
CS281A/Stat241A Lecture 24
Variational Methods

Peter Bartlett

CS281A/Stat241A Lecture 24 – p. 1/44



Announcements

Poster sessions will be on Tue Dec 1 (Stat241A) and
Thu Dec 3 (CS281A), here, 11-12:30. Please attend
both sessions.

Project reports are due at 5pm on Friday December 4.
In the box outside 723 SD Hall. This deadline is firm.
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Key ideas of this lecture

Variational approach: Inference as optimization.

Mean field algorithm.

Approximate M with smaller set M̂.
Coordinate ascent is mean field algorithm.

M̂ is not convex.
Equivalent to finding closest (KL) µ in M̂.
Example: Gaussian mean field.

Loopy belief propagation.

Approximate M with larger tree-based M̂.
Approximate H(µ) with HBethe(µ).
Updates to find stationary points of Lagrangian:
Loopy belief propagation.
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Variational Methods

Represent quantity of interest as solution to
(or value of) an optimization problem.

Then approximate the optimization problem:
Approximate the constraint set.
Approximate the criterion.
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Variational Approach: Ingredients

1. Exponential family representation of graphical model.

2. Mean parameters µ correspond to desired marginal
(conditional) clique probabilities.

3. Realizable mean parameter set M (marginal polytope).

4. Inference as optimization problem via conjugate dual
representation of log normalization.
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Variational Approach: Ingredients

Exponential family:

p(x) = h(x) exp (〈θ, φ(x)〉 − A(θ)) .

Example: pairwise MRF (xv ∈ {0, 1, . . . , r − 1}).

p(x) = exp

(

∑

v∈V

∑

i

θv,i1[xv = i]

+
∑

{u,v}∈E

∑

i,j

θu,i;v,j1[xu = i]1[xv = j]



 ,

for θ ∈ Ω = {θ : A(θ) <∞} = R
r|V |+r2|E|.
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Variational Approach: Ingredients

Define the set M of realizable mean parameters
(marginal polytope) as

M =
{

µ ∈ R
d : ∃p s.t. ∀α, Ep[φα(X)] = µα

}

if X is finite: = co{φ(x) : x ∈ X},

where co represents the convex hull.

Example: pairwise MRF (xv ∈ {0, 1, . . . , r − 1}).

µv = Ep1[Xv = i] = Pr(Xv = i)

µu,v = Ep1[xu = i]1[xv = j] = Pr(Xu = i, Xv = j).
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Variational Approach: Ingredients

The conjugate dual of the log normalization A is

A∗(µ) = sup
θ∈Ω

(〈µ, θ〉 − A(θ)) = −H(pθ(µ)),

where µ ∈ R
d for Ω ⊆ R

d and H(p) is the entropy.
For θ ∈ Ω,

A(θ) = sup
µ∈M

(〈θ, µ〉 −A∗(µ))

= sup
µ∈M

(

〈θ, µ〉 +H(pθ(µ))
)

.
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Variational Approach: Ingredients

A(θ) = sup
µ∈M

(

〈θ, µ〉 +H(pθ(µ))
)

.

Solving this optimization problem gives the value A(θ)
and the mean parameters µ = Eθ[φ(X)].

These correspond to the expectation of the sufficient
statistics. (conditional expectation, if evidence has been
incorporated).

For example, for discrete pairwise MRFs, they give the
marginal singleton and pairwise distributions.
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Variational Methods

Represent quantity of interest as solution to (or value
of) an optimization problem:

A(θ) = sup
µ∈M

(

〈θ, µ〉 +H(pθ(µ))
)

.

Then approximate the optimization problem:
Approximate the constraint set, M.
Approximate the criterion, 〈θ, µ〉 +H(pθ(µ)).
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Key ideas of this lecture

Variational approach: Inference as optimization.

Mean field algorithm.

Approximate M with smaller set M̂.
Coordinate ascent is mean field algorithm.

M̂ is not convex.
Equivalent to finding closest (KL) µ in M̂.
Example: Gaussian mean field.

