CS281A/Stat241A Lecture 18

State Space Models
Peter Bartlett

Key ideas of this lecture

- Review: EM in HMMs.
- State Space Models.
- Linear dynamical systems, gaussian disturbances.
- Recall: All distributions are Gaussian, so parameters suffice.
- Inference: Kalman filter and smoother.
- Parameter estimation with EM.
- Extended Kalman filter.
- Junction Tree Algorithm.

Recall: Hidden Markov Models

Hidden Markov Models

$$
\begin{aligned}
p\left(q_{0}^{i}=1\right) & =\pi_{i}, \\
p\left(q_{t}^{j}=1 \mid q_{t-1}^{i}=1\right) & =a_{i j}, \\
p\left(y_{t} \mid q_{t}^{i}=1\right) & =h\left(y_{t}\right) \exp \left(\eta_{i}^{\prime} T\left(y_{t}\right)-A\left(\eta_{i}\right)\right) .
\end{aligned}
$$

Hidden Markov Models

EM: We have data y_{0}, \ldots, y_{T}, and we wish to estimate the parameters of an HMM.

1. Write down the complete log likelihood.
2. E step: Calculate the conditional expectation of the complete log likelihood (ie: sufficient statistics).
3. \mathbf{M} step: Maximize $\mathbb{E}\left[\ell_{c} \mid y\right]$.

EM in HMMs: ℓ_{c}

$$
\begin{aligned}
\log p(q, y \mid \theta)= & \log \pi_{q_{0}}+\sum_{t=0}^{T-1} \log a_{q_{t}, q_{t+1}}+\sum_{t=0}^{T} \log p\left(y_{t} \mid q_{t}\right) \\
= & \sum_{i} \underbrace{q_{0}^{i}}_{S S} \log \pi_{i}+\sum_{i, j} \underbrace{\sum_{t=0}^{T-1} q_{t}^{i} q_{t+1}^{j}}_{S S} \log a_{i, j} \\
& +\sum_{i} \underbrace{\sum_{t=0}^{T} q_{t}^{i}\left(T\left(y_{t}\right)^{\prime}\right.}_{S S} \eta_{i}-A\left(\eta_{i}\right)) \\
& +(T+1) \log h\left(y_{t}\right) .
\end{aligned}
$$

EM in HMMs: E step

- Calculate the conditional expectation of the complete log likelihood.
- This corresponds to computing expected sufficient statistics:

$$
\begin{aligned}
\mathbb{E}\left[\ell_{c}(\theta ; q, y) \mid y\right]= & \sum_{i} p\left(q_{0}^{i}=1 \mid y\right) \log \pi_{i} \\
& +\sum_{i, j} \sum_{t=0}^{T-1} p\left(q_{t}^{i} q_{t+1}^{j}=1 \mid y\right) \log a_{i, j} \\
& +\sum_{i} \sum_{t=0}^{T} p\left(q_{t}^{i}=1 \mid y\right)\left(T\left(y_{t}\right)^{\prime} \eta_{i}-A\left(\eta_{i}\right)\right) \\
& +(T+1) \log h\left(y_{t}\right) .
\end{aligned}
$$

EM in HMMs: E step

In the notation of forward-backward algorithm, the expected sufficient statistics are

$$
\begin{aligned}
& \text { for } \pi_{i}: \quad p\left(q_{0}^{i}=1 \mid y\right) & =\gamma_{0}^{i}, \\
\text { for } a_{i, j}: & \sum_{t=0}^{T-1} p\left(q_{t}^{i} q_{t+1}^{j}=1 \mid y\right) & =\sum_{t=0}^{T-1} \xi_{t, t+1}^{i, j}, \\
\text { for } \mu_{i}: & \sum_{t=0}^{T} p\left(q_{t}^{i}=1 \mid y\right) T\left(y_{t}\right) & =\sum_{t=0}^{T} \gamma_{t}^{i} T\left(y_{t}\right) .
\end{aligned}
$$

EM in HMMs: M step

Recall: For complete data, the ML estimates are

$$
\begin{aligned}
& \hat{\pi}_{i}=q_{0}^{i} ; \\
& \hat{a}_{i, j}=\frac{\sum_{t=0}^{T-1} q_{t}^{i} q_{t+1}^{j}}{\sum_{t=0}^{T-1} q_{t}^{i}} \\
& \hat{\mu}_{i}=\frac{\sum_{t=0}^{T} q_{t}^{i} T\left(y_{t}\right)}{\sum_{t=0}^{T-1} q_{t}^{i}} \\
& \text { prop. of } i \rightarrow j \\
& \text { av. of SS }
\end{aligned}
$$

