CS281A/Stat241A Lecture 24 Variational Methods

Peter Bartlett

Announcements

- Poster sessions will be on Tue Dec 1 (Stat241A) and Thu Dec 3 (CS281A), here, 11-12:30. Please attend both sessions.
- Project reports are due at 5pm on Friday December 4. In the box outside 723 SD Hall. This deadline is firm.

Key ideas of this lecture

- Variational approach: Inference as optimization.
- Mean field algorithm.
- Approximate \mathcal{M} with smaller set $\hat{\mathcal{M}}$.
- Coordinate ascent is mean field algorithm.
- $\hat{\mathcal{M}}$ is not convex.
- Equivalent to finding closest (KL) μ in $\hat{\mathcal{M}}$.
- Example: Gaussian mean field.
- Loopy belief propagation.
- Approximate \mathcal{M} with larger tree-based $\hat{\mathcal{M}}$.
- Approximate $H(\mu)$ with $H_{\text {Bethe }}(\mu)$.
- Updates to find stationary points of Lagrangian: Loopy belief propagation.

Variational Methods

- Represent quantity of interest as solution to (or value of) an optimization problem.
- Then approximate the optimization problem:
- Approximate the constraint set.
- Approximate the criterion.

Variational Approach: Ingredients

1. Exponential family representation of graphical model.
2. Mean parameters μ correspond to desired marginal (conditional) clique probabilities.
3. Realizable mean parameter set \mathcal{M} (marginal polytope).
4. Inference as optimization problem via conjugate dual representation of log normalization.

Variational Approach: Ingredients

Exponential family:

$$
p(x)=h(x) \exp (\langle\theta, \phi(x)\rangle-A(\theta)) .
$$

Example: pairwise MRF $\left(x_{v} \in\{0,1, \ldots, r-1\}\right)$.

$$
\begin{aligned}
p(x)=\exp & \left(\sum_{v \in V} \sum_{i} \theta_{v, i} \mathbf{1}\left[x_{v}=i\right]\right. \\
& \left.+\sum_{\{u, v\} \in E} \sum_{i, j} \theta_{u, i ; v, j} \mathbf{1}\left[x_{u}=i\right] \mathbf{1}\left[x_{v}=j\right]\right),
\end{aligned}
$$

for $\theta \in \Omega=\{\theta: A(\theta)<\infty\}=\mathbb{R}^{r|V|+r^{2}|E|}$.

Variational Approach: Ingredients

1. Exponential family representation of graphical model.
2. Mean parameters μ correspond to desired marginal (conditional) clique probabilities.
3. Realizable mean parameter set \mathcal{M} (marginal polytope).
4. Inference as optimization problem via conjugate dual representation of log normalization.

Variational Approach: Ingredients

- Define the set \mathcal{M} of realizable mean parameters (marginal polytope) as

$$
\begin{aligned}
\mathcal{M} & =\left\{\mu \in \mathbb{R}^{d}: \exists p \text { s.t. } \forall \alpha, \mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\mu_{\alpha}\right\} \\
& =\operatorname{co}\{\phi(x): x \in \mathcal{X}\}
\end{aligned}
$$

if \mathcal{X} is finite:
where co represents the convex hull.

- Example: pairwise MRF ($x_{v} \in\{0,1, \ldots, r-1\}$).

$$
\begin{aligned}
\mu_{v} & =\mathbb{E}_{p} \mathbf{1}\left[X_{v}=i\right]=\operatorname{Pr}\left(X_{v}=i\right) \\
\mu_{u, v} & =\mathbb{E}_{p} \mathbf{1}\left[x_{u}=i\right] \mathbf{1}\left[x_{v}=j\right]=\operatorname{Pr}\left(X_{u}=i, X_{v}=j\right) .
\end{aligned}
$$

Variational Approach: Ingredients

1. Exponential family representation of graphical model.
2. Mean parameters μ correspond to desired marginal (conditional) clique probabilities.
3. Realizable mean parameter set \mathcal{M} (marginal polytope).
4. Inference as optimization problem via conjugate dual representation of log normalization.