Loopy belief propagation.

Approximate M with larger tree-based M̂.
Approximate H(µ) with HBethe(µ).
Updates to find stationary points of Lagrangian:
Loopy belief propagation.
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Mean Field Algorithm

Consider the Ising model:

xu ∈ {0, 1}.

ψu,v(xu, xv) = exp (θu,vxuxv) ,

ψv(xv) = exp (θvxv) .

p(x) = exp





∑

v∈V

θvxv +
∑

{u,v}∈E

θu,vxuxv − A(θ)



 .
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Mean Field Algorithm

Consider Gibbs sampling, and replace Xu by its
expectation:

µv :=
1

1 + exp
(

−θv −
∑

u∈N(v) θv,uµu

) .

Naive mean field algorithm for the Ising model.
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Variational Interpretation

Consider the optimization problem

A(θ) = sup
µ∈M

(

〈θ, µ〉 +H(pθ(µ))
)

.

If we approximate M with the smaller set:

M̂ = {µ ∈ M : µu,v = µuµv} .

Then we have

A(θ) ≥ sup
µ∈M̂





∑

v∈V

θvµv +
∑

{u,v}∈E

θu,vµuµv

−
∑

v∈V

(µv log µv + (1 − µv) log(1 − µv))

)

.
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Variational Interpretation

Coordinate ascent in µv gives

µv =
1

1 + exp
(

−θv −
∑

u∈N(v) θu,vµu

) ,

which is the mean field update.

The criterion is strictly concave in each coordinate µv.

But it is not a concave maximization problem...
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Mean Field M̂ is Not Convex

M = co{φ(x) : x ∈ X},

M̂ = {µ ∈ M : µu,v = µuµv} .

M̂ ⊆ M.

φ(x) ∈ M̂:
Place all mass on x. For such a distribution, µv ∈ {0, 1},
and so µu,v = µuµv.

But M is the convex hull of these points in M̂.

So if M̂ is a proper subset of M, it must be nonconvex.

CS281A/Stat241A Lecture 24 – p. 18/44



Key ideas of this lecture

Variational approach: Inference as optimization.

Mean field algorithm.

Approximate M with smaller set M̂.
Coordinate ascent is mean field algorithm.

M̂ is not convex.
Equivalent to finding closest (KL) µ in M̂.
Example: Gaussian mean field.

Loopy belief propagation.

Approximate M with larger tree-based M̂.
Approximate H(µ) with HBethe(µ).
Updates to find stationary points of Lagrangian:
Loopy belief propagation.

CS281A/Stat241A Lecture 24 – p. 19/44



Mean Field and KL-Divergence

For the exponential family

p(x) = h(x) exp (〈θ, φ(x)〉 − A(θ)) ,

consider two parameters θ1 and θ2.
The KL-divergence between the distributions pθ1 and pθ2

(with mean parameters µ1 and µ2) is

D(θ1; θ2) = Eθ1 log
pθ1(X)

pθ2(X)

= 〈µ1, θ1 − θ2〉 − A(θ1) + A(θ2)

= A(θ2) −
(

A(θ1) + 〈µ1, θ2 − θ1〉
)

.
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Mean Field and KL-Divergence

D(θ1; θ2) = A(θ2) −
(

A(θ1) + 〈µ1, θ2 − θ1〉
)

.

Using conjugate duality,

A∗(µ1) = sup
θ∈Ω

(

〈µ1, θ〉 − A(θ)
)

= 〈µ1, θ1〉 −A(θ1),

we have

D(θ1; θ2) = A(θ2) −
(

〈µ1, θ2〉 − A∗(µ1)
)

.
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Mean Field and KL-Divergence

D(θ1; θ2) = A(θ2) −
(

〈µ1, θ2〉 − A∗(µ1)
)

.

