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Key ideas of this lecture

Review: EM in HMMs.

State Space Models.
Linear dynamical systems, gaussian disturbances.
Recall: All distributions are Gaussian, so parameters
suffice.
Inference: Kalman filter and smoother.
Parameter estimation with EM.
Extended Kalman filter.

Junction Tree Algorithm.
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Recall: Hidden Markov Models
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Hidden Markov Models

p(qi
0 = 1) = πi,

p(qj
t = 1|qi

t−1 = 1) = aij ,

p(yt|q
i
t = 1) = h(yt) exp

(
η′iT (yt) − A(ηi)

)
.
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Hidden Markov Models

EM: We have data y0, . . . , yT , and we wish to estimate the
parameters of an HMM.
1. Write down the complete log likelihood.

2. E step: Calculate the conditional expectation of the
complete log likelihood (ie: sufficient statistics).

3. M step: Maximize E[ℓc|y].
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EM in HMMs: ℓc

log p(q, y|θ) = log πq0
+

T−1∑

t=0

log aqt,qt+1
+

T∑

t=0

log p(yt|qt)

=
∑

i

qi
0

︸︷︷︸

SS

log πi +
∑

i,j

T−1∑

t=0

qi
tq

j
t+1

︸ ︷︷ ︸

SS

log ai,j

+
∑

i

T∑

t=0

qi
t

(
T (yt)

′

︸ ︷︷ ︸

SS

ηi − A(ηi))

+ (T + 1) log h(yt).
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EM in HMMs: E step

Calculate the conditional expectation of the complete
log likelihood.

This corresponds to computing expected sufficient
statistics:

E [ℓc(θ; q, y)|y] =
∑

i

p(qi
0 = 1|y) log πi

+
∑

i,j

T−1∑

t=0

p(qi
tq

j
t+1

= 1|y) log ai,j

+
∑

i

T∑

t=0

p(qi
t = 1|y)

(
T (yt)

′ηi − A(ηi)
)

+ (T + 1) log h(yt).
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EM in HMMs: E step

In the notation of forward-backward algorithm, the expected
sufficient statistics are

for πi: p(qi
0 = 1|y) = γi

0,

for ai,j :
T−1∑

t=0

p(qi
tq

j
t+1

= 1|y) =
T−1∑

t=0

ξ
i,j
t,t+1

,

for µi:
T∑

t=0

p(qi
t = 1|y)T (yt) =

T∑

t=0

γi
tT (yt).
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EM in HMMs: M step

Recall: For complete data, the ML estimates are

π̂i = qi
0;

âi,j =

∑T−1

t=0
qi
tq

j
t+1

∑T−1

t=0
qi
t

prop. of i → j

µ̂i =

∑T
t=0

qi
tT (yt)

∑T−1

t=0
qi
t

av. of SS
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EM in HMMs: M step

Maximizing E[ℓc|y] is the same as in the completely
observed case, but the counts are replaced by ‘soft’ counts:

π̂i = γi
0;

âi,j =

∑T−1

t=0
ξ
i,j
t,t+1

∑T−1

t=0
γi

t

µ̂i =

∑T
t=0

γi
tT (yt)

∑T−1

t=0
γi

t
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Key ideas of this lecture

Review: EM in HMMs.

State Space Models.
Linear dynamical systems, gaussian disturbances.
Recall: All distributions are Gaussian, so parameters
suffice.
Inference: Kalman filter and smoother.
Parameter estimation with EM.
Extended Kalman filter.

Junction Tree Algorithm.
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State Space Models
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Linear System: Definition
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Linear System: Definition

State xt ∈ R
p

Observation yt ∈ R
d

Initial state x0 ∼ N (0, P0)

Dynamics xt+1 = Axt + wt, wt ∼ N (0, Q)

Observation yt = Cxt + vt, vt ∼ N (0, R).
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Linear Systems: Recall

1. All the distributions are Gaussian (joints, marginals,
conditionals), so they can be described by their means
and variances.