EM in HMMs: M step

Maximizing $\mathbb{E}\left[\ell_{c} \mid y\right]$ is the same as in the completely observed case, but the counts are replaced by 'soft' counts:

$$
\begin{aligned}
\hat{\pi}_{i} & =\gamma_{0}^{i} \\
\hat{a}_{i, j} & =\frac{\sum_{t=0}^{T-1} \xi_{t, t+1}^{i, j}}{\sum_{t=0}^{T-1} \gamma_{t}^{i}} \\
\hat{\mu}_{i} & =\frac{\sum_{t=0}^{T} \gamma_{t}^{i} T\left(y_{t}\right)}{\sum_{t=0}^{T-1} \gamma_{t}^{i}}
\end{aligned}
$$

Key ideas of this lecture

- Review: EM in HMMs.
- State Space Models.
- Linear dynamical systems, gaussian disturbances.
- Recall: All distributions are Gaussian, so parameters suffice.
- Inference: Kalman filter and smoother.
- Parameter estimation with EM.
- Extended Kalman filter.
- Junction Tree Algorithm.

State Space Models

mixture model

factor model

State Space Model

Gaussian

Linear System: Definition

Linear System: Definition

State

$$
x_{t} \in \mathbb{R}^{p}
$$

Observation
Initial state
Dynamics
Observation

$$
y_{t} \in \mathbb{R}^{d}
$$

$$
x_{0} \sim \mathcal{N}\left(0, P_{0}\right)
$$

$$
\begin{aligned}
x_{t+1} & =A x_{t}+w_{t}, & w_{t} & \sim \mathcal{N}(0, Q) \\
y_{t} & =C x_{t}+v_{t}, & v_{t} & \sim \mathcal{N}(0, R) .
\end{aligned}
$$

Linear Systems: Recall

1. All the distributions are Gaussian (joints, marginals, conditionals), so they can be described by their means and variances.
2. The conditional distribution of the next state, $x_{t+1} \mid x_{t}$, is

$$
\mathcal{N}\left(A x_{t}, Q\right) .
$$

3. The marginal distribution of x_{t} is $\mathcal{N}\left(0, P_{t}\right)$, where P_{0} is given and, for $t \geq 0$,

$$
P_{t+1}=A P_{t} A^{\prime}+Q
$$

Inference in SSMs

Filtering: $p\left(x_{t} \mid y_{0}, \ldots, y_{t}\right)$.
Smoothing: $p\left(x_{t} \mid y_{0}, \ldots, y_{T}\right)$.
For inference, it suffices to calculate the appropriate conditional means and covariances.

Inference in SSMs: Notation

$$
\begin{aligned}
\hat{x}_{t \mid s} & =\mathbb{E}\left(x_{t} \mid y_{0}, \ldots, y_{s}\right) \\
P_{t \mid s} & =\mathbb{E}\left(\left(x_{t}-\hat{x}_{t \mid s}\right)\left(x_{t}-\hat{x}_{t \mid s}\right)^{\prime} \mid y_{0}, \ldots, y_{s}\right)
\end{aligned}
$$

Filtering: $\quad x_{t \mid t} \sim \mathcal{N}\left(\hat{x}_{t \mid t}, P_{t \mid t}\right)$,
Smoothing:

$$
x_{t \mid T} \sim \mathcal{N}\left(\hat{x}_{t \mid T}, P_{t \mid T}\right) .
$$

The Kalman Filter is an inference algorithm for $\hat{x}_{t \mid t}, P_{t \mid t}$.
The Kalman Smoother is an inference algorithm for $\hat{x}_{t \mid T}, P_{t \mid T}$.

