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Key ideas of this lecture

Factor Analysis.
Recall: Gaussian factors plus observations.
Parameter estimation with EM.

The vec operator.
Motivation: Natural parameters of Gaussian.
Linear functions of matrices as inner products.
Kronecker product.

State Space Models.
Linear dynamical systems, gaussian disturbances.
All distributions are Gaussian: parameters suffice.
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Factor Analysis: Definition

��
��

X ∈ R
p, factors

��
��

Y ∈ R
d, observations

?

Local conditionals:

p(x) = N (x|0, I),

p(y|x) = N (y|µ+ Λx,Ψ).
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Factor Analysis
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Factor Analysis: Definition

Local conditionals:

p(x) = N (x|0, I),

p(y|x) = N (y|µ+ Λx,Ψ).

The mean of y is µ ∈ R
d.

The matrix of factors is Λ ∈ R
d×p.

The noise covariance Ψ ∈ R
d×d is diagonal.

Thus, there are d+ dp+ d ∼ dp≪ d2 parameters.
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Factor Analysis: Marginals, Conditionals

Theorem
1. Y ∼ N (µ,ΛΛ′ + Ψ).

2. (X,Y ) ∼ N

((

0

µ

)

,Σ

)

, with Σ =

(

I Λ′

Λ ΛΛ′ + Ψ

)

.

3. p(x|y) is Gaussian, with
mean = Λ′(ΛΛ′ + Ψ)−1(y − µ),
covariance I − Λ′ (ΛΛ′ + Ψ)

−1
Λ.
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Factor Analysis: Parameter Estimation

iid data y = (y1, . . . , yn).

The log likelihood is

ℓ(θ; y) = log p(y|θ)

= const −
n

2
log
∣
∣ΛΛ′ + Ψ

∣
∣

−
1

2

∑

i

(yi − µ)′(ΛΛ′ + Ψ)−1(yi − µ).
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Factor Analysis: Parameter Estimation

Let’s first consider estimation of µ:

µ̂ML =
1

n

n∑

i=1

yi,

as for the full covariance case.
From now on, let’s assume µ = 0, so we can ignore it:

ℓ(θ; y) = const −
1

2
log
∣
∣ΛΛ′ + Ψ

∣
∣−

1

2

∑

i

y′i(ΛΛ′ + Ψ)−1yi.

But how do we find a factorized covariance matrix,
Σ = ΛΛ′ + Ψ?
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Factor Analysis: EM

We follow the usual EM recipe:

1. Write out the complete log likelihood, ℓc.

2. E step: Calculate E[ℓc|y].
Typically, find E[suff. stats|y].

3. M step: Maximize E[ℓc|y].
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Factor Analysis: EM

1. Write out the complete log likelihood, ℓc.

ℓc(θ) = log(p(x, θ)p(y|x, θ))

= const −
n

2
log |Ψ| −

1

2

n∑

i=1

x′ixi

−
1

2

n∑

i=1

(yi − Λxi)
′Ψ−1(yi − Λxi).
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Factor Analysis: EM

2. E step: Calculate E[ℓc|y].
Typically, find E[suff. stats|y].

Claim: Sufficient statistics are xi, xix
′
i.

Indeed, E[ℓc|y] is a constant plus −n
2 log |Ψ| plus

−
1

2
E

(
n∑

i=1

x′ixi +
n∑

i=1

(yi − Λxi)
′Ψ−1(yi − Λxi)|y

)

= −
1

2

n∑

i=1

(
E(x′ixi|yi) + E

(
tr
(
(yi − Λxi)

′Ψ−1(yi − Λxi)
)
|yi

))

= −
1

2

n∑

i=1

E(x′ixi|yi) −
n

2
E
(
tr
(
SΨ−1

)
|yi

)
,
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Factor Analysis: EM. E-step

E[ℓc|y] = −
n

2
log |Ψ| −

1

2

n∑

i=1

E(x′ixi|yi) −
n

2
E
(
tr
(
SΨ−1

)
|yi

)
,

with S =
1

n

n∑

i=1

(yi − Λxi)(yi − Λxi)
′,

We used the fact that the trace (sum of diagonal elements)
of a matrix satisfies

tr(ABC) = tr(CAB),

as long as the products ABC and CAB are square.
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Factor Analysis: EM. E-step

Now, we can calculate

E(S|y) =
1

n

n∑

i=1

E
[
yiy

′
i − 2Λxiy

′
i + Λxix

′
iΛ

′
∣
∣ yi

]

=
1

n

n∑

i=1

yiy
′
i − 2ΛE[xi|yi]y

′
i + ΛE[xix

′
i|yi]Λ

′,

and from this it is clear that the expected sufficient statistics
are E(xi|yi), E(xix

′
i|yi) (and its trace, E(x′ixi|yi)).
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Factor Analysis: EM. E-step

We calculated these conditional expectations earlier:

E[xi|yi] = Λ′
(
ΛΛ′ + Ψ

)−1
(yi − µ)

Var[xi|yi] = I − Λ′
(
ΛΛ′ + Ψ

)−1
Λ

E[xix
′
i|yi] = Var[xi|yi] + E[xi|yi]E[x′i|yi].

