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Announcements

My office hours:
Tuesday Nov 10 (today), 1-2pm, in 723 SD Hall.
Thursday Nov 12, 1-2pm, in 723 SD Hall.

Homework 5 due 5pm Monday, November 16.
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Key ideas of this lecture

Monte Carlo methods for approximate inference:
Approximating expectations

Applications:
E-step of EM.
Data augmentation in Bayesian analysis.

Basic sampling methods
Multivariate Gaussians.
Directed graphical models.

Rejection sampling

Importance sampling

Particle filters

Markov Chain Monte Carlo
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Approximate Inference

When the cliques are large, exact inference is
intractable.

We resort to approximate inference methods.
Monte Carlo methods.
Variational methods.

Today: Monte Carlo methods.
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Approximating Expectations

The inference problem:

Given observations xE

of variables in an evidence set, E ⊂ V,

and a set of variables F ⊂ V,

. . . find p(xF |xE = x̄E).

We focus on approximating expectations:

E [f(x)|xE = x̄E] .
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Approximating Expectations

E [f(x)|xE = x̄E] .

If the functions f are indicators for events, these
expectations are probabilities.

These expectations are useful, for example, for the
E-step of the EM algorithm:

E [ℓc(θ)|xE = x̄E] .
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Approximating Expectations

E [f(x)|xE = x̄E] .

If we can generate iid samples from the conditional
distribution, we can approximate expectations.

For x1, . . . , xm drawn i.i.d. from p(x|xE), we estimate
E [f(x)|xE = x̄E] with

Êf =
1

m

m∑

t=1

f(xt).

Estimate is unbiased: EÊf = E[f |xE ].

Variance decreases: Var(Êf) = Var(f |xE)/m.
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Bayesian Inference

In a Bayesian setting, we have a joint distribution

p(x, θ) = p(x|θ)p(θ).

Given some observations xE = x̄E, we wish to sample
from the posterior, p(θ|xE).

The same inference problem (the names have
changed).
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Data Augmentation Algorithm 1

We want to approximate the posterior distribution:

p(θ|xE) =

∫

p(θ|x)p(xEC |xE)dxEC

≈
1

m

m∑

i=1

p(θ|xi
EC , xE),

where x1
EC , x2

EC , . . . xm
EC are chosen (approximately) from

p(xEC |xE).
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Data Augmentation Algorithm 2

p(xEC |xE) =

∫

p(xEC |θ, xE)p(θ|xE)dθ

≈
1

m

m∑

i=1

p(xEC |θi, xE),

where θ1, θ2, . . . θm are chosen (approximately) from p(θ|xE).
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Data Augmentation Algorithm

I-step (Imputation): Use the sample θ1, . . . , θm to
approximately sample x1

EC , . . . , xm
EC from p(xEC |xE).

P-step (Posterior): Use the sample x1
EC , . . . , xm

EC to
approximately sample θ1, . . . , θm from p(θ|xE).

Need to:

1. Sample from p(θ|x).

2. Sample from p(xEC |θ, xE).
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Key ideas of this lecture

Monte Carlo methods for approximate inference:
Approximating expectations

Applications:
E-step of EM.
Data augmentation in Bayesian analysis.

Basic sampling methods
Multivariate Gaussians.
Directed graphical models.

Rejection sampling

Importance sampling

Particle filters

Markov Chain Monte Carlo
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Sampling Multivariate Gaussians

Suppose we wish to sample x ∼ N (µ,Σ), and we have
a source of (one-dimensional) Gaussians.

If Z ∼ N (0, I), then

x = µ + LZ

has distribution N (µ,LL′).

Cholesky decomposition of a symmetric positive
semidefinite matrix:

Σ = LL′,

where L is lower triangular.
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Unconditional Sampling

Consider a directed graphical model:

p(x) =
∏

i

p(xi|xπ(i)).

Suppose that we wish to sample from p.
unconditionally; no evidence.

Algorithm:
for each i (in a topological order):

Sample xi from p(xi|xπ(i)).
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Rejection Sampling

To generate m i.i.d. samples from p(x|xE):

S = ∅.

While |S| < m

Generate x from p(x).
If xE = x̄E, set S := S ∪ {x}.

Each element x of the set S has distribution p(x|xE = x̄E).
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Rejection Sampling

To generate m i.i.d. samples from p(x):

Fix a proposal distribution q satisfying

∃C, ∀x, q(x) ≥ Cp(x).

S = ∅.