The Kalman Filter

The Kalman Filter

$$
\begin{aligned}
\hat{x}_{t+1 \mid t} & =A \hat{x}_{t \mid t} \\
P_{t+1 \mid t} & =A P_{t \mid t} A^{\prime}+Q \\
\hat{x}_{t+1 \mid t+1} & =\hat{x}_{t+1 \mid t}+P_{t+1 \mid t} C^{\prime}\left(C P_{t+1 \mid t} C^{\prime}+R\right)^{-1}\left(y_{t+1}-C \hat{x}_{t+1 \mid t}\right) \\
P_{t+1 \mid t+1} & =P_{t+1 \mid t}-P_{t+1 \mid t} C^{\prime}\left(C P_{t+1 \mid t} C^{\prime}+R\right)^{-1} C P_{t+1 \mid t}
\end{aligned}
$$

The Kalman Filter

Time update

$$
\begin{aligned}
x_{t+1} & =A x_{t}+w_{t} \\
\hat{x}_{t+1 \mid t} & =\mathbb{E}\left(x_{t+1} \mid y_{0}, \ldots, y_{t}\right) \\
& =A \mathbb{E}\left(x_{t} \mid y_{0}, \ldots, y_{t}\right) \\
& =A \hat{x}_{t \mid t} \\
P_{t+1 \mid t} & =\mathbb{E}\left(\left(x_{t+1}-\hat{x}_{t+1 \mid t}\right)\left(x_{t+1}-\hat{x}_{t+1 \mid t}\right)^{\prime} \mid y_{0}, \ldots, y_{t}\right) \\
& \left.=\mathbb{E}\left(A\left(x_{t}-\hat{x}_{t \mid t}\right)+w_{t}\right)\left(A\left(x_{t}-\hat{x}_{t \mid t}\right)+w_{t}\right)^{\prime} \mid y_{0}, \ldots, y_{t}\right) \\
& =A P_{t \mid t} A^{\prime}+Q
\end{aligned}
$$

since w_{t} and x_{t} are uncorrelated.

The Kalman Filter

Measurement update 1. Compute the parameters of the joint Gaussian distribution

$$
p\left(x_{t+1}, y_{t+1} \mid y_{0}, \ldots, y_{t}\right)
$$

We know the x_{t+1} part from the time update. For the y_{t+1} part,

$$
\begin{aligned}
\hat{y}_{t+1 \mid t} & =\mathbb{E}\left(y_{t+1} \mid y_{0}, \ldots, y_{t}\right) \\
& =\mathbb{E}\left(C x_{t+1}+v_{t+1} \mid y_{0}, \ldots, y_{t}\right) \\
& =C \hat{x}_{t+1 \mid t}
\end{aligned}
$$

The Kalman Filter

$$
\begin{aligned}
& \mathbb{E}\left(\left(y_{t+1}-\hat{y}_{t+1 \mid t}\right)\left(y_{t+1}-\hat{y}_{t+1 \mid t}\right)^{\prime} \mid y\right) \\
& \left.=\mathbb{E}\left(C\left(x_{t+1}-\hat{x}_{t+1 \mid t}\right)+v_{t+1}\right)\left(C\left(x_{t+1}-\hat{x}_{t+1 \mid t}\right)+v_{t+1}\right)^{\prime} \mid y\right) \\
& =C P_{t+1 \mid t} C^{\prime}+R
\end{aligned}
$$

since v_{t+1} and x_{t+1} are uncorrelated.

The Kalman Filter

And for the cross terms,

$$
\begin{aligned}
& \mathbb{E}\left(\left(y_{t+1}-\hat{y}_{t+1 \mid t}\right)\left(x_{t+1}-\hat{x}_{t+1 \mid t}\right)^{\prime} \mid y\right) \\
& \left.=\mathbb{E}\left(C\left(x_{t+1}-\hat{x}_{t+1 \mid t}\right)+v_{t+1}\right)\left(x_{t+1}-\hat{x}_{t+1 \mid t}\right)^{\prime} \mid y\right) \\
& =C P_{t+1 \mid t} .
\end{aligned}
$$

The Kalman Filter

Hence, the distribution $p\left(x_{t+1}, y_{t+1} \mid y_{0}, \ldots, y_{t}\right)$ is

$$
\mathcal{N}\left(\binom{\hat{x}_{t+1 \mid t}}{C \hat{x}_{t+1 \mid t}},\left(\begin{array}{cc}
P_{t+1 \mid t} & P_{t+1 \mid t} C^{\prime} \\
C P_{t+1 \mid t} & C P_{t+1 \mid t} C^{\prime}+R
\end{array}\right)\right)
$$

2. Hence, compute the parameters of the conditional Gaussian distribution

$$
p\left(x_{t+1} \mid y_{0}, \ldots, y_{t}, y_{t+1}\right)
$$

This follows from the decomposition of a joint Gaussian into a marginal and a conditional:

