CS281A/Stat241A Lecture 19 Junction Tree Algorithm

Peter Bartlett

CS281A/Stat241A Lecture 19 - p. 1/4

Announcements

- My office hours: Tuesday Nov 3 (today), 1-2pm, in 723 Sutardja Dai Hall. Thursday Nov 5, 1-2pm, in 723 Sutardja Dai Hall.
- Homework 5 due 5pm Monday, November 16.

Key ideas of this lecture

- Junction Tree Algorithm.
 - (For directed graphical models:) Moralize.
 - Triangulate.
 - Construct a junction tree.
 - Define potentials on maximal cliques.
 - Introduce evidence.
 - Propagate probabilities.

Inference: Given

- Graph $G = (V, \mathcal{E})$,
- Evidence x_E , for $E \subseteq V$,
- Set $F \subseteq V$,

compute $p(x_F|x_E)$.

- Elimination:
 - Single set *F*.
 - Any G.
- Sum-product:
 - All singleton sets F simultaneously.
 - G a tree.
- Junction tree:
 - All cliques F simultaneously.
 - Any G.

- 1. (For directed graphical models:) Moralize.
- 2. Triangulate.
- 3. Construct a junction tree.
- 4. Define potentials on maximal cliques.
- 5. Introduce evidence.
- 6. Propagate probabilities.

1. Moralize

In a directed graphical model, local conditionals are functions of a variable and its parents:

$$p(x_i | x_{\pi(i)}) = \psi_{\pi(i) \cup \{i\}}.$$

To represent this as an undirected model, the set

$$\pi(i) \cup \{i\}$$

must be a clique.

We consider the moral graph: all parents connected.

- 1. (For directed graphical models:) Moralize.
- 2. Triangulate. (e.g., run UndirectedGraphEliminate)
- 3. Construct a junction tree.
- 4. Define potentials on maximal cliques.
- 5. Introduce evidence.
- 6. Propagate probabilities.

2. Triangulate: Motivation

Theorem:

A graph G is chordal iff it has a junction tree.

Recall that all of the following are equivalent:

- G is chordal
- *G* is decomposable
- G is recursively simplicial
- *G* is the fixed point of UNDIRECTEDGRAPHELIMINATE
- an oriented version of G has moral graph G.
- G implies the same cond. indep. as some directed graph.

Chordal/Triangulated

Definitions:

A cycle for a graph G = (V, E) is a vertex sequence v_1, \ldots, v_n with $v_1 = v_n$ but all other vertices distinct, and $\{v_i, v_{i+1}\} \in E$.

A cycle has a chord if it has a pair v_i, v_j with 1 < |i - j| < nand $\{i, j\} \in E$.

A graph is **chordal** or **triangulated** if every cycle of length at least four has a chord.

Junction Tree: Definition

A clique tree for a graph G = (V, E) is a tree $T = (V_T, E_T)$ where

- V_T is a set of cliques of G,
- V_T contains all maximal cliques of G.

A junction tree for a graph G is a clique tree $T = (V_T, E_T)$ for G that has the running intersection property: for any cliques C_1 and C_2 in V_T , every clique on the path connecting C_1 and C_2 contains $C_1 \cap C_2$.

Junction Tree: Example

Clique Tree:

 $\begin{array}{c} C_1 \hline C_2 \hline C_3 \hline C_4 \hline C_5 \\ | \\ C_6 \end{array}$

2. Triangulate

Theorem: A graph *G* is chordal iff it has a junction tree.

Chordal \Leftrightarrow Recursively Simplicial, and we'll show: Recursively Simplicial \Rightarrow Junction Tree \Rightarrow Chordal

Recursively Simplicial \Rightarrow **Junction Tree**

Recall: A graph *G* is recursively simplicial if it contains a simplicial vertex v (neighbors form a clique), and when v is removed, the remaining graph is recursively simplicial.

Proof idea—induction step:

Consider a recursively simplicial graph G of size n + 1. When we remove a simplicial vertex v, it leaves a subgraph G' with a junction tree T.

Let N be the clique in T containing v's neighbors. Let C be a new clique of v and its neighbors. To obtain a junction tree for G:

- If N contains only v's neighbors, replace it with C.
- Otherwise, add C with an edge to N.

Junction Tree \Rightarrow **Chordal**

Proof idea—induction step:

Consider a junction tree T of size n + 1.

Consider a leaf C of T and its neighbor N in T.

Remove C from T and remove $C \setminus N$ from V.

