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Junction Tree Algorithm
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Announcements

f.p My office hours: T

Tuesday Nov 3 (today), 1-2pm, in 723 Sutardja Dai Hall.
Thursday Nov 5, 1-2pm, in 723 Sutardja Dai Hall.

# Homework 5 due 5pm Monday, November 16.
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Key Ideas of this lecture
- o

# Junction Tree Algorithm.
s (For directed graphical models:) Moralize.
s Triangulate.
o Construct a junction tree.
s Define potentials on maximal cliques.
s Introduce evidence.
» Propagate probabilities.

o -
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Junction Tree Algorithm

-

# Inference: Given
s Graph G = (V, &),
s Evidence zp, for E CV,
e SetFCV,
compute p(zp|rg).



Junction Tree Algorithm

-

# Elimination:
s Single set F.
s Any G.

# Sum-product:
s Allsingleton sets F' simultaneously.
s (G atree.

$ Junction tree:
» Allcligues F' simultaneously.
s Any G.

o -
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Junction Tree Algorithm

(For directed graphical models:) Moralize.
Triangulate.

Construct a junction tree.

Define potentials on maximal cliques.
Introduce evidence.

Propagate probabillities.

-
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1. Moralize

f.o In a directed graphical model, local conditionals are
functions of a variable and its parents:

p(:UZ’ZE ) T% (1) u{i}-
# To represent this as an undirected model, the set
(i) Ui}

must be a cligue.
#® We consider the moral graph : all parents connected.

o

=

-
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Junction Tree Algorithm

(For directed graphical models:) Moralize.
Triangulate. (e.g., run UNDIRECTEDGRAPHELIMINATE)
Construct a junction tree.

Define potentials on maximal cliques.

Introduce evidence.

Propagate probabillities.

-
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2. Trilangulate: Motivation
fTheorem:

A graph G is chordal iff it has a junction tree.

Recall that all of the following are equivalent:

# (Is chordal

#® ( Is decomposable

G Is recursively simplicial

Gz Is the fixed point of UNDIRECTEDGRAPHELIMINATE
an oriented version of G has moral graph G.

© o o o

G Implies the same cond. indep. as some directed

L graph. J
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Chordal/Triangulated

. .

A cycle for a graph G = (V, E) Is a vertex sequence vy, ..., v,
with v; = v,, but all other vertices distinct, and {v;,v;+1} € E.

efinitions:

A cycle has a chord if it has a pair v;,v; with 1 < |i — j| <n
and {:,j} € F.

A graph is chordal or triangulated If every cycle of length at
least four has a chord.

o -
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Junction Tree: Definition

=

A clique tree foragraph G = (V, FE)isatree T = (V, Er)
where

#® Vpis a set of cliques of G,
# V7 contains all maximal cliques of G.

A junction tree for a graph G is a clique tree T' = (Vp, Er) for
Gz that has the running intersection  property: for any cliques

C1 and Cs In Vo, every cligue on the path connecting C; and
(9 contains C7 N Cs.

o -
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Junction Tree: Example

Cr Clique Tree:

|

Cir—Cs—C5-CgCs

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS



2. Triangulate
fTheorem:

A graph G is chordal iff it has a junction tree.

Chordal & Recursively Simplicial, and we’ll show:
Recursively Simplicial = Junction Tree =-Chordal

o -
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Recursively Simplicial = Junction Tree

=

Recall: A graph G Is recursively simplicial  If it contains a
simplicial vertex v (neighbors form a clique), and when v Is
removed, the remaining graph is recursively simplicial.

Proof idea—induction step:

Consider a recursively simplicial graph G of size n + 1.
When we remove a simplicial vertex v, it leaves a subgraph
G’ with a junction tree T.

Let N be the clique in T" containing v’s neighbors.

Let C' be a new clique of v and its neighbors.

To obtain a junction tree for G:

# |f N contains only v's neighbors, replace it with C.
L’ Otherwise, add C with an edge to V. J
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Junction Tree = Chordal
fProof Idea—induction step: T

Consider a junction tree 7' of size n + 1.

Consider a leaf C of T and its neighbor N in T'.
Remove C from T and remove C'\ N from V.

The remaining tree is a junction tree for the remaining
(chordal) graph.