The Kalman Filter

The conditional has mean

$$
\hat{x}_{t+1 \mid t+1}=\hat{x}_{t+1 \mid t}+P_{t+1 \mid t} C^{\prime}\left(C P_{t+1 \mid t} C^{\prime}+R\right)^{-1}\left(y_{t+1}-C \hat{x}_{t+1 \mid t}\right)
$$

and the variance is the Schur complement,

$$
P_{t+1 \mid t+1}=P_{t+1 \mid t}-P_{t+1 \mid t} C^{\prime}\left(C P_{t+1 \mid t} C^{\prime}+R\right)^{-1} C P_{t+1 \mid t} .
$$

The Kalman Filter: Interpretation

If we define the Kalman gain matrix,

$$
K_{t+1}=P_{t+1 \mid t} C^{\prime}\left(C P_{t+1 \mid t} C^{\prime}+R\right)^{-1}
$$

then the time and measurement updates give

$$
\hat{x}_{t+1 \mid t+1}=A \hat{x}_{t \mid t}+K_{t+1}\left(y_{t+1}-C A \hat{x}_{t \mid t}\right) .
$$

Notice that the last term is prediction error, since

$$
\mathbb{E}\left(y_{t+1} \mid y_{0}, \ldots, y_{t}\right)=C A \hat{x}_{t \mid t} .
$$

Thus, the state estimate evolves as

$$
\hat{x}_{t+1 \mid t+1}=A \hat{x}_{t \mid t}+K_{t+1}\left(y_{t+1}-C A \hat{x}_{t \mid t}\right) .
$$

cf. LMS:

$$
\theta_{t+1}=\theta_{t}+\rho x_{t}\left(y_{t+1}-x_{t}^{\prime} \theta_{t}\right) .
$$

The Kalman Filter: Other Variants

Information filter: Kalman filter recursion in terms of natural parameters ($\Lambda=\Sigma^{-1}, \eta=\Sigma^{-1} \mu$).
Kalman Smoother: Analogous to the $\alpha-\beta$ (forward-backward) recursion for inference in HMMs.
Recall that the α s are like $\hat{x}_{t \mid t}, P_{t \mid t}$. The $\beta \mathrm{s}$ calculate parameters of conditional distribution of x_{t} given y_{t}, \ldots, y_{T}. This is equivalent to running a Kalman filter backwards: find an equivalent time-reversed version of the linear system, and run a Kalman filter for it.

The Kalman Filter: Other Variants

Rauch-Tung-Streibel: Analogous to the $\alpha-\gamma$ recursion for inference in HMMs.
Recall that the γs express parameters of the conditional distribution of x_{t} given y_{0}, \ldots, y_{T}, using the already computed α s.
You can read the details.

Parameter Estimation with EM

Given observed data $y=\left(y_{0}, \ldots, y_{T}\right)$ and hidden states $x=\left(x_{0}, \ldots, x_{T}\right)$, we want to estimate the parameters
$\theta=\left(P_{0}, A, C, Q, R\right)$:

$$
\begin{aligned}
x_{0} & \sim \mathcal{N}\left(0, P_{0}\right), \\
x_{t+1} & \sim \mathcal{N}\left(A x_{t}, Q\right), \\
y_{t} & \sim \mathcal{N}\left(C x_{t}, R\right) .
\end{aligned}
$$

Parameter Estimation with EM: ℓ_{c}

We can write the complete log likelihood as

$$
\begin{aligned}
\ell_{c}(\theta ; x, y) & =-\frac{1}{2}\left(\ln \left(2 \pi\left|P_{0}\right|\right)+x_{0}^{\prime} P_{0}^{-1} x_{0}\right. \\
& +\sum_{t=0}^{T-1}\left(\ln (2 \pi|Q|)+\left(x_{t+1}-A x_{t}\right)^{\prime} Q^{-1}\left(x_{t+1}-A x_{t}\right)\right) \\
& \left.+\sum_{t=0}^{T}\left(\ln (2 \pi|R|)+\left(y_{t}-C x_{t}\right)^{\prime} R^{-1}\left(y_{t}-C x_{t}\right)\right)\right) .
\end{aligned}
$$