The remaining tree is a junction tree for the remaining (chordal) graph.

All cycles have a chord, since either

- 1. Cycle is completely in remaining graph,
- 2. Cycle is completely in C, or
- 3. Cycle is in $C \setminus N$, $C \cap N$, and $V \setminus C$ (and $C \cap N$ is complete, so contains a chord).

- 1. (For directed graphical models:) Moralize.
- 2. Triangulate.
- 3. Construct a junction tree: Find a maximal spanning tree.
- 4. Define potentials on maximal cliques.
- 5. Introduce evidence.
- 6. Propagate probabilities.

Junction Tree is Maximal Spanning Tree

Define:

The weight of a clique tree $T = (\mathcal{C}, E)$ is

$$w(T) = \sum_{(C,C')\in E} |C \cap C'|.$$

A maximal spanning tree for a clique set C of a graph is a clique tree $T = (C, E^*)$ with maximal weight over all clique trees of the form (C, E).

Junction Tree is Maximal Spanning Tree

Theorem: Suppose that a graph G with clique set C has a junction tree. Then a clique tree (C, E) is a junction tree iff it is a maximal spanning tree for C.

And there are efficient greedy algorithms for finding the maximal spanning tree:

- While graph is not connected:
 - Add an edge for the biggest weight separating set that does not lead to a cycle.

Maximal Spanning Tree: Proof

Consider a graph G with vertices V. For a clique tree (C, E), define the separators

$$\mathcal{S} = \left\{ C \cap C' : (C, C') \in E \right\}.$$

Since T is a tree, for any $k \in V$,

$$\sum_{S \in \mathcal{S}} \mathbb{1}[k \in S] \le \sum_{C \in \mathcal{C}} \mathbb{1}[k \in C] - \mathbb{1},$$

with equality iff the subgraph of T of nodes containing k is a tree.

Maximal Spanning Tree: Proof

Thus,

$$\begin{aligned} (T) &= \sum_{S \in \mathcal{S}} |S| \\ &= \sum_{S \in \mathcal{S}} \sum_{k} 1[k \in S] \\ &\leq \sum_{k} \left(\sum_{C \in \mathcal{C}} 1[k \in C] - 1 \right) \\ &= \sum_{C \in \mathcal{C}} |C| - n, \end{aligned}$$

with equality iff T is a junction tree.

w

- 1. (For directed graphical models:) Moralize.
- 2. Triangulate.
- 3. Construct a junction tree
- 4. Define potentials on maximal cliques.
- 5. Introduce evidence.
- 6. Propagate probabilities.

Define potentials on maximal cliques

To express a product of clique potentials as a product of maximal clique potentials:

$$\psi_{S_1}(x_{S_1})\cdots\psi_{S_N}(x_{S_N})=\prod_{C\in\mathcal{C}}\psi_C(x_C),$$

- 1. Set all clique potentials to 1.
- 2. For each potential, incorporate (multiply) it into a potential containing its variables.

- 1. (For directed graphical models:) Moralize.
- 2. Triangulate.
- 3. Construct a junction tree
- 4. Define potentials on maximal cliques.
- 5. Introduce evidence.
- 6. Propagate probabilities.

Introduce Evidence

Two equivalent approaches:

1. Introduce evidence potentials

 $\delta(x_i, \bar{x}_i)$ for i in E,

so that marginalizing fixes $x_E = \bar{x}_E$.

2. Take slice of each clique potential:

$$\psi_C(x_C) := \psi_C\left(x_{C\cap(V\setminus E)}, \bar{x}_{C\cap E}\right).$$

- 1. (For directed graphical models:) Moralize.
- 2. Triangulate.
- 3. Construct a junction tree
- 4. Define potentials on maximal cliques.
- 5. Introduce evidence.
- 6. Propagate probabilities.

Hugin Algorithm

Add potentials for separator sets.

Recall: If *G* has a junction tree T = (C, S), then any probability distribution that satisfies the conditional independences implied by *G* can be factorized as

$$p(x) = \frac{\prod_{C \in \mathcal{C}} p(x_C)}{\prod_{S \in \mathcal{S}} p(x_S)},$$

where, if $S = \{C_1, C_2\}$ then x_S denotes $x_{C_1 \cap C_2}$.

Hugin Algorithm

Represent p with potentials on separators:

$$p(x) = \frac{\prod_{C \in \mathcal{C}} \psi_C(x_C)}{\prod_{S \in \mathcal{S}} \phi_S(x_S)}$$

- This can represent any distribution that an undirected graphical model can (since we can set $\phi_S \equiv 1$).
- But nothing more (since we can incorporate each ϕ_S into one of the ψ_C 's that have $S \subseteq C$).