Variational Approach: Ingredients

The conjugate dual of the \log normalization A is

$$
A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\mu, \theta\rangle-A(\theta))=-H\left(p_{\theta(\mu)}\right),
$$

where $\mu \in \mathbb{R}^{d}$ for $\Omega \subseteq \mathbb{R}^{d}$ and $H(p)$ is the entropy.
For $\theta \in \Omega$,

$$
\begin{aligned}
A(\theta) & =\sup _{\mu \in \mathcal{M}}\left(\langle\theta, \mu\rangle-A^{*}(\mu)\right) \\
& =\sup _{\mu \in \mathcal{M}}\left(\langle\theta, \mu\rangle+H\left(p_{\theta(\mu)}\right)\right) .
\end{aligned}
$$

Variational Approach: Ingredients

$$
A(\theta)=\sup _{\mu \in \mathcal{M}}\left(\langle\theta, \mu\rangle+H\left(p_{\theta(\mu)}\right)\right) .
$$

- Solving this optimization problem gives the value $A(\theta)$ and the mean parameters $\mu=\mathbb{E}_{\theta}[\phi(X)]$.
- These correspond to the expectation of the sufficient statistics. (conditional expectation, if evidence has been incorporated).
- For example, for discrete pairwise MRFs, they give the marginal singleton and pairwise distributions.

Variational Methods

- Represent quantity of interest as solution to (or value of) an optimization problem:

$$
A(\theta)=\sup _{\mu \in \mathcal{M}}\left(\langle\theta, \mu\rangle+H\left(p_{\theta(\mu)}\right)\right) .
$$

- Then approximate the optimization problem:
- Approximate the constraint set, \mathcal{M}.
- Approximate the criterion, $\langle\theta, \mu\rangle+H\left(p_{\theta(\mu)}\right)$.

Key ideas of this lecture

- Variational approach: Inference as optimization.
- Mean field algorithm.
- Approximate \mathcal{M} with smaller set $\hat{\mathcal{M}}$.
- Coordinate ascent is mean field algorithm.
- $\hat{\mathcal{M}}$ is not convex.
- Equivalent to finding closest (KL) μ in $\hat{\mathcal{M}}$.
- Example: Gaussian mean field.
- Loopy belief propagation.
- Approximate \mathcal{M} with larger tree-based $\hat{\mathcal{M}}$.
- Approximate $H(\mu)$ with $H_{\text {Bethe }}(\mu)$.
- Updates to find stationary points of Lagrangian: Loopy belief propagation.

Mean Field Algorithm

Consider the Ising model:

$$
\begin{aligned}
x_{u} & \in\{0,1\} . \\
\psi_{u, v}\left(x_{u}, x_{v}\right) & =\exp \left(\theta_{u, v} x_{u} x_{v}\right), \\
\psi_{v}\left(x_{v}\right) & =\exp \left(\theta_{v} x_{v}\right) . \\
p(x) & =\exp \left(\sum_{v \in V} \theta_{v} x_{v}+\sum_{\{u, v\} \in E} \theta_{u, v} x_{u} x_{v}-A(\theta)\right) .
\end{aligned}
$$

Mean Field Algorithm

- Consider Gibbs sampling, and replace X_{u} by its expectation:

$$
\mu_{v}:=\frac{1}{1+\exp \left(-\theta_{v}-\sum_{u \in N(v)} \theta_{v, u} \mu_{u}\right)} .
$$

- Naive mean field algorithm for the Ising model.

Variational Interpretation

- Consider the optimization problem

$$
A(\theta)=\sup _{\mu \in \mathcal{M}}\left(\langle\theta, \mu\rangle+H\left(p_{\theta(\mu)}\right)\right) .
$$

- If we approximate \mathcal{M} with the smaller set:

$$
\hat{\mathcal{M}}=\left\{\mu \in \mathcal{M}: \mu_{u, v}=\mu_{u} \mu_{v}\right\} .
$$

- Then we have

$$
\begin{aligned}
A(\theta) \geq \sup _{\mu \in \hat{\mathcal{M}}}(& \sum_{v \in V} \theta_{v} \mu_{v}+\sum_{\{u, v\} \in E} \theta_{u, v} \mu_{u} \mu_{v} \\
& \left.-\sum_{v \in V}\left(\mu_{v} \log \mu_{v}+\left(1-\mu_{v}\right) \log \left(1-\mu_{v}\right)\right)\right) .
\end{aligned}
$$

Variational Interpretation

- Coordinate ascent in μ_{v} gives

$$
\mu_{v}=\frac{1}{1+\exp \left(-\theta_{v}-\sum_{u \in N(v)} \theta_{u, v} \mu_{u}\right)},
$$

which is the mean field update.

