
CS281A/Stat241A Lecture 22
Monte Carlo Methods

Peter Bartlett

CS281A/Stat241A Lecture 22 – p. 1/45



Key ideas of this lecture

Sampling in Bayesian methods:
Predictive distribution
Example: Normal with conjugate prior
Posterior predictive model checking

Example: Normal with semiconjugate prior

Gibbs sampling

Nonconjugate priors

Metropolis algorithm

Metropolis-Hastings algorithm

Markov Chain Monte Carlo

CS281A/Stat241A Lecture 22 – p. 2/45



Sampling in Bayesian Methods

Consider a model

p(x, θ) = p(θ)
︸︷︷︸

prior

p(x|θ)p(y|x, θ).

Given observations (x1, y1), . . . , (xn, yn) and x, we wish
to estimate the distribution of y, perhaps to make a
forecast ŷ that minimizes the expected loss EL(ŷ, y).

We condition on observed variables
((x1, y1), . . . , (xn, yn), x) and marginalize out unknown
variables (θ) in the joint

p(x1, y1, . . . , xn, yn, x, y, θ) = p(θ)p(x, y|θ)
n∏

i=1

p(xi, yi|θ).
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Sampling in Bayesian Methods

This gives the posterior predictive distribution

p(y|x1, y1, . . . , xn, yn, x) =

∫

p(y|θ,Dn, x)p(θ|Dn, x)dθ

=

∫

p(y|θ, x)p(θ|Dn, x)dθ,

where Dn = (x1, y1, . . . , xn, yn) is the observed data.

We can also consider the prior predictive distribution,
which is the same quantity when nothing is observed:

p(y) =

∫

p(y|θ)p(θ)dθ.

It is often useful, to evaluate if the prior reflects
reasonable beliefs for the observations.
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Sampling from posterior

We wish to sample from the posterior predictive
distribution,

p(y|Dn) =

∫

p(y|θ)p(θ|Dn)dθ.

It might be straightforward to sample from

p(θ|Dn) ∝ p(Dn|θ)p(θ).

For example, if we have a conjugate prior p(θ), it can be
an easy calculation to obtain the posterior, and then we
can sample from it.

It is typically straightforward to sample from p(y|θ).
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Sampling from posterior

In these cases, we can
1. Sample θt ∼ p(θ|Dn),
2. Sample yt ∼ p(y|θt).

Then we have

(θt, yt) ∼ p(y, θ|Dn),

and hence we have samples from the posterior
predictive distribution,

yt ∼ p(y|Dn).
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Example: Gaussian with Conjugate Prior

Consider the model

y ∼ N (µ, σ2)

µ|σ2 ∼ N (µ0, σ
2/κ0)

1/σ2 ∼ gamma(ν0/2, ν0σ
2
0/2),

where x ∼ gamma(a, b) for

p(x) =
ba

Γ(a)
xa−1e−bx.
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Example: Gaussian with Conjugate Prior

This is a conjugate prior: posterior is

1/σ2|y1, . . . , yn ∼ gamma(νn/2, νnσ2/2)

µ|y1, . . . , yn, σ2 ∼ N (µn, σ2/κn)

νn =ν0 + n

σ2
n =

(

ν0σ
2
0 +

∑

i

(yi − ȳ)2 + (ȳ − µ0)
2κ0n/κn

)

/νn

κn =κ0 + n

µn = (κ0µ0 + nȳ) /κn
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Example: Gaussian with Conjugate Prior

So we can easily compute the posterior distribution
p(θ|Dn) (with θ = (µ, σ2)), and then:
1. Sample θt ∼ p(θ|Dn),

2. Sample yt ∼ p(y|θt).
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Posterior Predictive Model Checking

Another application of sampling:

Suppose we have a model p(θ), p(y|θ).

We see data Dn = (y1, . . . , yn).

We obtain the predictive distribution p(y|y1, . . . , yn).