While |S| < m

Generate x from q(x).
Generate u uniformly from [0, q(x)/C].
If u ≤ p(x), set S := S ∪ {x}.
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Rejection Sampling

Why are the samples from p(x)?
For any (x, u) for which x is accepted,

Pr(x|u ≤ p(x)) =
Pr(x) Pr(u ≤ p(x)|x)

Pr(u ≤ p(x))

=
q(x)Cp(x)/q(x)

Pr(u ≤ p(x))

= p(x)
C

Pr(u ≤ p(x))

= p(x),

from which we also see that Pr(u ≤ p(x)) = C.

Thus, the expected time to sample m points from p is
m/C.
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Rejection Sampling

The same argument works when we do not know a
normalizing constant for p:
To generate m i.i.d. samples from p(x),

Fix a proposal distribution q satisfying

∃C, ∀x, q(x) ≥ CZp(x).

S = ∅.

While |S| < m

Generate x from q(x).
Generate u uniformly from [0, q(x)/C].
If u ≤ Zp(x), set S := S ∪ {x}.
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Rejection Sampling

Why are the samples from p(x)?
For any (x, u) for which x is accepted,

Pr(x|u ≤ p(x)) =
Pr(x) Pr(u ≤ Zp(x)|x)

Pr(u ≤ Zp(x))

=
q(x)CZp(x)/q(x)

Pr(u ≤ Zp(x))

= p(x)
CZ

Pr(u ≤ Zp(x))

= p(x),

from which we also see that Pr(u ≤ p(x)) = CZ.
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Rejection Sampling: p(x|xE)

Why is p(x|xE) a special case?

Set q(x) = p(x), the joint distribution.

If xE = x̄E ,

q(x) = p(xE)p(x|xE)

= C p(x|xE),

and since u is uniform on [0, q(x)/C], we accept with
probability 1.

If xE 6= x̄E , q(x)/C = p(x|xE) = 0, so we reject with
probability 1.
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Rejection Sampling: Drawbacks

Acceptance ratio can be small: it typically decreases
exponentially with the dimension/number of variables.

Thus, may need to do a lot of computation to gather a
sample.
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Importance Sampling

Key Idea: replace the random accept/reject decision in
rejection sampling with a weighting, equal to the
probability of acceptance.

Again, choose a proposal distribution q(x).

Epf(X) =

∫

f(x)p(x)dx

=

∫

f(x)
p(x)

q(x)
q(x)dx = Eq







f(X)

p(X)

q(X)
︸ ︷︷ ︸

w(X)








.

We call w(X) the importance weights.
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Importance Sampling

Epf(X) = Eq

[

f(X)
p(X)

q(X)

]

.

c.f. accept with probability Cp(X)/q(X).

Again, we do not need to know normalization: suppose

p(x) =
p̃(x)

Zp
, q(x) =

q̃(x)

Zq
.

Then

Epf(X) =
Eq

[

f(X) p̃(X)
q̃(X)

]

Eq

[
p̃(X)
q̃(X)

]
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Importance Sampling

p(x) =
p̃(x)

Zp
, q(x) =

q̃(x)

Zq
.

Epf(X) =
1

Zp

∫

f(x)p̃(x)dx =
Zq

Zp
Eq

[

f(X)
p̃(X)

q̃(X)

]

and
Zp

Zq
=

∫
p̃(x)

Zq
dx =

∫
p̃(x)

q̃(x)
q(x)dx = Eq

[
p̃(X)

q̃(X)

]

.

So

Epf(X) =
Eq

[

f(X) p̃(X)
q̃(X)

]

Eq

[
p̃(X)
q̃(X)

]
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Importance Sampling

Epf(X) =
Eq

[

f(X) p̃(X)
q̃(X)

]

Eq

[
p̃(X)
q̃(X)

]

We estimate this with
∑m

i=1 wif(xi)
∑m

i=1 wi
,

where

xi ∼ q and wi =
p̃(xi)

q̃(xi)
.
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Example: Likelihood Weighting

To calculate a single (x,w) pair from p(x|xE = x̄E) in a
directed graphical model:

Set w := 1

For all i in a topological order
if i ∈ E: set

xi := x̄i

w := w p(x̄i|xπ(i))

else: sample xi from p(xi|xπ(i)).
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Example: Likelihood Weighting

Think of each (x,w) pair as a particle at x with weight w.
We approximate the distribution by this set of weighted
particles.

Êf =

∑m
i=1 wif(xi)
∑m

i=1 wi
.

Here,

p̃(x) = p(x) = p(x|xE)p(xE)

q̃(x) =
∏

i 6∈E

p(xi|xπ(i)),

so w(x) =
p̃(x)

q̃(x)
=

∏

i∈V p(xi|xπ(i))
∏

i 6∈E p(xi|xπ(i))
=

∏

i∈E

p(xi|xπ(i)).
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Importance Sampling

The variance of the estimate

Êf =
1

m

m∑

i=1

f(xi)
p(xi)

q(xi)

is
1

m
Var

(

f(xi)
p(xi)

q(xi)

)

.

