
CS281A/Stat241A Lecture 19
Junction Tree Algorithm

Peter Bartlett

CS281A/Stat241A Lecture 19 – p. 1/46

Announcements

My office hours:
Tuesday Nov 3 (today), 1-2pm, in 723 Sutardja Dai Hall.
Thursday Nov 5, 1-2pm, in 723 Sutardja Dai Hall.

Homework 5 due 5pm Monday, November 16.

CS281A/Stat241A Lecture 19 – p. 2/46

Key ideas of this lecture

Junction Tree Algorithm.
(For directed graphical models:) Moralize.
Triangulate.
Construct a junction tree.
Define potentials on maximal cliques.
Introduce evidence.
Propagate probabilities.

CS281A/Stat241A Lecture 19 – p. 3/46

Junction Tree Algorithm

Inference: Given
Graph G = (V, E),
Evidence xE , for E ⊆ V ,
Set F ⊆ V ,

compute p(xF |xE).

CS281A/Stat241A Lecture 19 – p. 4/46

Junction Tree Algorithm

Elimination:
Single set F .
Any G.

Sum-product:
All singleton sets F simultaneously.
G a tree .

Junction tree:

All cliques F simultaneously.
Any G.

CS281A/Stat241A Lecture 19 – p. 5/46

Junction Tree Algorithm

1. (For directed graphical models:) Moralize.

2. Triangulate.

3. Construct a junction tree.

4. Define potentials on maximal cliques.

5. Introduce evidence.

6. Propagate probabilities.

CS281A/Stat241A Lecture 19 – p. 6/46

1. Moralize

In a directed graphical model, local conditionals are
functions of a variable and its parents:

p(xi|xπ(i)) = ψπ(i)∪{i}.

To represent this as an undirected model, the set

π(i) ∪ {i}

must be a clique.

We consider the moral graph : all parents connected.

CS281A/Stat241A Lecture 19 – p. 7/46

Junction Tree Algorithm

1. (For directed graphical models:) Moralize.

2. Triangulate. (e.g., run UNDIRECTEDGRAPHELIMINATE)

3. Construct a junction tree.

4. Define potentials on maximal cliques.

5. Introduce evidence.

6. Propagate probabilities.

CS281A/Stat241A Lecture 19 – p. 8/46

2. Triangulate: Motivation

Theorem:
A graph G is chordal iff it has a junction tree.

Recall that all of the following are equivalent:

G is chordal

G is decomposable

G is recursively simplicial

G is the fixed point of UNDIRECTEDGRAPHELIMINATE

an oriented version of G has moral graph G.

G implies the same cond. indep. as some directed
graph.

CS281A/Stat241A Lecture 19 – p. 9/46

Chordal/Triangulated

Definitions:

A cycle for a graph G = (V,E) is a vertex sequence v1, . . . , vn

with v1 = vn but all other vertices distinct, and {vi, vi+1} ∈ E.

A cycle has a chord if it has a pair vi, vj with 1 < |i− j| < n

and {i, j} ∈ E.

A graph is chordal or triangulated if every cycle of length at
least four has a chord.

CS281A/Stat241A Lecture 19 – p. 10/46

Junction Tree: Definition

A clique tree for a graph G = (V,E) is a tree T = (VT , ET)
where

VT is a set of cliques of G,

VT contains all maximal cliques of G.

A junction tree for a graph G is a clique tree T = (VT , ET) for
G that has the running intersection property: for any cliques
C1 and C2 in VT , every clique on the path connecting C1 and
C2 contains C1 ∩ C2.

CS281A/Stat241A Lecture 19 – p. 11/46

Junction Tree: Example

z

z z

z z z

z z

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

A
A
A
A
A

A
A
A
A
A

A
A
A
A
A

C1
C5

C2
C3

C4

C6

Clique Tree:

C1 C2 C3 C4 C5

C6

CS281A/Stat241A Lecture 19 – p. 12/46

2. Triangulate

Theorem:
A graph G is chordal iff it has a junction tree.

Chordal ⇔ Recursively Simplicial, and we’ll show:
Recursively Simplicial ⇒ Junction Tree ⇒Chordal

CS281A/Stat241A Lecture 19 – p. 13/46

Recursively Simplicial⇒ Junction Tree

Recall: A graph G is recursively simplicial if it contains a
simplicial vertex v (neighbors form a clique), and when v is
removed, the remaining graph is recursively simplicial.

Proof idea—induction step:
Consider a recursively simplicial graph G of size n+ 1.
When we remove a simplicial vertex v, it leaves a subgraph
G′ with a junction tree T .
Let N be the clique in T containing v’s neighbors.
Let C be a new clique of v and its neighbors.
To obtain a junction tree for G:

If N contains only v’s neighbors, replace it with C.