Suppose that some important feature of the predictive
distribution does not appear to be consistent with the
empirical distribution. Is this due to sampling variability,
or because of a model mismatch?
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Posterior Predictive Model Checking

1. Sample θt ∼ p(θ|Dn).

2. Sample Y t = (yt
1, . . . , y

t
n), with yt

i ∼ p(y|θt).

3. Calculate f(Y t), the statistic of interest.

We can use the Monte Carlo approximation to the
distribution of f(Y t) to assess the model fit.
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Semiconjugate priors

Consider again a normal distribution with conjugate
prior:

y ∼ N (µ, σ2)

µ|σ2 ∼ N (µ0, σ
2/κ0)

1/σ2 ∼ gamma(ν0/2, ν0σ
2
0/2).

In order to ensure conjugacy, the µ and σ2 distributions
are not marginally independent.
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Semiconjugate priors

If it’s more appropriate to have decoupled prior
distributions, we might consider a semiconjugate prior,
that is, a prior that is a product of priors,

p(θ) = p(µ)p(σ2),

each of which, conditioned on the other parameters, is
conjugate.

For example, for the normal distribution, we could
choose

µ ∼ N (µ0, τ
2
0 )

1/σ2 ∼ gamma(ν0/2, ν0σ
2
0/2).
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Semiconjugate priors

The posterior of 1/σ2 is not a gamma distribution.
However, the conditional distribution p(1/σ2|µ, y1, . . . , yn)
is a gamma:

p(σ2|µ, y1, . . . , yn) ∝ p(y1, . . . , yn|µ, σ2)p(σ2),

p(µ|σ2, y1, . . . , yn) ∝ p(y1, . . . , yn|µ, σ2)p(µ).

These distributions are called the full conditional
distributions of σ2 and of µ: conditioned on everything
else. In both cases, the distribution is the posterior of a
conjugate, so it’s easy to calculate.
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Semiconjugate priors: Gibbs sampling

p(σ2|µ, y1, . . . , yn) ∝ p(y1, . . . , yn|µ, σ2)p(σ2),

p(µ|σ2, y1, . . . , yn) ∝ p(y1, . . . , yn|µ, σ2)p(µ).

Notice that, because the full conditional distributions are
posteriors of conjugates, they are easy to calculate, and
hence easy to sample from.

Suppose we had σ2(1)
∼ p(σ2|y1, . . . , yn).

Then if we choose µ(1) ∼ p(µ|σ2(1)
, y1, . . . , yn), we would

have

(µ(1), σ2(1)
) ∼ p(µ, σ2|y1, . . . , yn).

CS281A/Stat241A Lecture 22 – p. 16/45



Semiconjugate priors

In particular, µ(1) ∼ p(µ(1)|y1, . . . , yn), so we can choose

σ2(2)
∼ p(σ2|µ(1), y1, . . . , yn), so

(µ(1), σ2(2)
) ∼ p(µ, σ2|y1, . . . , yn).

etc...
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Gibbs sampling

For parameters θ = (θ1, . . . , θp):

1. Set some initial values θ0.

2. For t = 1, . . . , T ,
For i = 1, . . . , p,

Sample θt
i ∼ p(θi|θ

t
1, . . . , θ

t
i−1, θ

t−1
i+1 , . . . , θ

t−1
p ).

Notice that the parameters θ1, θ2, . . . , θT are dependent.

They form a Markov chain: θt depends on θ1, . . . , θt−1

only through θt−1.

The posterior distribution is a stationary distribution of
the Markov chain (by argument on previous slide).

And the distribution of θT approaches the posterior.
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Nonconjugate priors

Sometimes conjugate or semiconjugate priors are not
available or are unsuitable.

In such cases, it can be difficult to sample directly from
p(θ|y) (or p(θi|all else)).

Note that we do not need i.i.d. samples from p(θ|y),
rather we need θ1, . . . , θm so that the empirical
distribution approximates p(θ|y).

Equivalently, for any θ, θ′, we want

E[# θ in sample]

E[# θ′ in sample]
≈

p(θ|y)

p(θ′|y)
.
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Nonconjugate priors

Some intuition: suppose we already have θ1, . . . , θt, and
another θ. Should we add it (set θt+1 = θ)?