- The criterion is strictly concave in each coordinate μ_{v}.
- But it is not a concave maximization problem...

Mean Field $\hat{\mathcal{M}}$ is Not Convex

$$
\begin{aligned}
& \mathcal{M}=\operatorname{co}\{\phi(x): x \in \mathcal{X}\}, \\
& \hat{\mathcal{M}}=\left\{\mu \in \mathcal{M}: \mu_{u, v}=\mu_{u} \mu_{v}\right\} .
\end{aligned}
$$

- $\hat{\mathcal{M}} \subseteq \mathcal{M}$.
- $\phi(x) \in \hat{\mathcal{M}}$:

Place all mass on x. For such a distribution, $\mu_{v} \in\{0,1\}$, and so $\mu_{u, v}=\mu_{u} \mu_{v}$.

- But \mathcal{M} is the convex hull of these points in $\hat{\mathcal{M}}$.
- So if $\hat{\mathcal{M}}$ is a proper subset of \mathcal{M}, it must be nonconvex.

Key ideas of this lecture

- Variational approach: Inference as optimization.
- Mean field algorithm.
- Approximate \mathcal{M} with smaller set $\hat{\mathcal{M}}$.
- Coordinate ascent is mean field algorithm.
- $\hat{\mathcal{M}}$ is not convex.
- Equivalent to finding closest (KL) μ in $\hat{\mathcal{M}}$.
- Example: Gaussian mean field.
- Loopy belief propagation.
- Approximate \mathcal{M} with larger tree-based $\hat{\mathcal{M}}$.
- Approximate $H(\mu)$ with $H_{\text {Bethe }}(\mu)$.
- Updates to find stationary points of Lagrangian: Loopy belief propagation.

Mean Field and KL-Divergence

For the exponential family

$$
p(x)=h(x) \exp (\langle\theta, \phi(x)\rangle-A(\theta)),
$$

consider two parameters θ^{1} and θ^{2}.
The KL-divergence between the distributions $p_{\theta^{1}}$ and $p_{\theta^{2}}$ (with mean parameters μ^{1} and μ^{2}) is

$$
\begin{aligned}
D\left(\theta^{1} ; \theta^{2}\right) & =\mathbb{E}_{\theta^{1}} \log \frac{p_{\theta^{1}}(X)}{p_{\theta^{2}}(X)} \\
& =\left\langle\mu^{1}, \theta^{1}-\theta^{2}\right\rangle-A\left(\theta^{1}\right)+A\left(\theta^{2}\right) \\
& =A\left(\theta^{2}\right)-\left(A\left(\theta^{1}\right)+\left\langle\mu^{1}, \theta^{2}-\theta^{1}\right\rangle\right) .
\end{aligned}
$$

Mean Field and KL-Divergence

$$
D\left(\theta^{1} ; \theta^{2}\right)=A\left(\theta^{2}\right)-\left(A\left(\theta^{1}\right)+\left\langle\mu^{1}, \theta^{2}-\theta^{1}\right\rangle\right)
$$

Using conjugate duality,

$$
\begin{aligned}
A^{*}\left(\mu^{1}\right) & =\sup _{\theta \in \Omega}\left(\left\langle\mu^{1}, \theta\right\rangle-A(\theta)\right) \\
& =\left\langle\mu^{1}, \theta^{1}\right\rangle-A\left(\theta^{1}\right)
\end{aligned}
$$

we have

$$
D\left(\theta^{1} ; \theta^{2}\right)=A\left(\theta^{2}\right)-\left(\left\langle\mu^{1}, \theta^{2}\right\rangle-A^{*}\left(\mu^{1}\right)\right) .
$$

