1. (a) See Figure 1 for the plot of the particle’s true location x_t.
(b) See Figure 2 for the plot of the observations y_t on top of the particle’s true location x_t.
(c) Recall the state space model (instead of x_t in the text we are using s_t) given by Eq. 15.1 for the state at time t
$$s_{t+1} = As_t + Gw_t,$$
where $w_t \sim \mathcal{N}(0, Q)$ and Eq. 15.2 for the observed value at time t
$$y_t = Cs_t + v_t,$$
where $v_t \sim \mathcal{N}(0, R)$. In our case $s_t = (x_t^1, x_t^2, \hat{x}_t^1, \hat{x}_t^2)^T$ with
$$A = \begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
-0.02 & 0 & 0.98 & 0 \\
0 & -0.02 & 0 & 0.98
\end{pmatrix},$$
$$G = I_4,$$
$$Q = \begin{pmatrix}
0_2 & 0_2 \\
0_2 & 0.05I_2
\end{pmatrix},$$
$$C = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix},$$
and $R = 10I_2$. Since we are given that $s_1 \sim \mathcal{N}(0, 5I_4)$, we can run the Rauch-Tung-Striebel algorithm or the two-filter smoother to compute $P(s_1|y_1, \ldots, y_T)$. This estimated distribution (or its mean or mode) is the estimate of the particle’s initial state.

(d) Using the notation introduced above and the Rauch-Tung-Striebel algorithm we estimate $P(s_1|y_1, \ldots, y_T)$ as being normal with mean
$$\hat{s}_1|T = (-0.05340117, -0.10154811, 1.86017743, -2.17046699)^T$$
and covariance matrix
$$P_1|T = \begin{pmatrix}
3.6123712 & 0.0000000 & -0.2715015 & 0.0000000 \\
0.0000000 & 3.6123712 & 0.0000000 & -0.2715015 \\
-0.2715015 & 0.0000000 & 0.3283129 & 0.0000000 \\
0.0000000 & -0.2715015 & 0.0000000 & 0.3283129
\end{pmatrix}.$$

2. (a) We start by noting that the conditional distribution of y_T given x_T is rather straightforward. So it is useful to first derive the conditional distribution of x_T given x_1.
$$x_T = Ax_{T-1} + w_{T-1}$$
$$= A(Ax_{T-2} + w_{T-2}) + w_{T-1}$$
$$= A^2x_{T-2} + Aw_{T-2} + w_{T-1}$$
$$\vdots$$
$$= A^{T-1}x_1 + \sum_{t=2}^{T} A^{T-t}w_{t-1}$$
Figure 1: Plot of the particle’s true location x_t.
Particle’s true location and observations

Figure 2: Plot of the observations y_t (red dashed lines) on top of the particle’s true location x_t (black solid lines).
Figure 3: Plot of the particle’s smoothed location \tilde{x}_t (black solid line). The true location (red dashed line) is given for comparison. The estimated initial position is given by a diamond with arrow pointing in the direction of the MAP initial velocity (the velocity vector was scaled by a factor of 7.8 to make the arrow visible). Assumed $v_t \sim \mathcal{N}(0, 100I_2)$.
We also recall that if a vector \(v \) is distributed according to \(N(0, \Sigma) \), then \(Av \) is distributed as \(N(0, A\Sigma A^T) \). Using the fact that the sum of independent normal variables is a normal variable with the sums of means and variances, we get:

\[
x_T|x_1 \sim N(A^{T-1}x_1, \sum_{t=2}^{T} A^{T-t}Q A^{T-t'})
\]

if \(T \geq 2 \), where \(x_T|X_1 \) denotes the conditional distribution of \(x_T \) conditioned on \(x_1 \).

Now

\[
y_T = Cx_T + v_T
= \begin{cases}
Cx_1 + v_1 & \text{if } T = 1 \\
CA^{T-1}x_1 + \sum_{t=2}^{T} CA^{T-t}w_{t-1} + v_T & \text{if } T > 1
\end{cases}
\]

Hence the conditional distribution of \(y_T \) conditioned on \(x_1 \) is

\[
\begin{align*}
&N(Cx_1, \sigma^2) \quad \text{if } T = 1 \\
&N(CA^{T-1}x_1, \sum_{t=2}^{T} CA^{T-t}Q A^{T-t'} + \sigma^2) \quad \text{if } T > 1
\end{align*}
\]

(b) From part (a), using the observation matrix we can rewrite the variance of \(y_T \) conditioned on \(x_1 \) as \(tr(O_{T-1}QO_{T-1}) \) for \(T > 1 \). Now we use a well known fact about the KL-Divergence between two normal distributions

\[
KL(N(\mu_1, \sigma^2), N(\mu_2, \sigma^2)) = \frac{1}{2\sigma^2}(\mu_1 - \mu_2)^2.
\]