All cycles have a chord, since either

1. Cycle is completely in remaining graph,
2. Cycle is completely in C, or

3. CycleisinC\N,CnNnN,and V\ C
(and C'N N Is complete, so contains a chord).

o -
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Junction Tree Algorithm

. (For directed graphical models:) Moralize.

2. Triangulate.

. Construct a junction tree:
Find a maximal spanning tree.

. Define potentials on maximal cliques.
. Introduce evidence.
. Propagate probabillities.

-
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Junction Tree I1s Maximal Spanning Tree
| o

The weight of acliquetree T'= (C,FE) is

wT)= > |cnc.

(C,C"eEk

efine:

A maximal spanning tree for a cligue set C of a graph is a
clique tree T' = (C, E*) with maximal weight over all clique
trees of the form (C, E).

o -
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Junction Tree I1s Maximal Spanning Tree

-

Theorem: Suppose that a graph G with cligue set C has a
junction tree. Then a clique tree (C, F) Is a junction tree iff it
IS a maximal spanning tree for C.

And there are efficient greedy algorithms for finding the
maximal spanning tree:

# While graph is not connected:

» Add an edge for the biggest weight separating set
that does not lead to a cycle.

o -
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Maximal Spanning Tree: Proof

. .

onsider a graph G with vertices V.
For a clique tree (C, £), define the separators

s={cnc':(Cc,c)eE}.

Since T'isatree, forany k € V,

Y lkeS <) 1keC] -1,

SeS ceC

with equality iff the subgraph of 7" of nodes containing & is a
tree.

o -
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Maximal Spanning Tree: Proof
fThus, T

with equality iff 7" is a junction tree.

o -
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Junction Tree Algorithm

(For directed graphical models:) Moralize.
Triangulate.

Construct a junction tree

Define potentials on maximal cliques.
Introduce evidence.

Propagate probabillities.

-

CS281A/Stat?241A Lecture 19 — p. 21/¢



Define potentials on maximal cliques

- .

To express a product of clique potentials as a product of
maximal cligue potentials:

Vs, (z5,) Yy (wsy) = || velze).

1. Set all clique potentials to 1.

2. For each potential, incorporate (multiply) it into a
potential containing its variables.

o -
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Junction Tree Algorithm

(For directed graphical models:) Moralize.
Triangulate.

Construct a junction tree

Define potentials on maximal cliques.
Introduce evidence.

Propagate probabillities.

-
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Introduce Evidence
E

Wo equivalent approaches:
1. Introduce evidence potentials

O(xi, Ti) foriin E,
so that marginalizing fixes g = 7.

2. Take slice of each clique potential:

volxe) = o (Tenw\p), TonE) -

o -
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Junction Tree Algorithm

(For directed graphical models:) Moralize.
Triangulate.

Construct a junction tree

Define potentials on maximal cliques.
Introduce evidence.

Propagate probabillities.

-
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Hugin Algorithm
-

Add potentials for separator sets .

Recall: If G has a junctiontree T'= (C,S), then any
probability distribution that satisfies the conditional
Independences implied by G can be factorized as

[[ocep(zo)
p(r) = =& ,
llses p(:lfs)

where, if S = {C1,Cs} then zg denotes x¢, ¢, -

o -
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Hugin Algorithm

fRepresent p with potentials on separators: T
lloecvolze)
P\T) =
) [Ises ¢s(zs)

# This can represent any distribution that an undirected
graphical model can (since we can set ¢g = 1).

# But nothing more (since we can incorporate each ¢g
Into one of the vy ’s that have S C C).

o -
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Hugin Algorithm
o o

. Initialize:
Yo (xo) = appropriate clique potential

ps(xs) = 1.

2. Update potentials so that
® p(x) IS Invariant
® Yo, g become the marginal distributions

o -
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Algorithm:

f.o Messages are passed between cligues in the junction T
tree.

#® A message is passed from V to adjacent vertex IV once
V' has received messages from all its other neighbors.

# The message corresponds to the updates:

05 (1s) = Y vr(ay),
¢Eg1)(l’s)
ds(rg)

wé[lz)(ﬁw) = Yw (rw)

P (@y) = Py (ay),

L where S =V N W is the separator. J
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Analysis:

. p(x) Is invariant under these updates. T

2. In a tree, messages can path in both directions over

every edge.