We could base the decision on how p(θ|y) compares to
p(θt|y).

Happily, we do not need to be able to compute p(θ|y):

p(θ|y)

p(θt|y)
=

p(y|θ)p(θ)p(y)

p(y)p(y|θt)p(θt)
=

p(y|θ)p(θ)

p(y|θt)p(θt)
.

If p(θ|y) > p(θt|y), we set θt+1 = θ.

If r = p(θ|y)/p(θt|y) < 1, we expect to have θ appear r

times as often as θt, so we accept θ (set θt = θ) with
probability r.
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Metropolis Algorithm

Fix a symmetric proposal distribution, q(θ|θ′) = q(θ′|θ).
Given a sample θ1, . . . , θt,

1. Sample θ ∼ q(θ|θt).

2. Calculate

r =
p(θ|y)

p(θt|y)
=

p(y|θ)p(θ)

p(y|θt)p(θt)
.

3. Set

θt+1 =

{

θ with probability min(r, 1),
θt with probability 1−min(r, 1).
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Metropolis Algorithm

Notice that θ1, . . . , θt is a Markov chain.

We’ll see that its stationary distribution is p(θ|y).

But we have to wait until the Markov chain mixes.

CS281A/Stat241A Lecture 22 – p. 23/45



Metropolis Algorithm

In practice:

1. Wait until some time τ (burn-in time) when it seems that
the chain has reached the stationary distribution.

2. Gather more samples, θτ+1, . . . , θτ+m.

3. Approximate the posterior p(θ|y) using the empirical
distribution of {θτ+1, . . . , θτ+m}.
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Metropolis Algorithm

The higher the correlation between θt and θt+1, the
longer the burn-in period needs to be, and the worse
the approximation of the posterior that we get from the
empirical distribution of an m-sample: The effective
sample size is much less than m.

We can control the correlation using the proposal
distribution.

Typically, the best performance occurs for an
intermediate value of a scale parameter of the proposal
distribution: small variance gives high correlation; high
variance gives samples far from the posterior mode,
hence with low acceptance probability.
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Metropolis Algorithm

Need to choose a proposal distribution that allows the
Markov chain to move around the parameter space
quickly, but not with such big steps that the proposals
are frequently rejected.

Rule of thumb: Tune proposal distribution so that the
acceptance probability is between 20% and 50%.
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Metropolis-Hastings Algorithm

Gibbs sampling and the Metropolis algorithm are
special cases of Metropolis-Hastings.

Suppose we wish to sample from p(u, v).

We come up with two proposal distributions, qu(u|u′, v′)
and qv(v|u

′, v′). Notice that they can depend on the
other variable, and do not need to be symmetric as in
the Metropolis algorithm.
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Metropolis-Hastings Algorithm

1. Update u sample:
(a) Sample u ∼ qu(u|ut, vt).
(b) Compute

r =
p(u, vt)qu(ut|u, vt)

p(ut, vt)qu(u|ut, vt)
.

(c) Set

ut+1 =

{

u with prob min(1, r),
ut with prob 1−min(1, r).
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Metropolis-Hastings Algorithm

2. Update v sample:
(a) Sample v ∼ qv(v|u

t+1, vt).
(b) Compute

r =
p(ut+1, v)qv(v

t|ut+1, v)

p(ut+1, vt)qv(v|vt+1, vt)
.

(c) Set

vt+1 =

{

v with prob min(1, r),
vt with prob 1−min(1, r).
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Metropolis-Hastings Algorithm

Just like Metropolis algorithm, but the acceptance ratio

r =
p(u, vt)qu(ut|u, vt)

p(ut, vt)qu(u|ut, vt)

contains an extra factor

qu(ut|u, vt)

qu(u|ut, vt)
.