So we can plug them in to calculate the expected complete
log likelihood.
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Factor Analysis: EM. M-step

3. M step: Maximize E[ℓc|y].
For Λ, this is equivalent to minimizing

ntr
(
E(S|y)Ψ−1

)
= tr

(
(Y ′ − ΛX ′)(Y ′ − ΛX ′)′Ψ−1

)
,

where Y ∈ R
n×d, with rows yi, X ∈ R

n×p, with rows xi.
This is a matrix version of linear regression, with the d
separate components of the squared error weighted by
one of the diagonal entries in Ψ−1. Thus, the Ψ matrix
plays no role, and the solution satisfies the normal
equations.
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Factor Analysis: EM. M-step

Normal Equations:

Λ̂′ =

(
n∑

i=1

E[xix
′
i|yi]

)−1 n∑

i=1

(
E[xi|yi]y

′
i

)

(They are the same sufficient statistics as in linear
regression; here we need to compute the expectation of the
suff. stats given the observations.)
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Factor Analysis: EM. M-step

For Ψ, we need to find a diagonal Ψ to minimize

log |Ψ| + tr
(
E(S|y)Ψ−1

)
. =

d∑

j=1

(logψj + sj/ψj) ,

It’s easy to check that this is minimized for ψj = sj , the
diagonal entries of E[S|y].
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Factor Analysis: EM. Summary.

E step: Calculate the expected suff. stats:

E[xi|yi] = Λ′
(
ΛΛ′ + Ψ

)−1
(yi − µ)

Var[xi|yi] = I − Λ′
(
ΛΛ′ + Ψ

)−1
Λ

E[xix
′
i|yi] = Var[xi|yi] + E[xi|yi]E[x′i|yi].

And use these to compute the (diagonal entries of the)
matrix

E(S|y) =
1

n

n∑

i=1

yiy
′
i − 2ΛE[xi|yi]y

′
i + ΛE[xix

′
i|yi]Λ

′.
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Factor Analysis: EM. Summary.

M step: Maximize E[ℓc|y]:

Λ̂′ =

(
n∑

i=1

E[xix
′
i|yi]

)−1 n∑

i=1

(
E[xi|yi]y

′
i

)

Ψ̂ = diag(E(S|y)),

and recall: µ̂ =
1

n

n∑

i=1

yi.
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Key ideas of this lecture

Factor Analysis.
Recall: Gaussian factors plus observations.
Parameter estimation with EM.

The vec operator.
Motivation: Natural parameters of Gaussian.
Linear functions of matrices as inner products.
Kronecker product.

State Space Models.
Linear dynamical systems, gaussian disturbances.
All distributions are Gaussian: parameters suffice.
Inference: Kalman filter and smoother.
Parameter estimation with EM.
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The vec operator: Motivation

Consider the multivariate Gaussian:

p(x) = (2π)−(d)/2|Σ|−1/2 exp

(

−
1

2
(x− µ)′Σ−1(x− µ)

)

.

What is the natural parameterization?

p(x) = h(x) exp
(
θ′T (x) −A(θ)

)
.
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The vec operator: Motivation

If we define
Λ = Σ−1 η = Σ−1µ,

then we can write

(x− µ)′Σ−1(x− µ) = µ′Σ−1µ− 2µ′Σ−1x+ x′Σ−1x

= η′Λ−1η − 2η′x+ x′Λx.

Why is this of the form θ′T (x) −A(θ)?
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The vec operator: Example

(

x1 x2

)
(

λ11 λ12

λ21 λ22

)(

x1

x2

)

= λ11x
2
1 + λ21x1x2 + λ12x1x2 + λ22x

2
2

=
(

λ11 λ21 λ12 λ22

)








x2
1

x1x2

x2x1

x2
2








= vec(Λ)′vec(xx′).
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The vec operator

Definition [vec]: For a matrix A,

vec(A) =









a1

a2
...
an









where the ai are the column vectors of A:

A =
(

a1 a2 · · · an

)
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The vec operator

Theorem:

tr(A′B) = vec(A)′vec(B).

(Trace of the product is the sum of the corresponding
row×column inner products.)
In the example above,

x′Λx = tr
(
x′Λx

)

= tr
(
Λxx′

)

= vec(Λ′)′
︸ ︷︷ ︸

nat. param.

vec(xx′)
︸ ︷︷ ︸

suff. stat.
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The Kronecker product

We also use the vec operator for matrix equations like

XΘY = Z,

or, for instance, for least squares minimization of XΘY − Z.
Then we can write

vec(Z) = vec(XΘY ) = (Y ′ ⊗X)vec(Θ),

where (Y ′ ⊗X) is the Kronecker product of Y ′ and X:
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The Kronecker product

Definition [Kronecker product] The Kronecker product of A and
B is

A⊗B =






a11B · · · a1nB
... . . . ...

am1B · · · amnB





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The Kronecker product

Theorem [Kronecker product and vec operator]

vec(ABC) = (C ′ ⊗ A)vec(B).