. The potentials are locally consistent after messages

have passed in both directions.

In a graph with a junction tree, local consistency implies
global consistency.

-

CS281A/Stat?241A Lecture 19 — p. 30/¢



Analysis:

-

_ eectelzc)
p() [Ises ¢s(xs)
In this ratio, only Yviw changes, to
S
oy vy dvdwy’
by 05 o5
_ vdw
b5



Analysis:

. p(x) Is invariant under these updates. T

2. In a tree, messages can path in both directions over

every edge.

. The potentials are locally consistent after messages

have passed in both directions.

In a graph with a junction tree, local consistency implies
global consistency.

-
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Analysis: Local Consistency

-

Suppose that messages pass both ways, from V to W and
back:

1. a message passes from V to W:

=

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS



Analysis: Local Consistency

f2. other messages pass to W T
p) =gl
i) = il
%[2/) .



Analysis: Local Consistency

-

3. a message passes from W to V:

09 (ws) = Y i (aw),

(3)
o (av) = Uy (av) ¢é)(x5)7
¢5 (5’75

Subsequently, ¢g, ¥y, ¥y remain unchanged.

o -
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Analysis: Local Consistency

-

After messages have passed in both directions, these
potentials are locally consistent:

S 0P @v) = Y ol ew) = 0 (xs).

Ly\s LW\ S

=

c.f.: > plav) =) plaw) = plxs).

Ly\s LW\ S

o -
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Analysis: Local Consistency Proof

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS



Analysis:

. p(x) Is invariant under these updates. T

2. In a tree, messages can path in both directions over

every edge.

. The potentials are locally consistent after messages

have passed in both directions.

In a graph with a junction tree, local consistency implies
global consistency.

-
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Analysis: Local implies Global

=

fLocal consistency:
For all adjacent cliques V, W with separator S,

S oD @v) = Y o (aw) = 09 (2s).

Ly\s LTw\ S

Global consistency:
For all cliques C,

votae) =3 %(; Lo — o)




Local implies Global: Proof

-

Induction on number of cligues. T
Trivial for one cligue.

Assume true for all junction trees with » cliques.
Consider a tree Ty, of size n + 1.

Fix a leaf B, attached by separator R.
Define

W = all variables
N=B\R
V=W\N

Ty = junction tree without B.

o -
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Local implies Global: Proof
fThe junction tree Ty T
# Has only variables V' (from the junction tree property).

# Satisfies local consistency.

# Hence satisfies global consistency for V:
forall A € Ty,

B H(Jecv velze)
Valea) = ) [Ises, ¢s(xs)

LTV\A

o -

CS281A/Stat?241A Lecture 19 — n. 41/¢



Local implies Global: Proof

- .

# But viewing this A in the larger Ty, we have

Ilcee, Vol B(xB) llcec, Yo(zc)
Z HSESW ¢S( S‘ S‘ CUR HSESV CbS(CCS)

)

)
HCECV vo(re)

(

Tva IISeSV‘ﬁS $50

=Pa(za).

LW\ A V\A TN

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS



Local implies Global: Proof

-

And for the new clique B:
Suppose A is the neighbor of B in Ty .

=

Hcecw o (@ HCECV volze)
2 [ses, CbS( P> Y r) llses, ¢s(zs)

LW\ B LA\R SCV\A

_ Yp(zp) llcee, Yolze)
 ¢r(zR) 2 (Z [ses, ¢S($S))

LA\R \TV\A

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
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Junction Tree Algorithm

(For directed graphical models:) Moralize.
Triangulate.

Construct a junction tree

Define potentials on maximal cliques.
Introduce evidence.

Propagate probabillities.

-

CS281A/Stat?241A Lecture 19 — n. 44/¢



Junction Tree Algorithm: Computation
f.’ Size of largest maximal clique determines run-time. T

# |f variables are categorical and potentials are
represented as tables, marginalizing takes time
exponential in clique size.

# Finding a triangulation to minimize the size of the
largest clique is NP-hard.

o -
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Key Ideas of this lecture
- o

# Junction Tree Algorithm.
s (For directed graphical models:) Moralize.
s Triangulate.
o Construct a junction tree.
s Define potentials on maximal cliques.
s Introduce evidence.
» Propagate probabilities.

o -
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