2. The conditional distribution of the next state, xt+1|xt, is

N (Axt, Q).

3. The marginal distribution of xt is N (0, Pt), where P0 is
given and, for t ≥ 0,

Pt+1 = APtA
′ + Q.

CS281A/Stat241A Lecture 18 – p. 15/45



Inference in SSMs

Filtering: p(xt|y0, . . . , yt).

Smoothing: p(xt|y0, . . . , yT ).

For inference, it suffices to calculate the appropriate
conditional means and covariances.
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Inference in SSMs: Notation

x̂t|s = E(xt|y0, . . . , ys),

Pt|s = E((xt − x̂t|s)(xt − x̂t|s)
′|y0, . . . , ys).

Filtering: xt|t ∼ N (x̂t|t, Pt|t),

Smoothing: xt|T ∼ N (x̂t|T , Pt|T ).

The Kalman Filter is an inference algorithm for x̂t|t, Pt|t.
The Kalman Smoother is an inference algorithm for x̂t|T , Pt|T .
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The Kalman Filter
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The Kalman Filter

x̂t+1|t = Ax̂t|t,

Pt+1|t = APt|tA
′ + Q.

x̂t+1|t+1 = x̂t+1|t + Pt+1|tC
′(CPt+1|tC

′ + R)−1(yt+1 − Cx̂t+1|t),

Pt+1|t+1 = Pt+1|t − Pt+1|tC
′(CPt+1|tC

′ + R)−1CPt+1|t.
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The Kalman Filter

Time update

xt+1 = Axt + wt.

x̂t+1|t = E(xt+1|y0, . . . , yt)

= AE(xt|y0, . . . , yt)

= Ax̂t|t.

Pt+1|t = E((xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
′|y0, . . . , yt)

= E(A(xt − x̂t|t) + wt)(A(xt − x̂t|t) + wt)
′|y0, . . . , yt)

= APt|tA
′ + Q,

since wt and xt are uncorrelated.
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The Kalman Filter

Measurement update 1. Compute the parameters of the joint
Gaussian distribution

p(xt+1, yt+1|y0, . . . , yt)

We know the xt+1 part from the time update.
For the yt+1 part,

ŷt+1|t = E(yt+1|y0, . . . , yt)

= E(Cxt+1 + vt+1|y0, . . . , yt)

= Cx̂t+1|t.
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The Kalman Filter

E((yt+1 − ŷt+1|t)(yt+1 − ŷt+1|t)
′|y)

= E(C(xt+1 − x̂t+1|t) + vt+1)(C(xt+1 − x̂t+1|t) + vt+1)
′|y)

= CPt+1|tC
′ + R,

since vt+1 and xt+1 are uncorrelated.
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The Kalman Filter

And for the cross terms,

E((yt+1 − ŷt+1|t)(xt+1 − x̂t+1|t)
′|y)

= E(C(xt+1 − x̂t+1|t) + vt+1)(xt+1 − x̂t+1|t)
′|y)

= CPt+1|t.
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The Kalman Filter

Hence, the distribution p(xt+1, yt+1|y0, . . . , yt) is

N

((

x̂t+1|t

Cx̂t+1|t

)

,

(

Pt+1|t Pt+1|tC
′

CPt+1|t CPt+1|tC
′ + R

))

2. Hence, compute the parameters of the conditional
Gaussian distribution

p(xt+1|y0, . . . , yt, yt+1)

This follows from the decomposition of a joint Gaussian
into a marginal and a conditional:
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The Kalman Filter

The conditional has mean

x̂t+1|t+1 = x̂t+1|t + Pt+1|tC
′(CPt+1|tC

′ + R)−1(yt+1 − Cx̂t+1|t)

and the variance is the Schur complement,

Pt+1|t+1 = Pt+1|t − Pt+1|tC
′(CPt+1|tC

′ + R)−1CPt+1|t.
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The Kalman Filter: Interpretation

If we define the Kalman gain matrix ,

Kt+1 = Pt+1|tC
′(CPt+1|tC

′ + R)−1,

then the time and measurement updates give

x̂t+1|t+1 = Ax̂t|t + Kt+1(yt+1 − CAx̂t|t).