Mean Field and KL-Divergence

$$
D\left(\theta^{1} ; \theta^{2}\right)=A\left(\theta^{2}\right)-\left(\left\langle\mu^{1}, \theta^{2}\right\rangle-A^{*}\left(\mu^{1}\right)\right)
$$

So choosing $\mu \in \hat{\mathcal{M}}$ to maximize

$$
\left\langle\mu^{1}, \theta\right\rangle-A(\theta)
$$

corresponds to choosing the distribution μ from the approximating set $\hat{\mathcal{M}}$ to minimize the KL-divergence

$$
D(\mu ; \theta)=A(\theta)-\left(\langle\mu, \theta\rangle-A^{*}(\mu)\right) .
$$

That is, the mean field algorithm aims for the best approximation (in terms of KL-divergence) in $\hat{\mathcal{M}}$.

Key ideas of this lecture

- Variational approach: Inference as optimization.
- Mean field algorithm.
- Approximate \mathcal{M} with smaller set $\hat{\mathcal{M}}$.
- Coordinate ascent is mean field algorithm.
- $\hat{\mathcal{M}}$ is not convex.
- Equivalent to finding closest (KL) μ in $\hat{\mathcal{M}}$.
- Example: Gaussian mean field.
- Loopy belief propagation.
- Approximate \mathcal{M} with larger tree-based $\hat{\mathcal{M}}$.
- Approximate $H(\mu)$ with $H_{\text {Bethe }}(\mu)$.
- Updates to find stationary points of Lagrangian: Loopy belief propagation.

Gaussian Mean Field

- Another mean field example: Gaussian MRF.
- Mean parameters:

$$
\begin{aligned}
\mu & =\mathbb{E} X \in \mathbb{R}^{d}, \\
\Sigma & =\mathbb{E} X X^{\prime} \in \mathcal{S}_{+}^{d} .
\end{aligned}
$$

- Approximate with disconnected graph (empty edge set):

$$
\begin{array}{r}
\hat{\mathcal{M}}=\left\{(\mu, \Sigma): \Sigma-\mu \mu^{\prime}=\operatorname{diag}\left(\Sigma-\mu \mu^{\prime}\right)\right. \\
\left.\Sigma-\mu \mu^{\prime} \geq 0\right\} .
\end{array}
$$

Gaussian Mean Field

- Entropy for a Gaussian is

$$
\frac{1}{2} \ln \left((2 \pi e)^{d}\left|\Sigma-\mu \mu^{\prime}\right|\right) .
$$

Since covariance matrix is diagonal, we have

$$
A^{*}(\mu, \Sigma)=-\frac{d}{2} \ln (2 \pi e)-\frac{1}{2} \sum_{i=1}^{d} \ln \left(\Sigma_{i i}-\mu_{i}^{2}\right) .
$$

- Optimization problem becomes

$$
\max _{(\mu, \Sigma) \in \hat{\mathcal{M}}}\left(\langle\theta, \mu\rangle+\langle\Theta, \Sigma\rangle+\frac{1}{2} \sum_{i=1}^{d} \ln \left(\Sigma_{i i}-\mu_{i}^{2}\right)\right) .
$$

Gaussian Mean Field

- Calculus shows that fixed point satisfies, for all $i \in V$,

$$
\begin{aligned}
\Theta_{i i} & =-\frac{1}{2\left(\mu_{i i}-\mu_{i}^{2}\right)}, \\
\frac{\mu_{i}}{2\left(\mu_{i i}-\mu_{i}^{2}\right)} & =\theta_{i}+\sum_{j \in N(i)} \theta_{i j} \mu_{j} .
\end{aligned}
$$

- Iteration

$$
\mu_{i}:=-\frac{1}{\Theta_{i i}}\left(\theta_{i}+\sum_{j \in N(i)} \Theta_{i j} \mu_{j}\right)
$$

solves these fixed point equations (provided $-\Theta$ is diagonally dominant):
corresponds to Gauss-Seidel iteration.

