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Key ideas of this lecture

Variational versus sampling methods

Examples of algorithms:
Loopy belief propagation
Mean field algorithm

Graphical model exponential families
Examples: Ising model; Gaussian MRF.
Mean parameters, marginal polytope.
Mean ↔ natural parameters
Conjugate duality
Variational representation

Mean field algorithm
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Inference

Consider a graphical model (say undirected):

p(x) =
1

Z

∏

C∈C

ψC(xC).

The inference problem:

Given observations xE

of variables in an evidence set, E ⊂ V,

and a set of variables F ⊂ V,

. . . find p(xF |xE = x̄E).
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Maximizing a posteriori Probability

Consider a graphical model (say undirected):

p(x) =
1

Z

∏

C∈C

ψC(xC).

Maximize a posteriori probability:

Given observations xE

of variables in an evidence set, E ⊂ V,

. . . find arg max
x

p(x|xE = x̄E).
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Variational Methods

Represent quantity of interest as solution to (or value
of) an optimization problem.

Then approximate the optimization problem:
Approximate the constraint set.
Approximate the criterion.

CS281A/Stat241A Lecture 23 – p. 5/51



Sampling versus Variational Methods

Sampling Methods:
Are asymptotically exact.

But mixing can be slow.

Variational Methods:

Are deterministic, and typically fast.

But are approximations, and the approximation might
be poor.
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Examples: Loopy Belief Propagation

Recall Belief Propagation for trees:
1. Incorporate the evidence through an evidence

potential:

ψE(xi) =

{

δ(xi, x̄i) if i ∈ E,
1 otherwise.

2. Pass messages (potentials) along the edge from j to
i of the form

mj,i(xi) =
∑

xj



ψE(xj)ψ(xi, xj)
∏

k∈N(j)\{i}

mk,j(xj)



 ,

where N(j) = {k : {k, j} ∈ E}.
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Examples: Loopy Belief Propagation

3. Pass messages (potentials) along the edge from j to i
of the form

mj,i(xi) =
∑

xj



ψE(xj)ψ(xi, xj)
∏

k∈N(j)\{i}

mk,j(xj)



 ,

where N(j) = {k : {k, j} ∈ E}. This corresponds to the
potential obtained from eliminating the subtree rooted at
j and away from i.

4. Follow the protocol:
Node j sends message mj,i to node i iff it has received
all messages mk,j for k ∈ N(j) \ {i}.
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Examples: Loopy Belief Propagation

5. Calculate

p(xi|x̄E) =
1

Z
ψE(xi)

∏

k∈N(i)

mk,i(xi).
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Examples: Loopy Belief Propagation

Instead of the protocol:
Node j sends message mj,i to node i iff it has
received all messages mk,j for k ∈ N(j) \ {i}

Consider:

1. m(0)
j,i (xi) = 1 for all {i, j} ∈ E .

2. At iteration t = 1, 2, . . .,

m
(t)
j,i (xi) =

∑

xj



ψE(xj)ψ(xi, xj)
∏

k∈N(j)\{i}

m
(t−1)
k,j (xj)



 .
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Examples: Loopy Belief Propagation

Node j sends message mj,i to node i iff it has
received all messages mk,j for k ∈ N(j) \ {i}

m
(t)
j,i (xi) =

∑

xj



ψE(xj)ψ(xi, xj)
∏

k∈N(j)\{i}

m
(t−1)
k,j (xj)



 .

These protocols are equivalent for trees:

By induction (working inwards from the leaves), we can
see that, for t at least as large as the depth of the
subtree rooted at j and away from i,

m
(t)
j,i (xi) = mj,i(xi).
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Examples: Loopy Belief Propagation

1. m(0)
j,i (xi) = 1 for all {i, j} ∈ E .

2. At iteration t = 1, 2, . . .,

m
(t)
j,i (xi) =

∑

xj



ψE(xj)ψ(xi, xj)
∏

k∈N(j)\{i}

m
(t−1)
k,j (xj)



 .

This protocol makes sense for arbitrary graphs: pretend
that the graph is a tree.