Otherwise, add C with an edge to N .

CS281A/Stat241A Lecture 19 – p. 14/46

Junction Tree⇒ Chordal

Proof idea—induction step:
Consider a junction tree T of size n+ 1.
Consider a leaf C of T and its neighbor N in T .
Remove C from T and remove C \N from V .
The remaining tree is a junction tree for the remaining
(chordal) graph.
All cycles have a chord, since either

1. Cycle is completely in remaining graph,

2. Cycle is completely in C, or

3. Cycle is in C \N , C ∩N , and V \ C
(and C ∩N is complete, so contains a chord).

CS281A/Stat241A Lecture 19 – p. 15/46

Junction Tree Algorithm

1. (For directed graphical models:) Moralize.

2. Triangulate.

3. Construct a junction tree:
Find a maximal spanning tree.

4. Define potentials on maximal cliques.

5. Introduce evidence.

6. Propagate probabilities.

CS281A/Stat241A Lecture 19 – p. 16/46

Junction Tree is Maximal Spanning Tree

Define:

The weight of a clique tree T = (C, E) is

w(T) =
∑

(C,C′)∈E

|C ∩ C ′|.

A maximal spanning tree for a clique set C of a graph is a
clique tree T = (C, E∗) with maximal weight over all clique
trees of the form (C, E).

CS281A/Stat241A Lecture 19 – p. 17/46

Junction Tree is Maximal Spanning Tree

Theorem: Suppose that a graph G with clique set C has a
junction tree. Then a clique tree (C, E) is a junction tree iff it
is a maximal spanning tree for C.

And there are efficient greedy algorithms for finding the
maximal spanning tree:

While graph is not connected:
Add an edge for the biggest weight separating set
that does not lead to a cycle.

CS281A/Stat241A Lecture 19 – p. 18/46

Maximal Spanning Tree: Proof

Consider a graph G with vertices V .
For a clique tree (C, E), define the separators

S =
{

C ∩ C ′ : (C,C ′) ∈ E
}

.

Since T is a tree, for any k ∈ V ,
∑

S∈S

1[k ∈ S] ≤
∑

C∈C

1[k ∈ C] − 1,

with equality iff the subgraph of T of nodes containing k is a
tree.

CS281A/Stat241A Lecture 19 – p. 19/46

Maximal Spanning Tree: Proof

Thus,

w(T) =
∑

S∈S

|S|

=
∑

S∈S

∑

k

1[k ∈ S]

≤
∑

k

(

∑

C∈C

1[k ∈ C] − 1

)

=
∑

C∈C

|C| − n,

with equality iff T is a junction tree.

CS281A/Stat241A Lecture 19 – p. 20/46

Junction Tree Algorithm

1. (For directed graphical models:) Moralize.

2. Triangulate.

3. Construct a junction tree

4. Define potentials on maximal cliques.

5. Introduce evidence.

6. Propagate probabilities.

CS281A/Stat241A Lecture 19 – p. 21/46

Define potentials on maximal cliques

To express a product of clique potentials as a product of
maximal clique potentials:

ψS1
(xS1

) · · ·ψSN
(xSN

) =
∏

C∈C

ψC(xC),

1. Set all clique potentials to 1.

2. For each potential, incorporate (multiply) it into a
potential containing its variables.

CS281A/Stat241A Lecture 19 – p. 22/46

Junction Tree Algorithm

1. (For directed graphical models:) Moralize.

2. Triangulate.

3. Construct a junction tree

4. Define potentials on maximal cliques.

5. Introduce evidence.

6. Propagate probabilities.

CS281A/Stat241A Lecture 19 – p. 23/46

Introduce Evidence

Two equivalent approaches:

1. Introduce evidence potentials

δ(xi, x̄i) for i in E,

so that marginalizing fixes xE = x̄E .

2. Take slice of each clique potential:

ψC(xC) := ψC

(

xC∩(V \E), x̄C∩E

)

.

CS281A/Stat241A Lecture 19 – p. 24/46

Junction Tree Algorithm

1. (For directed graphical models:) Moralize.

2. Triangulate.

3. Construct a junction tree

4. Define potentials on maximal cliques.

5. Introduce evidence.

6. Propagate probabilities.

CS281A/Stat241A Lecture 19 – p. 25/46

Hugin Algorithm

Add potentials for separator sets .

Recall: If G has a junction tree T = (C,S), then any
probability distribution that satisfies the conditional
independences implied by G can be factorized as

p(x) =

∏

C∈C p(xC)
∏

S∈S p(xS)
,

where, if S = {C1, C2} then xS denotes xC1∩C2
.