Key ideas of this lecture

- Variational approach: Inference as optimization.
- Mean field algorithm.
- Approximate \mathcal{M} with smaller set $\hat{\mathcal{M}}$.
- Coordinate ascent is mean field algorithm.
- $\hat{\mathcal{M}}$ is not convex.
- Equivalent to finding closest (KL) μ in $\hat{\mathcal{M}}$.
- Example: Gaussian mean field.
- Loopy belief propagation.
- Approximate \mathcal{M} with larger tree-based $\hat{\mathcal{M}}$.
- Approximate $H(\mu)$ with $H_{\text {Bethe }}(\mu)$.
- Updates to find stationary points of Lagrangian: Loopy belief propagation.

Loopy Belief Propagation

Consider a pairwise MRF:

- Graph $G=(V, E)$.
- $X_{v} \in \mathcal{X}:=\{0, \ldots, r-1\}$ for $v \in V$.
- Sufficient statistics are indicators for singleton and pairwise marginals (nodes and edges):

$$
\begin{aligned}
\mathbf{1}\left[x_{v}=i\right] & v \in V, i \in \mathcal{X} \\
\mathbf{1}\left[x_{u}=i, x_{v}=j\right] & \{u, v\} \in E, i, j \in \mathcal{X}
\end{aligned}
$$

Loopy Belief Propagation

- Exponential representation:

$$
\begin{aligned}
p(x)= & \exp \left(\sum_{v \in V} \sum_{i} \theta_{v, i} \mathbf{1}\left[x_{v}=i\right]\right. \\
& \left.+\sum_{\{u, v\} \in E} \sum_{i, j} \theta_{u, i ; v, \mathbf{j}} \mathbf{1}\left[x_{u}=i\right] \mathbf{1}\left[x_{v}=j\right]\right) \\
= & \exp \left(\sum_{v \in V} \theta_{v}\left(x_{v}\right)+\sum_{\{u, v\} \in E} \theta_{u, v}\left(x_{u}, x_{v}\right)\right),
\end{aligned}
$$

where $\theta_{v}\left(x_{v}\right)=\sum_{i \in \mathcal{X}} \theta_{v, i} \mathbf{1}\left[x_{v}=i\right]$,

$$
\theta_{u, v}\left(x_{u}, x_{v}\right)=\sum_{i, j \in \mathcal{X}} \theta_{u, i ; v, j} \mathbf{1}\left[x_{u}=i\right] \mathbf{1}\left[x_{v}=j\right] .
$$

Loopy Belief Propagation

An alternative protocol for belief propagation in trees:

1. $m_{v, u}^{(0)}\left(x_{u}\right)=1$ for all $\{u, v\} \in \mathcal{E}$.
2. At iteration $t=1,2, \ldots$,

$$
m_{v, u}^{(t)}\left(x_{u}\right)=\sum_{x_{v}} \exp \left(\theta_{v}\left(x_{v}\right)+\theta_{u, v}\left(x_{u}, x_{v}\right)\right) \prod_{w \in N(v) \backslash\{u\}} m_{w, v}^{(t-1)}\left(x_{v}\right)
$$

- This protocol makes sense for arbitrary graphs: pretend that the graph is a tree.
- If there are a few long cycles, we might expect this to work well.

Variational Interpretation

If we

1. Approximate the marginal polytope \mathcal{M} with a tree-based outer bound $\hat{\mathcal{M}}$,
2. Approximate the entropy $-A^{*}(\mu)$ with something tractable (the Bethe approximation),
3. Iteratively update variables to find stationary points of the Lagrangian,
then we arrive at loopy belief propagation.

