
CS281A/Stat241A Lecture 16
Multivariate Gaussians and Factor Analysis

Peter Bartlett

CS281A/Stat241A Lecture 16 – p. 1/32



Key ideas of this lecture

Factorizing multivariate Gaussians
Motivation: factor analysis, Kalman filter.
Marginal and conditional Gaussians.
Schur complement.
Moment and natural parameterizations.
Sherman/Woodbury/Morrison formula.

Factor Analysis.
Examples: stock prices. Netflix preference data.
Model: Gaussian factors, conditional Gaussian
observations.
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Factor analysis: modelling stock prices

Suppose that we want to model stock prices, perhaps to
choose a portfolio whose value does not fluctuate
excessively:

portfolio weights: w ∈ ∆n (n-simplex)

growth from t − 1 to t: w′yt (yt =returns)

variance of growth: w′Σw.

Want to align w with a bet direction (‘airline stocks will fall’)
while minimizing variance.
Need a model for covariance of prices. Can’t hope to
estimate an arbitrary Σ.
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Modelling stock prices

Some observations about stock data:

1. Prices today tend to be close to what they were
yesterday. It’s the change in price that is interesting:
pt − pt−1, where pt is the price at time t.

2. The variance of the price increases as the price
increases. So it’s appropriate to consider a
transformation, like the log of the price:

yt = log

(
pt

pt−1

)

.
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Modelling stock prices

3. Stock prices tend to be strongly correlated:
Market moves.
Industry sectors (airlines, pharmaceuticals).

We can think of the stock prices as affected by a
(relatively small) set of factors :

The market as a whole
Technology versus not (NASDAQ vs NYSE)
Specific industry sectors
...

These factors have up and down days, and they affect
different stocks differently.
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Factor analysis

We can model a distribution like this using a directed
graphical model:

��
��

X1 ∈ R
p, factors

��
��

X2 ∈ R
q, observations

?

Typically the number of factors is much smaller than the
number of observations: p ≪ q.
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Factor analysis

We consider the local conditionals:

p(x1) = N (x1|0, I),

p(x2|x1) = N (x2|µ2 + Λx1,Σ2|1),

where the columns of Λ ∈ R
q×p define the ‘factors,’ which

form a p-dimensional subspace of R
q. These are the

directions in which X2 varies the most (think of Σ2|1 as not
too large).
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Factor analysis

p(x1) = N (x1|0, I),

p(x2|x1) = N (x2|µ2 + Λx1,Σ2|1),

Λ = [λ1λ2 · · · λp] factors
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Factor analysis

This implies that the joint distribution is Gaussian:

(X1, X2) ∼ N (µ,Σ).

What is the relationship between the parameters of the
joint distribution and those of the local conditionals?

The same question arises when studying linear
dynamical systems with Gaussian noise.
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Factorizing Multivariate Gaussians

Notation:

x1 ∈ R
p,

x2 ∈ R
q

p(x1, x2) = (2π)−(p+q)/2|Σ|−1/2 exp

(

−
1

2
(x − µ)′Σ−1(x − µ)

)

µ =

(

µ1

µ2

)

Σ =

(

Σ11 Σ12

Σ21 Σ22

)

.
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Factorizing Multivariate Gaussians

Theorem: [Marginal and conditional Gaussian]

p(x1) = N (x1|µ1,Σ11)

p(x2|x1) = N (x2|µ2|1(x1),Σ2|1)

where µ2|1(x1) = µ2 − Σ21Σ
−1
11 (x1 − µ1)

Σ2|1 = Σ22 − Σ21Σ
−1
11 Σ12

Σ2|1 is Σ/Σ11, the Schur complement of Σ wrt Σ11.
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Conditional Gaussians
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Factorizing Multivariate Gaussians

Conditional Gaussian:

µ2|1(x1) = µ2 − Σ21Σ
−1
11 (x1 − µ1)

Σ2|1 = Σ22 − Σ21Σ
−1
11 Σ12

µ2|1 6= µ2.

Σ2|1 ≤ Σ22.

x1 ⊥⊥ x2 ⇒ Σ2|1 = Σ22.
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Factorizing Multivariate Gaussians

Marginal parameters are simple for moment
parameterization.