Notice that the last term is prediction error, since

E(yt+1|y0, . . . , yt) = CAx̂t|t.

Thus, the state estimate evolves as

x̂t+1|t+1 = Ax̂t|t + Kt+1(yt+1 − CAx̂t|t).

cf. LMS: θt+1 = θt + ρxt(yt+1 − x′
tθt).
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The Kalman Filter: Other Variants

Information filter: Kalman filter recursion in terms of natural
parameters (Λ = Σ−1, η = Σ−1µ).

Kalman Smoother: Analogous to the α-β (forward-backward)
recursion for inference in HMMs.
Recall that the αs are like x̂t|t, Pt|t. The βs calculate
parameters of conditional distribution of xt given
yt, . . . , yT . This is equivalent to running a Kalman filter
backwards: find an equivalent time-reversed version of
the linear system, and run a Kalman filter for it.
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The Kalman Filter: Other Variants

Rauch-Tung-Streibel: Analogous to the α-γ recursion for
inference in HMMs.
Recall that the γs express parameters of the conditional
distribution of xt given y0, . . . , yT , using the already
computed αs.
You can read the details.
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Parameter Estimation with EM

Given observed data y = (y0, . . . , yT ) and hidden states
x = (x0, . . . , xT ), we want to estimate the parameters
θ = (P0, A, C,Q,R):

x0 ∼ N (0, P0),

xt+1 ∼ N (Axt, Q),

yt ∼ N (Cxt, R).
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Parameter Estimation with EM: ℓc

We can write the complete log likelihood as

ℓc(θ;x, y) = −
1

2

(
ln(2π|P0|) + x′

0P
−1

0
x0

+

T−1∑

t=0

(
ln(2π|Q|) + (xt+1 − Axt)

′Q−1(xt+1 − Axt)
)

+

T∑

t=0

(
ln(2π|R|) + (yt − Cxt)

′R−1(yt − Cxt)
)

)

.
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Parameter Estimation with EM: E step

E(ℓc(θ;x, y)|y)

= const −
1

2

(
ln |P0| + tr(P−1

0
E(x0x

′
0|y))

+ T ln |Q| + tr

(

Q−1

T−1∑

t=0

E
(
(xt+1 − Axt)(xt+1 − Axt)

′|y
)

)

+ (T + 1) ln |R| + tr

(

R−1

T∑

t=0

E
(
(yt − Cxt)(yt − Cxt)

′|y
)

))

.
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Parameter Estimation with EM: E step

Thus, the expected sufficient statistics are:

E(xt|y) = x̂t|T

E(xtx
′
t|y) = x̂t|T x̂′

t|T + Pt|T

E(xtx
′
t+1|y) = x̂t|T x̂′

t+1|T + cov(xt, xt+1|y).

(Can calculate the latter covariance from the output of, for
example, the Rauch-Tung-Striebel algorithm.)
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Parameter Estimation with EM: M step

Choose θ to minimize. Can rearrange and decompose to
show that the optimal A,C are solutions to minimization
problems of the following form (multiple output linear
regression):
Claim: For a positive definite symmetric M and positive
semidefinite symmetric W , the matrix A that minimizes

tr
(
W (A′MA − N ′A − A′N)

)

is M−1N .
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Parameter Estimation with EM: M step

For example, for C, you can check that the optimization is
minimization of

tr
(
W (A′MA − N ′A − A′N)

)

M =
T∑

t=0

(x̂t|T x̂′
t|T + Pt|T ),

N =
T∑

t=0

(x̂t|T y′t),

W = R−1.
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Parameter Estimation with EM: M step

It is also clear that the optimal P0, Q,R are solutions to
minimization problems of the following form (maximum
likelihood covariance estimation problems):
Claim: For positive definite symmetric P and S,

ln |P | + tr
(
P−1S

)
≥ ln |S| + tr(S−1S).