Hugin Algorithm

1. Initialize:

 $\psi_C(x_C) =$ appropriate clique potential $\phi_S(x_S) = 1.$

- 2. Update potentials so that
 - p(x) is invariant
 - \checkmark ψ_C, ϕ_S become the marginal distributions.

Algorithm:

- Messages are passed between cliques in the junction tree.
- A message is passed from V to adjacent vertex W once V has received messages from all its other neighbors.
- The message corresponds to the updates:

$$\phi_S^{(1)}(x_S) = \sum_{x_{V-S}} \psi_V(x_V),$$

$$\psi_{W}^{(1)}(x_{W}) = \psi_{W}(x_{W}) \frac{\phi_{S}^{(1)}(x_{S})}{\phi_{S}(x_{S})},$$
$$\psi_{V}^{(1)}(x_{V}) = \psi_{V}(x_{V}),$$

where $S = V \cap W$ is the separator.

- 1. p(x) is invariant under these updates.
- 2. In a tree, messages can path in both directions over every edge.
- 3. The potentials are *locally consistent* after messages have passed in both directions.
- 4. In a graph with a junction tree, local consistency implies global consistency.

$$p(x) = \frac{\prod_{C \in \mathcal{C}} \psi_C(x_C)}{\prod_{S \in \mathcal{S}} \phi_S(x_S)}.$$

In this ratio, only $\frac{\psi_V \psi_W}{\phi_S}$ changes, to
$$\frac{\psi_V^{(1)} \psi_W^{(1)}}{\phi_S^{(1)}} = \frac{\psi_V \psi_W \phi_S^{(1)}}{\phi_S^{(1)} \phi_S}$$
$$= \frac{\psi_V \psi_W}{\phi_S}.$$

- 1. p(x) is invariant under these updates.
- 2. In a tree, messages can path in both directions over every edge.
- 3. The potentials are *locally consistent* after messages have passed in both directions.
- 4. In a graph with a junction tree, local consistency implies global consistency.

Suppose that messages pass both ways, from V to W and back:

1. a message passes from V to W:

$$\phi_{S}^{(1)}(x_{S}) = \sum_{x_{V-S}} \psi_{V}(x_{V}),$$
$$\psi_{W}^{(1)}(x_{W}) = \psi_{W}(x_{W}) \frac{\phi_{S}^{(1)}(x_{S})}{\phi_{S}(x_{S})}$$

$$\psi_V^{(1)}(x_V) = \psi_V(x_V),$$

2. other messages pass to W:

$$\phi_S^{(2)} = \phi_S^{(1)}$$
$$\psi_V^{(2)} = \psi_V^{(1)}$$
$$\psi_W^{(2)} = \cdots$$

3. a message passes from W to V:

$$\phi_{S}^{(3)}(x_{S}) = \sum_{x_{W-S}} \psi_{W}^{(2)}(x_{W}),$$

$$\psi_{V}^{(3)}(x_{V}) = \psi_{V}^{(2)}(x_{V}) \frac{\phi_{S}^{(3)}(x_{S})}{\phi_{S}^{(2)}(x_{S})},$$

$$\psi_{W}^{(3)}(x_{V}) = \psi_{W}(x_{W}).$$

Subsequently, ϕ_S, ψ_V, ψ_W remain unchanged.

After messages have passed in both directions, these potentials are *locally consistent*:

$$\sum_{x_{V\setminus S}} \psi_V^{(3)}(x_V) = \sum_{x_{W\setminus S}} \psi_W^{(3)}(x_W) = \phi_S^{(3)}(x_S).$$

c.f.:
$$\sum_{x_{V\setminus S}} p(x_V) = \sum_{x_{W\setminus S}} p(x_W) = p(x_S).$$

Analysis: Local Consistency Proof

$$\sum_{x_{V\setminus S}} \psi_V^{(3)}(x_V) = \sum_{x_{V\setminus S}} \psi_V^{(2)}(x_V) \frac{\phi_S^{(3)}(x_S)}{\phi_S^{(2)}(x_S)} \qquad (W \to V)$$
$$= \frac{\phi_S^{(3)}(x_S)}{\phi_S^{(1)}(x_S)} \sum_{x_{V\setminus S}} \psi_V(x_V) \qquad \text{(to } W\text{)}$$
$$= \phi_S^{(3)}(x_S) \qquad (V \to W)$$
$$= \sum_{x_{W\setminus S}} \psi_W^{(2)}(x_W)$$
$$= \sum_{x_{W\setminus S}} \psi_W^{(3)}(x_W).$$

- 1. p(x) is invariant under these updates.
- 2. In a tree, messages can path in both directions over every edge.
- 3. The potentials are *locally consistent* after messages have passed in both directions.
- 4. In a graph with a junction tree, local consistency implies global consistency.