So choosing µ ∈ M̂ to maximize

〈µ1, θ〉 − A(θ)

corresponds to choosing the distribution µ from the
approximating set M̂ to minimize the KL-divergence

D(µ; θ) = A(θ) − (〈µ, θ〉 − A∗(µ)) .

That is, the mean field algorithm aims for the best
approximation (in terms of KL-divergence) in M̂.
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Gaussian Mean Field

Another mean field example: Gaussian MRF.

Mean parameters:

µ = EX ∈ R
d,

Σ = EXX ′ ∈ Sd
+.

Approximate with disconnected graph (empty edge set):

M̂ =
{

(µ,Σ) : Σ − µµ′ = diag(Σ − µµ′)

Σ − µµ′ ≥ 0
}

.
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Gaussian Mean Field

Entropy for a Gaussian is

1

2
ln
(

(2πe)d
∣

∣Σ − µµ′
∣

∣

)

.

Since covariance matrix is diagonal, we have

A∗(µ,Σ) = −
d

2
ln(2πe) −

1

2

d
∑

i=1

ln
(

Σii − µ2
i

)

.

Optimization problem becomes

max
(µ,Σ)∈M̂

(

〈θ, µ〉 + 〈Θ,Σ〉 +
1

2

d
∑

i=1

ln
(

Σii − µ2
i

)

)

.
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Gaussian Mean Field

Calculus shows that fixed point satisfies, for all i ∈ V ,

Θii = −
1

2(µii − µ2
i )
,

µi

2(µii − µ2
i )

= θi +
∑

j∈N(i)

θijµj .

Iteration

µi := −
1

Θii



θi +
∑

j∈N(i)

Θijµj





solves these fixed point equations (provided −Θ is
diagonally dominant):
corresponds to Gauss-Seidel iteration.
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Loopy Belief Propagation

Consider a pairwise MRF:

Graph G = (V,E).

Xv ∈ X := {0, . . . , r − 1} for v ∈ V .

Sufficient statistics are indicators for singleton and
pairwise marginals (nodes and edges):

1[xv = i] v ∈ V, i ∈ X

1[xu = i, xv = j] {u, v} ∈ E, i, j ∈ X
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Loopy Belief Propagation

Exponential representation:

p(x) = exp

(

∑

v∈V

∑

i

θv,i1[xv = i]

+
∑

{u,v}∈E

∑

i,j

θu,i;v,j1[xu = i]1[xv = j]





= exp





∑

v∈V

θv(xv) +
∑

{u,v}∈E

θu,v(xu, xv)



 ,

where θv(xv) =
∑

i∈X

θv,i1[xv = i],

θu,v(xu, xv) =
∑

i,j∈X

θu,i;v,j1[xu = i]1[xv = j].
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Loopy Belief Propagation

An alternative protocol for belief propagation in trees:

1. m(0)
v,u(xu) = 1 for all {u, v} ∈ E .

2. At iteration t = 1, 2, . . .,

m
(t)
v,u(xu) =

∑

xv

exp (θv(xv) + θu,v(xu, xv))
∏

w∈N(v)\{u}

m
(t−1)
w,v (xv)

This protocol makes sense for arbitrary graphs: pretend
that the graph is a tree.

If there are a few long cycles, we might expect this to
work well.

CS281A/Stat241A Lecture 24 – p. 30/44



Variational Interpretation

If we

1. Approximate the marginal polytope M with a
tree-based outer bound M̂,

2. Approximate the entropy −A∗(µ) with something
tractable (the Bethe approximation),

3. Iteratively update variables to find stationary points of
the Lagrangian,

then we arrive at loopy belief propagation.
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Mean Parameters

µv(xv) :=
∑

i∈X

µv;i1[xv = i],

µu,v(xu, xv) :=
∑

i,j∈X

µu,i;v,j1[xu = i]1[xv = j].

M =







µ : µv(xv) =
∑

xu,u 6=v

p(x),

µu,v(xu, xv) =
∑

xw,w 6=u,v

p(x)







.
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Tree-Based Outer Bound on M

M̂ =

{

τ : τ ≥ 0,
∑

xv

τv(xv) = 1,
∑

xu

τu,v(xu, xv) = τv(xv)

}

.