Parameter Estimation with EM: E step

$$
\begin{aligned}
& \mathbb{E}\left(\ell_{c}(\theta ; x, y) \mid y\right) \\
& =\mathrm{const}-\frac{1}{2}\left(\ln \left|P_{0}\right|+\operatorname{tr}\left(P_{0}^{-1} \mathbb{E}\left(x_{0} x_{0}^{\prime} \mid y\right)\right)\right. \\
& +T \ln |Q|+\operatorname{tr}\left(Q^{-1} \sum_{t=0}^{T-1} \mathbb{E}\left(\left(x_{t+1}-A x_{t}\right)\left(x_{t+1}-A x_{t}\right)^{\prime} \mid y\right)\right) \\
& \left.+(T+1) \ln |R|+\operatorname{tr}\left(R^{-1} \sum_{t=0}^{T} \mathbb{E}\left(\left(y_{t}-C x_{t}\right)\left(y_{t}-C x_{t}\right)^{\prime} \mid y\right)\right)\right)
\end{aligned}
$$

Parameter Estimation with EM: E step

Thus, the expected sufficient statistics are:

$$
\begin{aligned}
\mathbb{E}\left(x_{t} \mid y\right) & =\hat{x}_{t \mid T} \\
\mathbb{E}\left(x_{t} x_{t}^{\prime} \mid y\right) & =\hat{x}_{t \mid T} \hat{x}_{t \mid T}^{\prime}+P_{t \mid T} \\
\mathbb{E}\left(x_{t} x_{t+1}^{\prime} \mid y\right) & =\hat{x}_{t \mid T} \hat{x}_{t+1 \mid T}^{\prime}+\operatorname{cov}\left(x_{t}, x_{t+1} \mid y\right) .
\end{aligned}
$$

(Can calculate the latter covariance from the output of, for example, the Rauch-Tung-Striebel algorithm.)

Parameter Estimation with EM: M step

Choose θ to minimize. Can rearrange and decompose to show that the optimal A, C are solutions to minimization problems of the following form (multiple output linear regression):
Claim: For a positive definite symmetric M and positive semidefinite symmetric W, the matrix A that minimizes

$$
\operatorname{tr}\left(W\left(A^{\prime} M A-N^{\prime} A-A^{\prime} N\right)\right)
$$

is $M^{-1} N$.

Parameter Estimation with EM: M step

For example, for C, you can check that the optimization is minimization of

$$
\begin{aligned}
\operatorname{tr} & \left(W\left(A^{\prime} M A-N^{\prime} A-A^{\prime} N\right)\right) \\
M & =\sum_{t=0}^{T}\left(\hat{x}_{t \mid T} \hat{x}_{t \mid T}^{\prime}+P_{t \mid T}\right), \\
N & =\sum_{t=0}^{T}\left(\hat{x}_{t \mid T} y_{t}^{\prime}\right), \\
W & =R^{-1} .
\end{aligned}
$$

Parameter Estimation with EM: M step

It is also clear that the optimal P_{0}, Q, R are solutions to minimization problems of the following form (maximum likelihood covariance estimation problems):
Claim: For positive definite symmetric P and S,

$$
\ln |P|+\operatorname{tr}\left(P^{-1} S\right) \geq \ln |S|+\operatorname{tr}\left(S^{-1} S\right)
$$

Proof:

$$
\begin{aligned}
\ln |P|+\operatorname{tr}\left(P^{-1} S\right) & =-\ln \left|P^{-1} S\right|+\operatorname{tr}\left(P^{-1} S\right)+\ln |S| \\
& =\sum_{i} \lambda_{i}-\ln \lambda_{i}+\ln |S| \\
& \geq \sum_{i} 1+\ln |S|
\end{aligned}
$$

Linear Systems: EM. Summary.

E step: Calculate the expected suff. stats:

$$
\begin{aligned}
\mathbb{E}\left(x_{t} \mid y\right) & =\hat{x}_{t \mid T} \\
\mathbb{E}\left(x_{t} x_{t}^{\prime} \mid y\right) & =\hat{x}_{t \mid T} \hat{x}_{t \mid T}^{\prime}+P_{t \mid T} \\
\mathbb{E}\left(x_{t} x_{t+1}^{\prime} \mid y\right) & =\hat{x}_{t \mid T} \hat{x}_{t+1 \mid T}^{\prime}+\operatorname{cov}\left(x_{t}, x_{t+1} \mid y\right) .
\end{aligned}
$$

And use these to compute the various terms in $\mathbb{E}\left(\ell_{c}(\theta ; x, y) \mid y\right)$.
M step: Maximize $\mathbb{E}\left[\ell_{c} \mid y\right]$:

- A, C are solutions to multiple output linear regression problems.
- P_{0}, Q and R are time averages of conditional covariances.