If u is much more likely to be reached from ut than vice
versa, downweight the probability of acceptance (to
avoid over-representing u).
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Metropolis versus M-H

If qu is symmetric,

qu(u|u′, v) = qu(u′|u, v),

then the correction factor

qu(ut|u, vt)

qu(u|ut, vt)

is 1, so acceptance probability is the same as the
Metropolis algorithm.

That is, Metropolis is a special case of
Metropolis-Hastings.
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Metropolis versus Gibbs

If qu is the full conditional distribution of u given v,

qu(u|u′, v) = p(u|v),

so the acceptance ratio is

r =
p(u, vt)qu(ut|u, vt)

p(ut, vt)qu(u|ut, vt)

=
p(u, vt)p(ut|vt)

p(ut, vt)p(u|vt)

=
p(u|vt)p(vt)p(ut|vt)

p(ut|vt)p(vt)p(u|vt)

= 1.
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Metropolis versus Gibbs

That is, if we propose a value from the full conditional
distribution, we accept it with probability 1.

So Gibbs sampling is a special case of
Metropolis-Hastings.
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Gibbs plus Metropolis plus MH

Notice that we can choose different proposal
distributions for different variables u, v, . . ..

Since Metropolis and Gibbs correspond to specific
choices of the proposal distribution, we can easily
combine these algorithms:

For some variables, full conditional distributions
might be available (typically, because of a conjugate
prior for that variable), and we can do Gibbs
sampling.
For some variables, they are not available, but we
can choose an alternative proposal distribution.
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Markov Chain Monte Carlo

The transition probability matrix of a Markov chain
determines the state evolution:

Aij = Pr(xt+1 = j|xt = i).

Recall that a distribution over states
pt(x)′ = (Pr(xt = 1), . . . ,Pr(xt = N)) evolves as

p′t+1 = p′tA.

A stationary distribution p on X satisfies p′A = p′.
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Markov Chain Monte Carlo

An ergodic Markov chain is irreducible (no islands) and
aperiodic. It always has a unique stationary distribution:
for all p0,

p′0A
t → p.

An ergodic MC mixes exponentially: for some C, τ and
stationary distribution p,

‖p′0A
t − p‖1 ≤ Ce−t/τ .
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Markov Chain Monte Carlo

If p satisfies the detailed balance equations

piAij = pjAji,

then p is a stationary distribution, and the chain is called
reversible:

Pr(xt = i, xt+1 = j) = Pr(xt = j, xt+1 = i).
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Metropolis-Hastings

We’ll show that the distribution p and the transition
probabilities A of Metropolis-Hastings satisfy the
detailed balance equations

piAij = pjAji,

and hence p is the stationary distribution.

Thus, if the Markov chain is ergodic, it converges to p,
and in particular

T∑

t=τ

f(xt)→ Epf.

For simplicity, we’ll consider a single variable update.
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Metropolis-Hastings

MH proposal to move from i to j is accepted with probability

a(i, j) = min

(

1,
p(j)q(i|j)

p(i)q(j|i)

)

.

Thus,

piAij = piq(j|i) min

(

1,
p(j)q(i|j)

p(i)q(j|i)

)

= pjq(i|j) min

(
piq(j|i)

pjq(i|j)
, 1

)

= pjAji.

So p is a stationary distribution.
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Metropolis-Hastings

Will the distribution converge to the stationary
distribution?

When is the Markov chain ergodic?

For instance, if p is continuous on R
d and the proposal

distribution q(x′|x) is a Gaussian centered at the current
value, that is enough.
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Metropolis-Hastings

There are cases where we do not have an ergodic
Markov chain. For example, consider Gibbs sampling in
a directed graphical model

X1 → S ← X2,

where X1, X2 are outcomes of coin tosses and S is the
indicator for X1 = X2.

In such cases, we can update blocks of variables at
once: do exact inference for the block in a Gibbs
sampling step.
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Metropolis-Hastings

The mixing time of the Markov chain (the time constant
in the exponential convergence to the stationary
distribution) is of crucial importance in practice, but
often we do not have useful upper bounds on the
mixing time.
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