right] \\
|M| & =|M / A||A|
\end{aligned}
$$

hur complements and LDU decompositio

Lemma: [LDU decomposition]

$$
\begin{aligned}
{\left[\begin{array}{cc}
M / D & 0 \\
0 & D
\end{array}\right] } & =\left[\begin{array}{cc}
I & -B D^{-1} \\
0 & I
\end{array}\right]\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
-D^{-1} C & I
\end{array}\right] \\
M^{-1} & =\left[\begin{array}{cc}
I & 0 \\
-D^{-1} C & I
\end{array}\right]\left[\begin{array}{cc}
(M / D)^{-1} & 0 \\
0 & D^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & -B D^{-1} \\
0 & I
\end{array}\right] \\
|M| & =|M / D||D| .
\end{aligned}
$$

Schur complements/LDU decompositions

Proofs: The two formulations have identical proofs: 1. Easy to check: do the multiplication.
2. $(E F G)^{-1}=G^{-1} F^{-1} E^{-1}$, so $F^{-1}=G(E F G)^{-1} E$. Plug into 1.
3. Take determinants of 1 .

An aside: S/W/M

Sherman/Woodbury/Morrison matrix inversion lemma Corollary of LDU decomposition: For any (compatible) A, B, C, D,
if A, D are invertible,

$$
(A-B D C)^{-1}=A^{-1}+A^{-1} B\left(D^{-1}-C A^{-1} B\right)^{-1} C A^{-1} .
$$

Proof: Use the two expressions (LDU and UDL) for the top left block of M^{-1} :

$$
\begin{aligned}
\left(\begin{array}{ll}
I & 0
\end{array}\right) M^{-1}\binom{I}{0} & =A^{-1}+A^{-1} B(M / A)^{-1} C A^{-1} \\
& =(M / D)^{-1}
\end{aligned}
$$

An aside: S/W/M

Corollary of LDU decomposition: For any (compatible) A, B, C, D,
if A, D are invertible,

$$
(A-B D C)^{-1}=A^{-1}+A^{-1} B\left(D^{-1}-C A^{-1} B\right)^{-1} C A^{-1} .
$$

Useful for incrementally updating the inverse of a matrix. e.g., $S=X^{\prime} X$ and its inverse S^{-1}.

Add a new observation x, inverse becomes

$$
\left(S+x x^{\prime}\right)^{-1}=S^{-1}-S^{-1} x\left(1+x^{\prime} S^{-1} x\right)^{-1} x^{\prime} S^{-1} .
$$

This involves only matrix-vector multiplications: $O\left(d^{2}\right)$.
Versus matrix inversion: $O\left(d^{3}\right)$.

Gaussian Marginals and Conditionals

Now we can come back to the question of expressing a joint Gaussian as a marginal plus a conditional. We can use the UDL decomposition to write

$$
\begin{aligned}
& \left(\begin{array}{ll}
x_{1}^{\prime} & x_{2}^{\prime}
\end{array}\right) \Sigma^{-1}\binom{x_{1}}{x_{2}} \\
& =\left(\begin{array}{ll}
x_{1}^{\prime} & x_{2}^{\prime}
\end{array}\right)\left(\begin{array}{cc}
I & -\Sigma_{11}^{-1} \Sigma_{12} \\
0 & I
\end{array}\right) \\
& \quad \times\left(\begin{array}{cc}
\Sigma_{11}^{-1} & 0 \\
0 & \left(\Sigma / \Sigma_{11}\right)^{-1}
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
-\Sigma_{21} \Sigma_{11}^{-1} & I
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& =x_{1}^{\prime} \Sigma_{11}^{-1} x_{1}+\left(x_{2}-\Sigma_{21} \Sigma_{11}^{-1} x_{1}\right)^{\prime}\left(\Sigma / \Sigma_{11}\right)^{-1}\left(x_{2}-\Sigma_{21} \Sigma_{11}^{-1} x_{1}\right)
\end{aligned}
$$