If there are a few long cycles, we might expect this to
work well.
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Examples: Mean Field Algorithm

Consider a discrete undirected model (Markov random
field):

xu ∈ Xu |Xu| <∞,

lnψu,v(xu, xv) =
∑

i,j

θu,i;v,j1[xu = i]1[xv = j]

= θu;v(xu, xv),

lnψv(xv) =
∑

i

θv,i1[xv = i]

= θv(xv).

p(x) ∝ exp





∑

v∈V

θv(xv) +
∑

{u,v}∈E

θu,v(xu, xv)



 .
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Examples: Mean Field Algorithm

Consider Gibbs sampling in the Ising model, a discrete
MRF with xv ∈ {0, 1}:

X
(t+1)
v =

{

1 if U ≤ 1/
(

1 + exp
(

−θv −
∑

u∈N(v) θv,uX
(t)
u

))

,

0 otherwise,

where U is chosen uniformly from [0, 1].
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Examples: Mean Field Algorithm

Suppose that
∑

u∈N(v)

θv,uX
(t)
u is close to its expectation.

For example, if the set N(v) is large, this is true with
high probability.

Then we could replace the random X
(t)
v values with

their expectations, µv, to obtain

µv :=
1

1 + exp
(

−θv −
∑

u∈N(v) θv,uµu

) .

This is called the naive mean field algorithm for the
Ising model.

It can also be viewed as message passing.
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Issues to Consider

For message passing algorithms like loopy belief
propagation or the mean field algorithm,

Do these message passing updates have a fixed point?

Is it (close to) the desired conditional probability?

Do the updates converge to the fixed point?

We’ll see that these algorithms can be viewed as methods
for solving approximate versions of variational formulations
of the inference problem.
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Graphical Models: Exponential Families

Example: Ising Model (xv ∈ {0, 1}).

p(x) = exp





∑

v∈V

θvxv +
∑

{u,v}∈E

θu,vxuxv −A(θ)



 .

for θ ∈ Ω = {θ : A(θ) <∞} = R
|V |+|E|.

Regular (Ω is open.)

Minimal (no p-invariant subspace of Ω.)
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Graphical Models: Exponential Families

Generalization of Ising: pairwise MRF
(xv ∈ {0, 1, . . . , r − 1}).

p(x) = exp

(

∑

v∈V

∑

i

θv,i1[xv = i]

+
∑

{u,v}∈E

∑

i,j

θu,i;v,j1[xu = i]1[xv = j] − A(θ)



 ,

for θ ∈ Ω = {θ : A(θ) <∞} = R
r|V |+r2|E|.

Regular (Ω is open.)

Non-minimal or overcomplete.
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Graphical Models: Exponential Families

Special case: Hidden Markov model with y observed.
θt,i corresponds to log p(yt|xt = i).
θt,i;t+1,j corresponds to log p(xt+1 = j|xt = i).

Another generalization: Higher order interactions, that
is, k-cliques, with k > 2.
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Graphical Models: Exponential Families

Example: Gaussian Markov random field.

For an undirected graph (V,E), define the sufficient
statistics xv, x2

v, xuxv for v ∈ V and {u, v} ∈ E.

p(x) = exp

(

〈θ, x〉 +
1

2

〈

Θ, xx′
〉

− A(θ,Θ)

)

,

where the second inner product is
〈

Θ, xx′
〉

= tr(Θxx′).
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Graphical Models: Exponential Families

Example: Gaussian Markov random field.

Here, the natural parameters are a vector θ ∈ R
|V | and a

symmetric positive definite matrix Θ ∈ R
|V |×|V |, with

Θu,v = 0 if {u, v} 6∈ E.

The natural parameters corresponding to x2
v and xuxv

correspond to the non-zero entries of the precision
matrix Θ.

In this case, the parameters are restricted to

Ω = {(θ,Θ) : A(θ,Θ) <∞} = {(θ,Θ) : Θ < 0},

where the Θ are symmetric matrices with zero entries
where edges are missing.
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Mean Parameters

Fix a density p defined with respect to a reference
distribution h.
For a sufficient statistic φα, define the mean parameter µα

as

µα = Ep[φα(X)] =

∫

φα(x)p(x)h(dx).