Conditional parameters are simple for natural
parameterization.

Natural parameterization:

Λ = Σ−1 η = Σ−1µ.

(x − µ)′Σ−1(x − µ) = µ′Σ−1µ − 2µ′Σ−1x + x′Σ−1x

= η′Λ−1η − 2η′x + x′Λx.
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Factorizing Multivariate Gaussians

Corollary: [Marginal and conditional in natural
parameters]

p(x1) = N (x1|η
m
1 ,Λm

1 )

p(x2|x1) = N (x2|η
c
2|1(x1),Λ

c
2|1)

where ηm
1 = η1 − Λ12Λ

−1
22 η2

Λm
1 = Λ11 − Λ12Λ

−1
22 Λ21(= Λ/Λ22)

ηc
2|1(x1) = η2 − Λ21x1

Λc
2|1 = Λ22.
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Factorizing Multivariate Gaussians

Proof Idea:
To split p(x) into p(x1)p(x2|x1), we need to express

(x − µ)′Σ−1(x − µ)

as a sum of similar quadratic forms involving x1 and x2.
For this, we need to decompose Σ−1.

We consider the block LDU decomposition of Σ−1.
LDU is lower triangular-diagonal-upper triangular.
This relies on the idea of a Schur complement of a block
matrix.
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Schur complements and LDU decompositions

Definition: [Schur complement]

For M =

[

A B

C D

]

, where |A|, |D| 6= 0,

define M/A = D − CA−1B,

M/D = A − BD−1C.
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Schur complements and LDU decompositions

Lemma: [UDL decomposition]
[

A 0

0 M/A

]

=

[

I 0

−CA−1 I

][

A B

C D

][

I −A−1B

0 I

]

M−1 =

[

I −A−1B

0 I

][

A−1 0

0 (M/A)−1

][

I 0

−CA−1 I

]

|M | = |M/A||A|
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Schur complements and LDU decompositions

Lemma: [LDU decomposition]
[

M/D 0

0 D

]

=

[

I −BD−1

0 I

][

A B

C D

][

I 0

−D−1C I

]

M−1 =

[

I 0

−D−1C I

][

(M/D)−1 0

0 D−1

][

I −BD−1

0 I

]

|M | = |M/D||D|.
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Schur complements/LDU decompositions

Proofs: The two formulations have identical proofs:
1. Easy to check: do the multiplication.

2. (EFG)−1 = G−1F−1E−1, so F−1 = G(EFG)−1E.
Plug into 1.

3. Take determinants of 1.
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An aside: S/W/M

Sherman/Woodbury/Morrison matrix inversion lemma
Corollary of LDU decomposition: For any (compatible)
A,B,C,D,
if A,D are invertible,

(A − BDC)−1 = A−1 + A−1B
(
D−1 − CA−1B

)−1
CA−1.

Proof: Use the two expressions (LDU and UDL) for the top
left block of M−1:

(

I 0
)

M−1

(

I

0

)

= A−1 + A−1B(M/A)−1CA−1

= (M/D)−1.
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An aside: S/W/M

Corollary of LDU decomposition: For any (compatible)
A,B,C,D,
if A,D are invertible,

(A − BDC)−1 = A−1 + A−1B
(
D−1 − CA−1B

)−1
CA−1.

Useful for incrementally updating the inverse of a matrix.
e.g., S = X ′X and its inverse S−1.
Add a new observation x, inverse becomes

(S + xx′)−1 = S−1 − S−1x(1 + x′S−1x)−1x′S−1.

This involves only matrix-vector multiplications: O(d2).
Versus matrix inversion: O(d3).

CS281A/Stat241A Lecture 16 – p. 22/32



Gaussian Marginals and Conditionals

Now we can come back to the question of expressing a joint
Gaussian as a marginal plus a conditional.
We can use the UDL decomposition to write

(

x′
1 x′

2

)

Σ−1

(

x1

x2

)

=
(

x′
1 x′

2

)
(

I −Σ−1
11 Σ12

0 I

)

×

(

Σ−1
11 0

0 (Σ/Σ11)
−1

)(

I 0

−Σ21Σ
−1
11 I

)(

x1

x2

)

= x′
1Σ

−1
11 x1 +

(
x2 − Σ21Σ

−1
11 x1

)′
(Σ/Σ11)