Extended Kalman Filter

- Suppose that the state and observation models follow some (typically known) nonlinear functions:

State $\quad x_{t} \in \mathbb{R}^{p}$
Observation $\quad y_{t} \in \mathbb{R}^{d}$
Initial state $\quad x_{0} \sim \mathcal{N}\left(0, P_{0}\right)$
Dynamics $\quad x_{t+1}=f\left(x_{t}\right)+w_{t}, \quad w_{t} \sim \mathcal{N}(0, Q)$
Observation $\quad y_{t}=g\left(x_{t}\right)+v_{t}, \quad v_{t} \sim \mathcal{N}(0, R)$.

Extended Kalman Filter

- If f and g are smooth (close to linear), then we can approximate them as linear functions about the current expected state

$$
\begin{aligned}
& x_{t+1} \approx f\left(\hat{x}_{t \mid t}\right)+F\left(x_{t}-\hat{x}_{t \mid t}\right)+w_{t}, \\
& y_{t+1} \approx g\left(\hat{x}_{t+1 \mid t}\right)+G\left(x_{t+1}-\hat{x}_{t+1 \mid t}\right)+v_{t+1} .
\end{aligned}
$$

where the matrices F and G are the Jacobians of f and g that appear in the linearization.

$$
\begin{aligned}
F & =\left.\frac{\partial f}{\partial x}\right|_{\hat{x}_{t \mid t}} \\
G & =\left.\frac{\partial g}{\partial x}\right|_{\hat{x}_{t+1 \mid t}}
\end{aligned}
$$

Extended Kalman Filter

- If the linear approximation is accurate in a region where most of the mass is contained, we can approximate the conditional distributions as Gaussian, and use a modification of the Kalman filter:

$$
\begin{aligned}
\hat{x}_{t+1 \mid t} & =f\left(\hat{x}_{t \mid t}\right), \\
P_{t+1 \mid t} & =F P_{t \mid t} F^{\prime}+Q . \\
\hat{x}_{t+1 \mid t+1} & =\hat{x}_{t+1 \mid t}+P_{t+1 \mid t} G^{\prime}\left(G P_{t+1 \mid t} G^{\prime}+R\right)^{-1}\left(y_{t+1}-h\left(\hat{x}_{t+1 \mid t}\right)\right), \\
P_{t+1 \mid t+1} & =P_{t+1 \mid t}-P_{t+1 \mid t} G^{\prime}\left(G P_{t+1 \mid t} G^{\prime}+R\right)^{-1} G P_{t+1 \mid t} .
\end{aligned}
$$

(The matrices F and G replace A and C.)

Key ideas of this lecture

- Review: EM in HMMs.
- State Space Models.
- Linear dynamical systems, gaussian disturbances.
- Recall: All distributions are Gaussian, so parameters suffice.
- Inference: Kalman filter and smoother.
- Parameter estimation with EM.
- Extended Kalman filter.
- Junction Tree Algorithm.

Junction Tree Algorithm

- Inference: Given
- Graph $G=(V, E)$,
- Evidence x_{E}, for $E \subseteq V$,
- Set $F \subseteq V$,
compute $p\left(x_{F} \mid x_{E}\right)$.

Junction Tree Algorithm

- Elimination:
- Single set F.
- Any G.
- Sum-product:
- All singleton sets F simultaneously.
- G a tree.
- Junction tree:
- All cliques F simultaneously.
- Any G.

Junction Tree Algorithm

- Combines elimination algorithm with caching of sum-product.
- Messages (marginalized potentials) passed between cliques, in a junction tree.

Junction Tree Algorithm

1. (For directed graphical models:) Moralize. So all potentials-local conditionals-are defined on cliques.
2. Triangulate. e.g., via elimination algorithm
3. Construct a junction tree.
4. Define potentials on maximal cliques.
5. Introduce evidence.
6. Propagate probabilities.

Key ideas of this lecture

- Review: EM in HMMs.
- State Space Models.
- Linear dynamical systems, gaussian disturbances.
- Recall: All distributions are Gaussian, so parameters suffice.
- Inference: Kalman filter and smoother.
- Parameter estimation with EM.
- Extended Kalman filter.
- Junction Tree Algorithm.