Mean Parameters

$$
\begin{aligned}
& \mu_{v}\left(x_{v}\right):=\sum_{i \in \mathcal{X}} \mu_{v ; i} \mathbf{1}\left[x_{v}=i\right] \\
& \mu_{u, v}\left(x_{u}, x_{v}\right):=\sum_{i, j \in \mathcal{X}} \mu_{u, i ; v, j} \mathbf{1}\left[x_{u}=i\right] \mathbf{1}\left[x_{v}=j\right] \\
& \mathcal{M}=\left\{\mu: \mu_{v}\left(x_{v}\right)=\sum_{x_{u}, u \neq v} p(x)\right. \\
&\left.\mu_{u, v}\left(x_{u}, x_{v}\right)=\sum_{x_{w}, w \neq u, v} p(x)\right\}
\end{aligned}
$$

Tree-Based Outer Bound on \mathcal{M}

$$
\hat{\mathcal{M}}=\left\{\tau: \tau \geq 0, \sum_{x_{v}} \tau_{v}\left(x_{v}\right)=1, \sum_{x_{u}} \tau_{u, v}\left(x_{u}, x_{v}\right)=\tau_{v}\left(x_{v}\right)\right\} .
$$

- For any G, $\mathcal{M} \subseteq \hat{\mathcal{M}}$.
- If G is a tree, there is a junction tree, so local consistency implies global consistency:
$\hat{\mathcal{M}}=\mathcal{M}$.

Variational Interpretation

1. Approximate the marginal polytope \mathcal{M} with a tree-based outer bound $\hat{\mathcal{M}}$,
2. Approximate the entropy $-A^{*}(\mu)$ with something tractable (the Bethe approximation),
3. Iteratively update variables to find stationary points of the Lagrangian.

Bethe Entropy Approximation

$$
H_{\text {Bethe }}(\mu)=\sum_{v \in V} H_{v}\left(\mu_{v}\right)-\sum_{\{u, v\} \in E} I_{u, v}\left(\mu_{u, v}\right)
$$

where H_{v} is the single node entropy,

$$
H_{v}\left(\mu_{v}\right)=-\sum_{x_{v}} \mu_{v}\left(x_{v}\right) \log \mu_{v}\left(x_{v}\right)
$$

and $I_{u, v}$ is the mutual information between X_{u} and X_{v},

$$
\begin{aligned}
I_{u, v}\left(\mu_{u, v}\right) & =D\left(\mu_{u, v} ; \mu_{u} \mu_{v}\right) \\
& =-\sum_{x_{u}, x_{v}} \mu_{u, v}\left(x_{u}, x_{v}\right) \log \frac{\mu_{u, v}\left(x_{u}, x_{v}\right)}{\mu_{u}\left(x_{u}\right) \mu_{v}\left(x_{v}\right)}
\end{aligned}
$$

Bethe Entropy Approximation

Recall that, if an undirected graph G has a junction tree, then the joint distribution can be expressed as

$$
p(x)=\frac{\prod_{c \in C} p\left(x_{C}\right)}{\prod_{s \in S} p\left(x_{s}\right)},
$$

where C is the set of cliques and S the set of separators.
This implies that if G is a tree, we can write

$$
p(x)=\prod_{v \in V} \mu_{v}\left(x_{v}\right) \prod_{\{u, v\} \in E} \frac{\mu_{u, v}\left(x_{u}, x_{v}\right)}{\mu_{u}\left(x_{u}\right) \mu_{v}\left(x_{v}\right)} .
$$

Bethe Entropy Approximation

If G is a tree,

$$
p(x)=\prod_{v \in V} \mu_{v}\left(x_{v}\right) \prod_{\{u, v\} \in E} \frac{\mu_{u, v}\left(x_{u}, x_{v}\right)}{\mu_{u}\left(x_{u}\right) \mu_{v}\left(x_{v}\right)}
$$

So for a tree, we can write the entropy as

$$
\begin{aligned}
H(\mu) & =-\sum_{x} p(x) \log p(x) \\
& =\sum_{v \in V} H_{v}\left(\mu_{v}\right)-\sum_{\{u, v\} \in E} I_{u, v}\left(\mu_{u, v}\right) \\
& =H_{\text {Bethe }}(\mu) .
\end{aligned}
$$

Bethe Variational Problem

1. Approximate the marginal polytope \mathcal{M} with a tree-based outer bound $\hat{\mathcal{M}}$,
2. Approximate the entropy $-A^{*}(\mu)$ with something tractable (the Bethe approximation).

$$
\max _{\tau \in \mathcal{M}}\left(\langle\theta, \tau\rangle+\sum_{v \in V} H_{v}\left(\mu_{v}\right)-\sum_{\{u, v\} \in E} I_{u, v}\left(\tau_{u, v}\right)\right) .
$$

Variational Interpretation

1. Approximate the marginal polytope \mathcal{M} with a tree-based outer bound $\hat{\mathcal{M}}$,
2. Approximate the entropy $-A^{*}(\mu)$ with something tractable (the Bethe approximation),
3. Iteratively update variables to find stationary points of the Lagrangian.