CS281A/Stat241A Lecture 19 – p. 26/46

Hugin Algorithm

Represent p with potentials on separators:

p(x) =

∏

C∈C ψC(xC)
∏

S∈S φS(xS)

This can represent any distribution that an undirected
graphical model can (since we can set φS ≡ 1).

But nothing more (since we can incorporate each φS

into one of the ψC ’s that have S ⊆ C).

CS281A/Stat241A Lecture 19 – p. 27/46

Hugin Algorithm

1. Initialize:

ψC(xC) = appropriate clique potential

φS(xS) = 1.

2. Update potentials so that
p(x) is invariant
ψC , φS become the marginal distributions .

CS281A/Stat241A Lecture 19 – p. 28/46

Algorithm:

Messages are passed between cliques in the junction
tree.

A message is passed from V to adjacent vertex W once
V has received messages from all its other neighbors.

The message corresponds to the updates:

φ
(1)
S (xS) =

∑

xV −S

ψV (xV),

ψ
(1)
W (xW) = ψW (xW)

φ
(1)
S (xS)

φS(xS)
,

ψ
(1)
V (xV) = ψV (xV),

where S = V ∩W is the separator.

CS281A/Stat241A Lecture 19 – p. 29/46

Analysis:

1. p(x) is invariant under these updates.

2. In a tree, messages can path in both directions over
every edge.

3. The potentials are locally consistent after messages
have passed in both directions.

4. In a graph with a junction tree, local consistency implies
global consistency.

CS281A/Stat241A Lecture 19 – p. 30/46

Analysis:

p(x) =

∏

C∈C ψC(xC)
∏

S∈S φS(xS)
.

In this ratio, only
ψV ψW

φS
changes, to

ψ
(1)
V ψ

(1)
W

φ
(1)
S

=
ψV ψWφ

(1)
S

φ
(1)
S φS

=
ψV ψW

φS
.

CS281A/Stat241A Lecture 19 – p. 31/46

Analysis:

1. p(x) is invariant under these updates.

2. In a tree, messages can path in both directions over
every edge.

3. The potentials are locally consistent after messages
have passed in both directions.

4. In a graph with a junction tree, local consistency implies
global consistency.

CS281A/Stat241A Lecture 19 – p. 32/46

Analysis: Local Consistency

Suppose that messages pass both ways, from V to W and
back:

1. a message passes from V to W :

φ
(1)
S (xS) =

∑

xV −S

ψV (xV),

ψ
(1)
W (xW) = ψW (xW)

φ
(1)
S (xS)

φS(xS)
,

ψ
(1)
V (xV) = ψV (xV),

CS281A/Stat241A Lecture 19 – p. 33/46

Analysis: Local Consistency

2. other messages pass to W :

φ
(2)
S = φ

(1)
S

ψ
(2)
V = ψ

(1)
V

ψ
(2)
W = · · ·

CS281A/Stat241A Lecture 19 – p. 34/46

Analysis: Local Consistency

3. a message passes from W to V :

φ
(3)
S (xS) =

∑

xW−S

ψ
(2)
W (xW),

ψ
(3)
V (xV) = ψ

(2)
V (xV)

φ
(3)
S (xS)

φ
(2)
S (xS)

,

ψ
(3)
W (xV) = ψW (xW).

Subsequently, φS , ψV , ψW remain unchanged.

CS281A/Stat241A Lecture 19 – p. 35/46

Analysis: Local Consistency

After messages have passed in both directions, these
potentials are locally consistent:

∑

xV \S

ψ
(3)
V (xV) =

∑

xW\S

ψ
(3)
W (xW) = φ

(3)
S (xS).

c.f.:
∑

xV \S

p(xV) =
∑

xW\S

p(xW) = p(xS).

CS281A/Stat241A Lecture 19 – p. 36/46

Analysis: Local Consistency Proof

∑

xV \S

ψ
(3)
V (xV) =

∑

xV \S

ψ
(2)
V (xV)

φ
(3)
S (xS)

φ
(2)
S (xS)

(W → V)

=
φ

(3)
S (xS)

φ
(1)
S (xS)

∑

xV \S

ψV (xV) (to W)

= φ
(3)
S (xS) (V → W)

=
∑

xW\S

ψ
(2)
W (xW)

=
∑

xW\S

ψ
(3)
W (xW).

CS281A/Stat241A Lecture 19 – p. 37/46

Analysis:

1. p(x) is invariant under these updates.

2. In a tree, messages can path in both directions over
every edge.

3. The potentials are locally consistent after messages
have passed in both directions.

4. In a graph with a junction tree, local consistency implies
global consistency.

CS281A/Stat241A Lecture 19 – p. 38/46

Analysis: Local implies Global

Local consistency:
For all adjacent cliques V,W with separator S,

∑

xV \S

ψ
(3)
V (xV) =

∑

xW\S

ψ
(3)
W (xW) = φ

(3)
S (xS).