For d sufficient statistics, we can define the d-vector of
mean parameters, µ = (µ1, . . . , µd).
Define the set M of realizable mean parameters as

M =
{

µ ∈ R
d : ∃p s.t. ∀α, Ep[φα(X)] = µα

}

if X is finite: = co{φ(x) : x ∈ X},

where co represents the convex hull.
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Mean Parameters: Ising Model

p(x) = exp





∑

v∈V

θvxv +
∑

{u,v}∈E

θu,vxuxv −A(θ)



 .

The vector of sufficient statistics is

φ(x) = (xv : v ∈ V, xuxv : {u, v} ∈ E).

and the mean parameters are

µv = Pr(Xv = 1),

µu,v = Pr(Xu = Xv = 1).

CS281A/Stat241A Lecture 23 – p. 27/51



Mean Parameters: Ising Model

The vector of sufficient statistics is

φ(x) = (xv : v ∈ V, xuxv : {u, v} ∈ E).

Then M is the marginal polytope,

M = co{φ(x) : x ∈ {0, 1}|V |},

the convex hull of the sufficient statistic values.
It is the set of achievable singleton and pairwise marginal
probabilities.
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Mean Parameters: Gaussian MRF

p(x) = exp

(

〈θ, x〉 +
1

2

〈

Θ, xx′
〉

− A(θ,Θ)

)

.

The mean parameters are (µ,Σ), where

µ = E[X], Σ = E[XX ′].

Easy to check that Σ − µµ′ ≥ 0 is necessary and sufficient.
That is,

M =
{

(µ,Σ) : Σ − µµ′ ≥ 0
}

.

Notice that M is again convex.
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Mean↔ Natural Parameters

Recall:

1.

∇A(η) = Eφ(x),

∇2A(η) = Varφ(x).

2. For a regular family, the gradient mapping

∇A : Ω → M

is one-to-one iff the representation is minimal.
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Mean↔ Natural Parameters

3. The forward mapping, θ 7→ µ, corresponds to computing
expectations of sufficient statistics.

4. The reverse mapping, µ 7→ θ, corresponds to computing
a maximum likelihood estimate of θ for sample average
µ.

5. The maximum entropy p satisfying a constraint on µ is
in the exponential family.
In particular, ∇A : Ω → M is onto the interior of M.
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Conjugate Duality: Definition

Given a function A : Ω → R, the conjugate dual is

A∗(µ) = sup
θ∈Ω

(〈µ, θ〉 −A(θ)) ,

where µ ∈ R
d for Ω ⊆ R

d.

A∗ is convex (a maximum of linear functions).

Think of A∗ : R
d → R ∪ {∞}.

If A is convex (+ . . .), A∗∗ = A. We can think of A∗ as
capturing the shape of a convex A through the locations
of the tangent planes to its epigraph.

If A is log normalization for an exponential family,
〈µ, θ〉 −A(θ) is (constant plus) log likelihood with sample
average µ and natural parameter θ.
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Conjugate Duality

Theorem:

1. For µ in the interior of M, let θ(µ) satisfy

Epθ(µ)[φ(X)] = ∇A(θ(µ)) = µ.

Then

A∗(µ) = −H(pθ(µ)) =

∫

X
log pθ(µ)(x)pθ(µ)(x)h(dx).

2. For µ outside the closure of M,

A∗(µ) = ∞.
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Conjugate Duality

Theorem:

3. For θ ∈ Ω, we have the variational representation

A(θ) = sup
µ∈M

(〈θ, µ〉 −A∗(µ)) .

4. For θ ∈ Ω,

A(θ) = 〈θ, µ(θ)〉 − A∗(µ(θ)),

where
µ(θ) := Epθ

[φ(X)] = ∇A(θ).
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Conjugate Duality

−A∗(µ) is the value of the maximum entropy problem for
mean parameter µ

−A∗(µ) = −∞ for infeasible µ.

Forward mapping: ∇A : Ω → M.

Backward mapping: ∇A∗ : int(M) → Ω.
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Conjugate Duality: Bernoulli

X ∈ {0, 1},

φ(x) = x,

p(x) = exp(θx− A(θ)),

A(θ) = log(exp(0) + exp(θ)) = log(1 + exp(θ)),

Ω = {θ ∈ R : A(θ) <∞} = R.
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Conjugate Duality: Bernoulli

A(θ) = log(1 + exp(θ)),

A∗(µ) = sup
θ∈R

(θµ− log(1 + exp(θ))) .