Proof:

ln |P | + tr
(
P−1S

)
= − ln |P−1S| + tr

(
P−1S

)
+ ln |S|

=
∑

i

λi − ln λi + ln |S|

≥
∑

i

1 + ln |S|.
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Linear Systems: EM. Summary.

E step: Calculate the expected suff. stats:

E(xt|y) = x̂t|T

E(xtx
′
t|y) = x̂t|T x̂′

t|T + Pt|T

E(xtx
′
t+1|y) = x̂t|T x̂′

t+1|T + cov(xt, xt+1|y).

And use these to compute the various terms in
E(ℓc(θ;x, y)|y).

M step: Maximize E[ℓc|y]:
A, C are solutions to multiple output linear
regression problems.
P0, Q and R are time averages of conditional
covariances.
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Extended Kalman Filter

Suppose that the state and observation models follow
some (typically known) nonlinear functions:

State xt ∈ R
p

Observation yt ∈ R
d

Initial state x0 ∼ N (0, P0)

Dynamics xt+1 = f(xt) + wt, wt ∼ N (0, Q)

Observation yt = g(xt) + vt, vt ∼ N (0, R).
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Extended Kalman Filter

If f and g are smooth (close to linear), then we can
approximate them as linear functions about the current
expected state

xt+1 ≈ f(x̂t|t) + F (xt − x̂t|t) + wt,

yt+1 ≈ g(x̂t+1|t) + G(xt+1 − x̂t+1|t) + vt+1.

where the matrices F and G are the Jacobians of f and
g that appear in the linearization.

F =
∂f

∂x

∣
∣
∣
∣
x̂t|t

,

G =
∂g

∂x

∣
∣
∣
∣
x̂t+1|t

.
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Extended Kalman Filter

If the linear approximation is accurate in a region where
most of the mass is contained, we can approximate the
conditional distributions as Gaussian, and use a
modification of the Kalman filter:

x̂t+1|t = f(x̂t|t),

Pt+1|t = FPt|tF
′ + Q.

x̂t+1|t+1 = x̂t+1|t + Pt+1|tG
′(GPt+1|tG

′ + R)−1
(
yt+1 − h(x̂t+1|t)

)
,

Pt+1|t+1 = Pt+1|t − Pt+1|tG
′(GPt+1|tG

′ + R)−1GPt+1|t.

(The matrices F and G replace A and C.)
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Key ideas of this lecture

Review: EM in HMMs.

State Space Models.
Linear dynamical systems, gaussian disturbances.
Recall: All distributions are Gaussian, so parameters
suffice.
Inference: Kalman filter and smoother.
Parameter estimation with EM.
Extended Kalman filter.

Junction Tree Algorithm.
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Junction Tree Algorithm

Inference: Given
Graph G = (V,E),
Evidence xE , for E ⊆ V ,
Set F ⊆ V ,

compute p(xF |xE).
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Junction Tree Algorithm

Elimination:
Single set F .
Any G.

Sum-product:
All singleton sets F simultaneously.
G a tree .

Junction tree:

All cliques F simultaneously.
Any G.
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Junction Tree Algorithm

Combines elimination algorithm with caching of
sum-product.

Messages (marginalized potentials) passed between
cliques , in a junction tree.
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Junction Tree Algorithm

1. (For directed graphical models:) Moralize.
So all potentials—local conditionals—are defined on
cliques.

2. Triangulate.
e.g., via elimination algorithm

3. Construct a junction tree.

4. Define potentials on maximal cliques.

5. Introduce evidence.

6. Propagate probabilities.
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Key ideas of this lecture

Review: EM in HMMs.

State Space Models.
Linear dynamical systems, gaussian disturbances.
Recall: All distributions are Gaussian, so parameters
suffice.
Inference: Kalman filter and smoother.
Parameter estimation with EM.
Extended Kalman filter.

Junction Tree Algorithm.
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