For any G,
M ⊆ M̂.

If G is a tree, there is a junction tree, so local
consistency implies global consistency:
M̂ = M.
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Variational Interpretation

1. Approximate the marginal polytope M with a
tree-based outer bound M̂,

2. Approximate the entropy −A∗(µ) with something
tractable (the Bethe approximation),

3. Iteratively update variables to find stationary points of
the Lagrangian.
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Bethe Entropy Approximation

HBethe(µ) =
∑

v∈V

Hv(µv) −
∑

{u,v}∈E

Iu,v(µu,v),

where Hv is the single node entropy,

Hv(µv) = −
∑

xv

µv(xv) log µv(xv),

and Iu,v is the mutual information between Xu and Xv,

Iu,v(µu,v) = D(µu,v;µuµv)

= −
∑

xu,xv

µu,v(xu, xv) log
µu,v(xu, xv)

µu(xu)µv(xv)
.
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Bethe Entropy Approximation

Recall that, if an undirected graph G has a junction tree,
then the joint distribution can be expressed as

p(x) =

∏

c∈C p(xC)
∏

s∈S p(xs)
,

where C is the set of cliques and S the set of separators.
This implies that if G is a tree, we can write

p(x) =
∏

v∈V

µv(xv)
∏

{u,v}∈E

µu,v(xu, xv)

µu(xu)µv(xv)
.
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Bethe Entropy Approximation

If G is a tree,

p(x) =
∏

v∈V

µv(xv)
∏

{u,v}∈E

µu,v(xu, xv)

µu(xu)µv(xv)
.

So for a tree, we can write the entropy as

H(µ) = −
∑

x

p(x) log p(x)

=
∑

v∈V

Hv(µv) −
∑

{u,v}∈E

Iu,v(µu,v)

= HBethe(µ).
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Bethe Variational Problem

1. Approximate the marginal polytope M with a
tree-based outer bound M̂,

2. Approximate the entropy −A∗(µ) with something
tractable (the Bethe approximation).

max
τ∈M̂



〈θ, τ〉 +
∑

v∈V

Hv(µv) −
∑

{u,v}∈E

Iu,v(τu,v)



 .
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Variational Interpretation

1. Approximate the marginal polytope M with a
tree-based outer bound M̂,

2. Approximate the entropy −A∗(µ) with something
tractable (the Bethe approximation),

3. Iteratively update variables to find stationary points of
the Lagrangian.
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Lagrangian Formulation

Marginalization constraints:

Cu,v(xv) := τv(xv) −
∑

xu

τu,v(xu, xv).

Lagrangian:

L(τ ;λ) = 〈θ, τ〉 +
∑

v∈V

Hv(µv) −
∑

{u,v}∈E

Iu,v(τu,v)

+
∑

{u,v}∈E

(

∑

xv

λu,v(xv)Cu,v(xv) +
∑

xu

λv,u(xu)Cv,u(xu)

)
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Lagrangian Formulation

Taking partial derivatives w.r.t. τv and τu,v, and setting to 0
gives

τv(xv) ∝ exp(θv(xv))
∏

u∈N(v)

exp(λu,v(xv))

τu,v(xu, xv) ∝ exp (θu(xu) + θv(xv) + θu,v(xu, xv))

×
∏

w∈N(u)\{v}

exp(λw,u(xu))
∏

z∈N(v)\{u}

exp(λz,v(xv))

Consider the messages mv,u(xu) = exp(λv,u(xu)), set
Cv,u(xu) = 0, and solve to obtain the loopy belief
propagation update rule.
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Lagrangian Formulation

Messages mv,u(xu) = exp(λv,u(xu)) are updated via

mv,u(xu) :=
∑

xv

exp (θv(xv) + θu,v(xu, xv))
∏

w∈N(v)\{u}

mw,v(xv).

This is loopy belief propagation.
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