Solving for the maximizing θ gives

µ =
exp(θ)

1 + exp(θ)

θ = log
µ

1 − µ
for µ ∈ (0, 1),

A∗(µ) = µ log
µ

1 − µ
− log

1

1 − µ

= µ log µ+ (1 − µ) log(1 − µ) = −H(pθ(µ)).
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Conjugate Duality: Bernoulli

And if µ is outside [0, 1]?

d

dθ
µθ = µ,

d

dθ
log(1 + exp(θ)) =

exp(θ)

1 + exp(θ)
∈ (0, 1).

So for µ outside [0, 1],

A∗(µ) = sup
θ∈R

(θµ− log(1 + exp(θ))) = ∞.

CS281A/Stat241A Lecture 23 – p. 40/51



Key ideas of this lecture

Variational versus sampling methods

Examples of algorithms:
Loopy belief propagation
Mean field algorithm

Graphical model exponential families
Examples: Ising model; Gaussian MRF.
Mean parameters, marginal polytope.
Mean ↔ natural parameters
Conjugate duality
Variational representation

Mean field algorithm

CS281A/Stat241A Lecture 23 – p. 41/51



Variational Representation ofA(θ)

For θ ∈ Ω,

A(θ) = sup
µ∈M

(〈θ, µ〉 −A∗(µ))

= sup
µ∈M

(

〈θ, µ〉 +H(pθ(µ))
)

.

Solving this optimization problem gives the value A(θ)
and the mean parameters µ = Eθ[φ(X)].

These correspond to the expectation of the sufficient
statistics. (conditional expectation, if evidence has been
incorporated into θ).

For example, for discrete pairwise MRFs, they give the
marginal singleton and pairwise distributions.
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Variational Representation ofA(θ)

A(θ) = sup
µ∈M

(

〈θ, µ〉 +H(pθ(µ))
)

.

We can approximate this optimization problem to obtain
a simpler problem:

Approximate M by a simpler set M̂.
M̂ ⊂ M gives a lower bound.
M ⊂ M̂ gives an upper bound.
Approximate H(pθ(µ)) by something simpler.
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Examples: Mean Field Algorithm

Consider an Ising model (binary pairwise Markov random
field):

xu ∈ {0, 1},

ψu,v(xu, xv) = θu,vxuxv,

ψv(xv) = θvxv.

p(x) ∝ exp





∑

v∈V

θvxv +
∑

{u,v}∈E

θu,vxuxv



 .

µu,v = Pr(xu = xv = 1),

µv = Pr(xv = 1).
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Mean Field Algorithm

We approximate M with a smaller set:

M̂ = {µ : µu,v = µuµv} .

This adds independence, so M̂ ⊂ M.

Thus, we can represent the distribution as

p(x; θ) =
∏

v∈V

pv(xv; θ).

Hence, the entropy is

H(pθ(µ)) = E log p(X; θ) =
∑

v∈V

E log pv(Xv; θ)

=
∑

v∈V

(µv log µv + (1 − µv) log(1 − µv)) .
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Mean Field Algorithm

So we have

A(θ) = sup
µ∈M̂

(

〈θ, µ〉 +H(pθ(µ))
)

= sup
µ∈M̂





∑

v∈V

θvµv +
∑

{u,v}∈E

θu,vµuµv

−
∑

v∈V

(µv log µv + (1 − µv) log(1 − µv))

)

.
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Mean Field Algorithm

We can solve this with coordinate maximization:
Calculate gradient of criterion w.r.t. µv:

θv +
∑

u∈N(v)

θu,vµu − (1 + log µv − 1 − log(1 − µv))

= θv +
∑

u∈N(v)

θu,vµu − log
µv

1 − µv
.

Setting to zero gives

µv =
1

1 + exp
(

−θv −
∑

u∈N(v) θu,vµu

) ,

which is the mean field update.
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Mean Field Algorithm

Summary:

We approximate M with a smaller set:

M̂ = {µ : µu,v = µuµv} .

Solve for A(θ) and µ with coordinate maximization:

µv :=
1

1 + exp
(

−θv −
∑

u∈N(v) θu,vµu

) .
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Announcements

My office hours:
Thursday Nov 19 (today), 1-2pm, in 723 SD Hall.
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