The Kronecker product and vec operator are used in matrix
algebra. They are convenient for differentiation of a function
of a matrix, and they arise: in statistical models involving
products of features; in systems theory; and in stability
theory.
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Key ideas of this lecture

Factor Analysis.
Recall: Gaussian factors plus observations.
Parameter estimation with EM.

The vec operator.
Motivation: Natural parameters of Gaussian.
Linear functions of matrices as inner products.
Kronecker product.

State Space Models.
Linear dynamical systems, gaussian disturbances.
All distributions are Gaussian: parameters suffice.
Inference: Kalman filter and smoother.
Parameter estimation with EM.

CS281A/Stat241A Lecture 17 – p. 29/40



State Space Models

n
n?

discrete
mixture model nGaussian

n?
factor model

n
n?

- n
n?

- n
n?

- discrete
HMM n

n?
- n
n?

- n
n?

- Gaussian
State Space Model
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State Space Models

In linear dynamic systems ,

The evolution of the state xt, and

The relationship between the state xt and the
observation yt

are linear with Gaussian noise .
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State Space Models

State space models revolutionized control theory in the
late 50s and early 60s. Prior to these models, classical
control theory could cope with decoupled low order
systems. State space models allowed the effective
control of complex systems like spacecraft and fast
aircraft.

The directed graph is identical to an HMM, so the
conditional independencies are identical: Given the
current state (not observation), the past and the future
are independent.

CS281A/Stat241A Lecture 17 – p. 32/40



Linear System: Definition

��
��

��
��?

-��
��

��
��?

-��
��

��
��?

-

xt−1 xt xt+1 ∈ R
p

yt−1 yt yt+1 ∈ R
d
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Linear System: Definition

State xt ∈ R
p

Observation yt ∈ R
d

Initial state x0 ∼ N (0, P0)

Dynamics xt+1 = Axt +Gwt, wt ∼ N (0, Q)

Observation yt = Cxt + vt, vt ∼ N (0, R).
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Linear System: Observations

1. All the distributions are Gaussian (joints, marginals,
conditionals), so they can be described by their means
and variances.

2. The conditional distribution of the next state, xt+1|xt, is

N (Axt, GQG
′).

To see this:

E(xt+1|xt) = Axt +GE(wt+1|xt) = Axt.

Var(xt+1|xt) = E(Gwt(Gwt)
′)

= GQG′.
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Linear System: Observations

3. The marginal distribution of xt is N (0, Pt), where P0 is
given and, for t ≥ 0,

Pt+1 = APtA
′ +GQG′.

To see this:

Ext+1 = EE(xt+1|xt) = AE(xt) = 0.

Pt+1 = E(xt+1x
′
t+1)

= E((Axt +Gwt)(Axt +Gwt)
′)

= APtA
′ +GQG′.
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Inference in SSMs

Filtering: p(xt|y0, . . . , yt).

Smoothing: p(xt|y0, . . . , yT ).

For inference, it suffices to calculate the appropriate
conditional means and covariances.
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Inference in SSMs: Notation

x̂t|s = E(xt|y0, . . . , ys),

P̂t|s = E((xt − xt|s)(xt − xt|s)
′|y0, . . . , ys).

Filtering: xt|t ∼ N (x̂t|t, Pt|t),

Smoothing: xt|T ∼ N (x̂t|T , Pt|T ).

The Kalman Filter is an inference algorithm for x̂t|t, Pt|t.
The Kalman Smoother is an inference algorithm for x̂t|T , Pt|T .
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The Kalman Filter

h
h? - hh? - hh? -
xt−1 xt xt+1

yt−1 yt yt+1

p(xt|y0, . . . , yt) x̂t|t, Pt|t

?

time update

hh? - hh? - hh? -
xt−1 xt xt+1

yt−1 yt yt+1

p(xt+1|y0, . . . , yt) x̂t+1|t, Pt+1|t

?

measurement update

h
h?

- h
h?

- h
h?

-
xt−1 xt xt+1

yt−1 yt yt+1

p(xt+1|y0, . . . , yt+1)x̂t+1|t+1, Pt+1|t+1
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Key ideas of this lecture

Factor Analysis.
Recall: Gaussian factors plus observations.
Parameter estimation with EM.

The vec operator.
Motivation: Natural parameters of Gaussian.
Linear functions of matrices as inner products.
Kronecker product.

State Space Models.
Linear dynamical systems, gaussian disturbances.
All distributions are Gaussian: parameters suffice.
Inference: Kalman filter and smoother.
Parameter estimation with EM.
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