Gaussian Marginals and Conditionals

Using this, we have

$$
\begin{aligned}
& p\left(x_{1}, x_{2}\right) \\
& =(2 \pi)^{-(p+q) / 2}|\Sigma|^{-1 / 2} \exp \left(-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right) \\
& =(2 \pi)^{-p / 2}\left|\Sigma_{11}\right|^{-1 / 2} \exp \left(-\frac{1}{2}\left(x_{1}-\mu_{1}\right)^{\prime} \Sigma_{11}^{-1}\left(x_{1}-\mu_{1}\right)\right) \\
& \quad \times(2 \pi)^{-q / 2}\left|\Sigma / \Sigma_{11}\right|^{-1 / 2} \\
& \quad \times \exp \left(-\frac{1}{2}\left(x_{2}-\mu_{2 \mid 1}\left(x_{1}\right)\right)^{\prime}\left(\Sigma / \Sigma_{11}\right)^{-1}\left(x_{2}-\mu_{2 \mid 1}\left(x_{1}\right)\right)\right) \\
& =\mathcal{N}\left(x_{1} \mid \mu_{1}, \Sigma_{11}\right) \mathcal{N}(x_{2} \mid \underbrace{\mu_{2}+\Sigma_{21} \Sigma_{11}^{-1}\left(x_{1}-\mu_{1}\right)}_{\mu_{2 \mid 1}\left(x_{1}\right)}, \Sigma / \Sigma_{11}) .
\end{aligned}
$$

Key ideas of this lecture

- Factorizing multivariate Gaussians
- Motivation: factor analysis, Kalman filter.
- Marginal and conditional Gaussians.
- Schur complement.
- Moment and natural parameterizations.
- Sherman/Woodbury/Morrison formula.
- Factor Analysis.
- Examples: stock prices. Netflix preference data.
- Model: Gaussian factors, conditional Gaussian observations.
- Parameter estimation with EM.

Factor Analysis: Motivation

Netflix movie ratings The data, for each individual, is a vector of their ratings (on the scale $[0,5]$) of many tens of thousands of movies.
Again, the covariance of these variables is very structured: people tend to like movies of particular genres, and with particular stars. So the ratings of similar movies tend to be similar.
Again, we could hypothesize a factor model with a (relatively) small set of factors.

Factor Analysis: Definition

$X \in \mathbb{R}^{p}$, factors

$Y \in \mathbb{R}^{d}$, observations

Local conditionals:

$$
\begin{aligned}
p(x) & =\mathcal{N}(x \mid 0, I), \\
p(y \mid x) & =\mathcal{N}(y \mid \mu+\Lambda x, \Psi) .
\end{aligned}
$$

Factor Analysis

Factor Analysis: Definition

Local conditionals:

$$
\begin{aligned}
p(x) & =\mathcal{N}(x \mid 0, I), \\
p(y \mid x) & =\mathcal{N}(y \mid \mu+\Lambda x, \Psi)
\end{aligned}
$$

- The mean of y is $\mu \in \mathbb{R}^{d}$.
- The matrix of factors is $\Lambda \in \mathbb{R}^{d \times p}$.
- The noise covariance $\Psi \in \mathbb{R}^{d \times d}$ is diagonal.
- Thus, there are $d+d p+d \sim d p$ parameters.
- A full covariance matrix has d^{2} parameters. Here, with only p factors (and $p \ll d$), the covariance for a factor model has far fewer parameters to estimate.

tor Analysis: Joint, Marginals, Condition

Theorem

1. $Y \sim \mathcal{N}\left(\mu, \Lambda \Lambda^{\prime}+\Psi\right)$.
2. $(X, Y) \sim \mathcal{N}\left(\binom{0}{\mu}, \Sigma\right)$, with $\Sigma=\left(\begin{array}{cc}I & \Lambda^{\prime} \\ \Lambda & \Lambda \Lambda^{\prime}+\Psi\end{array}\right)$.
3. $p(x \mid y)$ is Gaussian, with
mean $=\Lambda^{\prime}\left(\Lambda \Lambda^{\prime}+\Psi\right)^{-1}(y-\mu)$, covariance $I-\Lambda^{\prime}\left(\Lambda \Lambda^{\prime}+\Psi\right)^{-1} \Lambda$.

etor Analysis: Joint, Marginals, Condition

1. Shows that the marginal distribution for Y is centered at μ, and has covariance that is Ψ plus the low rank (rank $\leq p$) factored matrix $\Lambda \Lambda^{\prime}$. If $p \ll d$, this corresponds to $p d$ parameters, rather than d^{2} for a full covariance matrix. It's an easy calculation (once we decompose y as $y=\mu+\Lambda x+w)$.
2. Shows how the joint covariance depends on Λ. Again, it's an easy calculation using $y=\mu+\Lambda x+w$.
3. Shows how we can invert the conditional distribution. We'll rely on this for EM; x is the hidden variable. Its proof uses the theorem: take the joint and calculate the conditional.

Key ideas of this lecture

- Factorizing multivariate Gaussians
- Motivation: factor analysis, Kalman filter.
- Marginal and conditional Gaussians.
- Schur complement.
- Moment and natural parameterizations.
- Sherman/Woodbury/Morrison formula.
- Factor Analysis.
- Examples: stock prices. Netflix preference data.
- Model: Gaussian factors, conditional Gaussian observations.
- Parameter estimation with EM.