This is minimized when

q(x) =
f(x)p(x)

Ef
.
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Particle Filters

Consider a filtering problem, p(xt|y1, . . . , yt):
HMM
Kalman filter

Suppose p(yt|xt) is complex.
e.g., xt is location of robot, yt is (possibly multipath)
sonar measurement of distance to a landmark.

Then p(xt|y1, . . . , yt) is complex.

We can approximate these distributions with weighted
particles (x1

t , w
1
t ), . . . , (x

m
t , wm

t ).
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Particle Filters

We have samples x1
t , . . . , x

m
t , approximately distributed

as p(xt|y1, . . . , yt−1), and we use these to compute
expectations under p(xt|y1, . . . , yt):

Êf(Xt) =
m∑

i=1

wi
tf(xi

t),

where

wi
t =

p(yt|x
i
t)

∑m
j=1 p(yt|x

j
t )

.
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Particle Filters

To see that this makes sense:

Ef(Xt) =

∫

f(xt)p(xt|y1, . . . , yt)dxt

=

∫
f(xt)p(xt, yt|y1, . . . , yt−1)dxt
∫

p(xt, yt|y1, . . . , yt−1)dxt

=

∫
f(xt)p(yt|xt)p(xt|y1, . . . , yt−1)dxt
∫

p(yt|xt)p(xt|y1, . . . , yt−1)dxt

≈
m∑

i=1

f(xi
t)w

i
t.

CS281A/Stat241A Lecture 21 – p. 34/44



Particle Filters

We update our weighted particles (xi
t, w

i
t) by sampling xi

t+1

from

p(xt+1|y1, . . . , yt) =

∫

p(xt+1|xt, y1, . . . , yt)p(xt|y1, . . . , yt)dxt

≈
m∑

j=1

p(xt+1|x
j
t )w

j
t .

and by setting

wi
t+1 =

p(yt+1|x
i
t+1)

∑m
j=1 p(yt+1|x

j
t+1)

.
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Particle Filters

p(xt+1|y1, . . . , yt)

=

∫

p(xt+1|xt, y1, . . . , yt)p(xt|y1, . . . , yt)dxt

=

∫

p(xt+1|xt)p(xt|y1, . . . , yt)dxt

=

∫
p(xt+1|xt)p(xt|y1, . . . , yt−1)p(yt|xt, y1, . . . , yt−1)dxt

∫
p(xt|y1, . . . , yt−1)p(yt|xt, y1, . . . , yt−1)dxt

=

∫
p(xt+1|xt)p(xt|y1, . . . , yt−1)p(yt|xt)dxt

∫
p(xt|y1, . . . , yt−1)p(yt|xt)dxt

≈
m∑

i=1

p(xt+1|x
i
t)w

i
t.
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Particle Filters

p(xt+1|y1, . . . , yt) ≈
m∑

i=1

p(xt+1|x
i
t)w

i
t.

This distribution is a mixture of the m components
p(xt+1|x

i
t).

We draw x1
t+1, . . . , x

m
t+1 from it.
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Particle Filter Updates

1. Draw xi
t+1 from the mixture

∑m
j=1 p(xt+1|x

j
t )w

j
t .

2. Weight each particle by wi
t+1 ∝ p(yt+1|x

i
t+1).

Then expectations under p(xt+1|y1, . . . , yt+1) are
approximated by

Êf(Xt+1) =
m∑

i=1

wi
t+1f(xi

t+1).
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Markov Chain Monte Carlo

To sample from p(x) on a space X :
Choose a Markov chain with state space X .
Choose transition probabilities A so that the
distribution over states converges (quickly) to p.
Simulate the Markov chain, and use the samples

xt, xt+k, xt+2k, . . .
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MCMC: Terminology

The transition probability matrix of a Markov chain
determines the state evolution:

Aij = Pr(xt+1 = j|xt = i).

Recall that a distribution over states
pt(x)′ = (Pr(xt = 1), . . . ,Pr(xt = N)) evolves as

p′t+1 = p′tA.

A stationary distribution p on X satisfies p′A = p′.

CS281A/Stat241A Lecture 21 – p. 41/44



MCMC: Terminology

An ergodic Markov chain is irreducible (no islands) and
aperiodic. It always has a unique stationary distribution:
for all p0,

p′0A
t → p.

An ergodic MC mixes exponentially: for some C, τ and
stationary distribution p,

‖p′0A
t − p‖1 ≤ Ce−t/τ .
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MCMC: Terminology

If p satisfies the detailed balance equations

piAij = pjAji,

then p is a stationary distribution, and the chain is called
reversible:

Pr(xt = i, xt+1 = j) = Pr(xt = j, xt+1 = i).
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