−1 (x2 − Σ21Σ
−1
11 x1

)

CS281A/Stat241A Lecture 16 – p. 23/32



Gaussian Marginals and Conditionals

Using this, we have

p(x1, x2)

= (2π)−(p+q)/2|Σ|−1/2 exp

(

−
1

2
(x − µ)′Σ−1(x − µ)

)

= (2π)−p/2|Σ11|
−1/2 exp

(

−
1

2
(x1 − µ1)

′Σ−1
11 (x1 − µ1)

)

× (2π)−q/2|Σ/Σ11|
−1/2

× exp

(

−
1

2
(x2 − µ2|1(x1))

′(Σ/Σ11)
−1(x2 − µ2|1(x1))

)

= N (x1|µ1,Σ11)N




x2|µ2 + Σ21Σ

−1
11 (x1 − µ1)

︸ ︷︷ ︸

µ2|1(x1)

,Σ/Σ11




 .

CS281A/Stat241A Lecture 16 – p. 24/32



Key ideas of this lecture

Factorizing multivariate Gaussians
Motivation: factor analysis, Kalman filter.
Marginal and conditional Gaussians.
Schur complement.
Moment and natural parameterizations.
Sherman/Woodbury/Morrison formula.

Factor Analysis.
Examples: stock prices. Netflix preference data.
Model: Gaussian factors, conditional Gaussian
observations.
Parameter estimation with EM.
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Factor Analysis: Motivation

Netflix movie ratings The data, for each individual, is a
vector of their ratings (on the scale [0, 5]) of many tens of
thousands of movies.
Again, the covariance of these variables is very structured:
people tend to like movies of particular genres, and with
particular stars. So the ratings of similar movies tend to be
similar.
Again, we could hypothesize a factor model with a
(relatively) small set of factors.
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Factor Analysis: Definition

��
��

X ∈ R
p, factors

��
��

Y ∈ R
d, observations

?

Local conditionals:

p(x) = N (x|0, I),

p(y|x) = N (y|µ + Λx,Ψ).
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Factor Analysis
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Factor Analysis: Definition

Local conditionals:

p(x) = N (x|0, I),

p(y|x) = N (y|µ + Λx,Ψ).

The mean of y is µ ∈ R
d.

The matrix of factors is Λ ∈ R
d×p.

The noise covariance Ψ ∈ R
d×d is diagonal.

Thus, there are d + dp + d ∼ dp parameters.

A full covariance matrix has d2 parameters.
Here, with only p factors (and p ≪ d), the covariance for
a factor model has far fewer parameters to estimate.
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Factor Analysis: Joint, Marginals, Conditionals

Theorem
1. Y ∼ N (µ,ΛΛ′ + Ψ).

2. (X,Y ) ∼ N

((

0

µ

)

,Σ

)

, with Σ =

(

I Λ′

Λ ΛΛ′ + Ψ

)

.

3. p(x|y) is Gaussian, with
mean = Λ′(ΛΛ′ + Ψ)−1(y − µ),
covariance I − Λ′ (ΛΛ′ + Ψ)

−1
Λ.
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Factor Analysis: Joint, Marginals, Conditionals

1. Shows that the marginal distribution for Y is centered at
µ, and has covariance that is Ψ plus the low rank (rank
≤ p) factored matrix ΛΛ′. If p ≪ d, this corresponds to pd

parameters, rather than d2 for a full covariance matrix.
It’s an easy calculation (once we decompose y as
y = µ + Λx + w).

2. Shows how the joint covariance depends on Λ. Again,
it’s an easy calculation using y = µ + Λx + w.

3. Shows how we can invert the conditional distribution.
We’ll rely on this for EM; x is the hidden variable.
Its proof uses the theorem: take the joint and calculate
the conditional.
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Key ideas of this lecture

Factorizing multivariate Gaussians
Motivation: factor analysis, Kalman filter.
Marginal and conditional Gaussians.
Schur complement.
Moment and natural parameterizations.
Sherman/Woodbury/Morrison formula.

Factor Analysis.
Examples: stock prices. Netflix preference data.
Model: Gaussian factors, conditional Gaussian
observations.
Parameter estimation with EM.
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