Lagrangian Formulation

Marginalization constraints:

$$
C_{u, v}\left(x_{v}\right):=\tau_{v}\left(x_{v}\right)-\sum_{x_{u}} \tau_{u, v}\left(x_{u}, x_{v}\right)
$$

Lagrangian:

$$
\begin{aligned}
\mathcal{L}(\tau ; \lambda) & =\langle\theta, \tau\rangle+\sum_{v \in V} H_{v}\left(\mu_{v}\right)-\sum_{\{u, v\} \in E} I_{u, v}\left(\tau_{u, v}\right) \\
& +\sum_{\{u, v\} \in E}\left(\sum_{x_{v}} \lambda_{u, v}\left(x_{v}\right) C_{u, v}\left(x_{v}\right)+\sum_{x_{u}} \lambda_{v, u}\left(x_{u}\right) C_{v, u}\left(x_{u}\right)\right)
\end{aligned}
$$

Lagrangian Formulation

Taking partial derivatives w.r.t. τ_{v} and $\tau_{u, v}$, and setting to 0 gives

$$
\tau_{v}\left(x_{v}\right) \propto \exp \left(\theta_{v}\left(x_{v}\right)\right) \prod_{u \in N(v)} \exp \left(\lambda_{u, v}\left(x_{v}\right)\right)
$$

$\tau_{u, v}\left(x_{u}, x_{v}\right) \propto \exp \left(\theta_{u}\left(x_{u}\right)+\theta_{v}\left(x_{v}\right)+\theta_{u, v}\left(x_{u}, x_{v}\right)\right)$

$$
\times \prod_{w \in N(u) \backslash\{v\}} \exp \left(\lambda_{w, u}\left(x_{u}\right)\right) \prod_{z \in N(v) \backslash\{u\}} \exp \left(\lambda_{z, v}\left(x_{v}\right)\right)
$$

Consider the messages $m_{v, u}\left(x_{u}\right)=\exp \left(\lambda_{v, u}\left(x_{u}\right)\right)$, set $C_{v, u}\left(x_{u}\right)=0$, and solve to obtain the loopy belief propagation update rule.

Lagrangian Formulation

Messages $m_{v, u}\left(x_{u}\right)=\exp \left(\lambda_{v, u}\left(x_{u}\right)\right)$ are updated via

$$
m_{v, u}\left(x_{u}\right):=\sum_{x_{v}} \exp \left(\theta_{v}\left(x_{v}\right)+\theta_{u, v}\left(x_{u}, x_{v}\right)\right) \prod_{w \in N(v) \backslash\{u\}} m_{w, v}\left(x_{v}\right) .
$$

This is loopy belief propagation.

Key ideas of this lecture

- Variational approach: Inference as optimization.
- Mean field algorithm.
- Approximate \mathcal{M} with smaller set $\hat{\mathcal{M}}$.
- Coordinate ascent is mean field algorithm.
- $\hat{\mathcal{M}}$ is not convex.
- Equivalent to finding closest (KL) μ in $\hat{\mathcal{M}}$.
- Example: Gaussian mean field.
- Loopy belief propagation.
- Approximate \mathcal{M} with larger tree-based $\hat{\mathcal{M}}$.
- Approximate $H(\mu)$ with $H_{\text {Bethe }}(\mu)$.
- Updates to find stationary points of Lagrangian: Loopy belief propagation.

Announcements

- Poster sessions will be on Tue Dec 1 (Stat241A) and Thu Dec 3 (CS281A), here, 11-12:30. Please attend both sessions.
- Project reports are due at 5pm on Friday December 4. In the box outside 723 SD Hall. This deadline is firm.