Global consistency:
For all cliques C,

ψC(xC) =
∑

xCc

∏

C ψC(xC)
∏

S φS(xS)
= p(xC)

CS281A/Stat241A Lecture 19 – p. 39/46

Local implies Global: Proof

Induction on number of cliques.
Trivial for one clique.
Assume true for all junction trees with n cliques.
Consider a tree TW of size n+ 1.
Fix a leaf B, attached by separator R.
Define

W = all variables

N = B \R

V = W \N

TV = junction tree without B.

CS281A/Stat241A Lecture 19 – p. 40/46

Local implies Global: Proof

The junction tree TV :

Has only variables V (from the junction tree property).

Satisfies local consistency.

Hence satisfies global consistency for V :
for all A ∈ TV ,

ψA(xA) =
∑

xV \A

∏

C∈CV
ψC(xC)

∏

S∈SV
φS(xS)

.

CS281A/Stat241A Lecture 19 – p. 41/46

Local implies Global: Proof

But viewing this A in the larger TW , we have

∑

xW\A

∏

C∈CW
ψC(xC)

∏

S∈SW
φS(xS)

=
∑

xV \A

∑

xN

ψB(xB)

φR(xR)

∏

C∈CV
ψC(xC)

∏

S∈SV
φS(xS)

=
∑

xV \A

∏

C∈CV
ψC(xC)

∏

S∈SV
φS(xS)

= ψA(xA).

CS281A/Stat241A Lecture 19 – p. 42/46

Local implies Global: Proof

And for the new clique B:
Suppose A is the neighbor of B in TW .

∑

xW\B

∏

C∈CW
ψC(xC)

∏

S∈SW
φS(xS)

=
∑

xA\R

∑

xV \A

ψB(xB)

φR(xR)

∏

C∈CV
ψC(xC)

∏

S∈SV
φS(xS)

=
ψB(xB)

φR(xR)

∑

xA\R

∑

xV \A

∏

C∈CV
ψC(xC)

∏

S∈SV
φS(xS)

= ψB(xB)

∑

xA\R
ψA(xA)

φR(xR)

= ψB(xB).

CS281A/Stat241A Lecture 19 – p. 43/46

Junction Tree Algorithm

1. (For directed graphical models:) Moralize.

2. Triangulate.

3. Construct a junction tree

4. Define potentials on maximal cliques.

5. Introduce evidence.

6. Propagate probabilities.

CS281A/Stat241A Lecture 19 – p. 44/46

Junction Tree Algorithm: Computation

Size of largest maximal clique determines run-time.

If variables are categorical and potentials are
represented as tables, marginalizing takes time
exponential in clique size.

Finding a triangulation to minimize the size of the
largest clique is NP-hard.

CS281A/Stat241A Lecture 19 – p. 45/46

Key ideas of this lecture

Junction Tree Algorithm.
(For directed graphical models:) Moralize.
Triangulate.
Construct a junction tree.
Define potentials on maximal cliques.
Introduce evidence.
Propagate probabilities.

CS281A/Stat241A Lecture 19 – p. 46/46

	Announcements
	Key ideas of this lecture
	Junction Tree Algorithm
	Junction Tree Algorithm
	Junction Tree Algorithm
	1. Moralize
	Junction Tree Algorithm
	2. Triangulate: Motivation
	Chordal/Triangulated
	Junction Tree: Definition
	Junction Tree: Example
	2. Triangulate
	Recursively Simplicial $Rightarrow $ Junction Tree
	Junction Tree $Rightarrow $ Chordal
	Junction Tree Algorithm
	Junction Tree is Maximal Spanning Tree
	Junction Tree is Maximal Spanning Tree
	Maximal Spanning Tree: Proof
	Maximal Spanning Tree: Proof
	Junction Tree Algorithm
	Define potentials on maximal cliques
	Junction Tree Algorithm
	Introduce Evidence
	Junction Tree Algorithm
	Hugin Algorithm
	Hugin Algorithm
	Hugin Algorithm
	Algorithm:
	Analysis:
	Analysis:
	Analysis:
	Analysis: Local Consistency
	Analysis: Local Consistency
	Analysis: Local Consistency
	Analysis: Local Consistency
	Analysis: Local Consistency Proof
	Analysis:
	Analysis: Local implies Global
	Local implies Global: Proof
	Local implies Global: Proof
	Local implies Global: Proof
	Local implies Global: Proof
	Junction Tree Algorithm
	Junction Tree Algorithm: Computation
	Key ideas of this lecture