Analysis: Local implies Global

Local consistency: For all adjacent cliques *V*, *W* with separator *S*,

$$\sum_{x_{V\setminus S}} \psi_V^{(3)}(x_V) = \sum_{x_{W\setminus S}} \psi_W^{(3)}(x_W) = \phi_S^{(3)}(x_S).$$

Global consistency: For all cliques C,

$$\psi_C(x_C) = \sum_{x_{C^c}} \frac{\prod_C \psi_C(x_C)}{\prod_S \phi_S(x_S)} = p(x_C)$$

Induction on number of cliques. Trivial for one clique. Assume true for all junction trees with n cliques. Consider a tree T_W of size n + 1. Fix a leaf B, attached by separator R. Define

$$W = \text{all variables}$$

$$N = B \setminus R$$

$$V = W \setminus N$$

$$T_V = \text{junction tree without } B.$$

The junction tree T_V :

- Has only variables V (from the junction tree property).
- Satisfies local consistency.
- Hence satisfies global consistency for V: for all $A \in T_V$,

$$\psi_A(x_A) = \sum_{x_{V\setminus A}} \frac{\prod_{C \in \mathcal{C}_V} \psi_C(x_C)}{\prod_{S \in \mathcal{S}_V} \phi_S(x_S)}.$$

• But viewing this A in the larger T_W , we have

$$\sum_{x_{W\setminus A}} \frac{\prod_{C \in \mathcal{C}_W} \psi_C(x_C)}{\prod_{S \in \mathcal{S}_W} \phi_S(x_S)} = \sum_{x_{V\setminus A}} \sum_{x_N} \frac{\psi_B(x_B)}{\phi_R(x_R)} \frac{\prod_{C \in \mathcal{C}_V} \psi_C(x_C)}{\prod_{S \in \mathcal{S}_V} \phi_S(x_S)}$$
$$= \sum_{x_{V\setminus A}} \frac{\prod_{C \in \mathcal{C}_V} \psi_C(x_C)}{\prod_{S \in \mathcal{S}_V} \phi_S(x_S)}$$
$$= \psi_A(x_A).$$

And for the new clique *B*: Suppose *A* is the neighbor of *B* in T_W .

$$\sum_{x_{W\setminus B}} \frac{\prod_{C \in \mathcal{C}_W} \psi_C(x_C)}{\prod_{S \in \mathcal{S}_W} \phi_S(x_S)} = \sum_{x_{A\setminus R}} \sum_{x_{V\setminus A}} \frac{\psi_B(x_B)}{\phi_R(x_R)} \frac{\prod_{C \in \mathcal{C}_V} \psi_C(x_C)}{\prod_{S \in \mathcal{S}_V} \phi_S(x_S)}$$
$$= \frac{\psi_B(x_B)}{\phi_R(x_R)} \sum_{x_{A\setminus R}} \left(\sum_{x_{V\setminus A}} \frac{\prod_{C \in \mathcal{C}_V} \psi_C(x_C)}{\prod_{S \in \mathcal{S}_V} \phi_S(x_S)} \right)$$
$$= \psi_B(x_B) \frac{\sum_{x_{A\setminus R}} \psi_A(x_A)}{\phi_R(x_R)}$$
$$= \psi_B(x_B).$$

- 1. (For directed graphical models:) Moralize.
- 2. Triangulate.
- 3. Construct a junction tree
- 4. Define potentials on maximal cliques.
- 5. Introduce evidence.
- 6. Propagate probabilities.

Junction Tree Algorithm: Computation

- Size of largest maximal clique determines run-time.
- If variables are categorical and potentials are represented as tables, marginalizing takes time exponential in clique size.
- Finding a triangulation to minimize the size of the largest clique is NP-hard.

Key ideas of this lecture

- Junction Tree Algorithm.
 - (For directed graphical models:) Moralize.
 - Triangulate.
 - Construct a junction tree.
 - Define potentials on maximal cliques.
 - Introduce evidence.
 - Propagate probabilities.