Hence the KL-Divergence between the distributions of \(y_T \) conditioned on \(x_1 \) and \(\tilde{x}_1 \) for \(T > 1 \) is given by

\[
\frac{1}{2(tr(O_{T-1}QO_{T-1}) + \sigma^2)}(CA^{T-1}x_1 - CA^{T-1}\tilde{x}_1)^2.
\]

By Cauchy-Schwartz inequality

\[
(CA^{T-1}x_1 - CA^{T-1}\tilde{x}_1)^2 \leq ||C||^2 ||A^{T-1}x_1 - A^{T-1}\tilde{x}_1||^2.
\]

Using the fact that \(||C|| = 1 \) and \(||A^Tv|| \leq \alpha^t||v|| \), this further simplifies to

\[
(CA^{T-1}x_1 - CA^{T-1}\tilde{x}_1)^2 \leq \alpha^{3(T-1)}||x_1 - \tilde{x}_1||^2.
\]

Thus we get the desired bound

\[
KL((y_T|x_1) || (y_T|\tilde{x}_1)) \leq \frac{\alpha^{3(T-1)}||x_1 - \tilde{x}_1||^2}{2(tr(O_{T-1}QO_{T-1}) + \sigma^2)}
\]

for \(T > 1 \). For \(T = 1 \), the KL-Divergence is simply bounded by \(\frac{||x_1 - \tilde{x}_1||^2}{2\sigma^2} \).

A Code for problem 1

```r
plotDataPS <- function( fileName, width, height, plotFunction, ... )
```

\begin{verbatim}
{
 postscript(paste(fileName, "eps", sep = "."), width = width,
 height = height, paper = "special", horizontal = FALSE)
 plotFunction(...)
 dev.off()
}

plotDataPDF <- function(fileName, width, height, plotFunction, ...)
{
 pdf(paste(fileName, "pdf", sep = "."), width = width,
 height = height, paper = "special")
 plotFunction(...)
 dev.off()
}

prepareDataPlot <- function(mainTitle = "Particle’s true location",
 data = NULL)
{
 if(is.null(data))
 {
 data <- read.table(".\data\hw5-2.data")
 }
 else if(is.character(data))
 {
 data <- read.table(data)
 }
 else
 {
 data <- data.frame(data)
 }
 par(mar = c(4, 4, 4, 1) + 0.1)
 plot(data[[1]], data[[2]], type = "n", xlab = expression(x[1]),
 ylab = expression(x[2]), main = mainTitle)
}

plotTrueData <- function(colour = "black", linetype = "solid")
{
 data <- read.table(".\data\hw5-2.true")
 lines(data[[1]], data[[2]], col = colour, lty = linetype)
}

plotObservedData <- function()
{
 data <- read.table(".\data\hw5-2.data")
 lines(data[[1]], data[[2]], lty = "dashed", col = "red")
}

plotPartA <- function()
{

}\end{verbatim}
prepareDataPlot(data = ".\data\hw5-2.true")
plotTrueData()
}

plotPartB <- function()
{
 prepareDataPlot("Particle’s true location and observations")
 plotObservedData()
 plotTrueData()
}

function kalmanFilter
#
Parameters:
data - the matrix or dataframe of observations.
A - the transition matrix for the state (see model description below).
GQG - the covariance of the state noise (see model description below).
C - the transition matrix for the observation (see model description below).
R - the covariance of the observation noise (see model description below).
P0 - the initial covariance matrix (prior).
Return value:
A list of lists, where each list has components
sii = \E(s_i|y_1, \ldots, y_{i-1})
Pi = \E((s_i - \E(s_i|y_1, \ldots, y_{i-1}))^T (s_i - \E(s_i|y_1, \ldots, y_{i-1}))^T |y_1, \ldots, y_{i-1})
siim1 = \E(s_i|y_1, \ldots, y_{i-1})
Piim1 = \E((s_i - \E(s_i|y_1, \ldots, y_{i-1}))^T (s_i - \E(s_i|y_1, \ldots, y_{i-1}))^T |y_1, \ldots, y_{i-1})
#
Description:
This function implements the filtering step (the Kalman filter) for the state
space model. The model is given by
s_{t+1} = A s_t + w_t,
y_t = C s_t + v_t,
where w_t \sim \N(0, GQG^T) and v_t \sim \N(0,R). P0 is the covariance
matrix of s_1.
kalmanFilter <- function(data, A, GQG, C, R, P0)
{
 y <- as.matrix(data)
 T <- dim(y)[1]
 stateDim <- dim(A)[2]
 res <- list(sii = matrix(0, nrow = T, ncol = stateDim),
 Pi = array(0, dim = c(T, stateDim, stateDim)),
 siim1 = matrix(0, nrow = T, ncol = stateDim),
 Piim1 = array(0, dim = c(T, stateDim, stateDim))
)
 res$sii[1,] <- rep(0, stateDim)
 res$Pi[1,,] <- P0
 for(i in 1:T)
 {
{
P <- res$Piim1[i,]
siim1 <- res$siim1[i,]
res$sii[i,] <- as.vector(siim1 + P %*% t(C) %*% solve(C %*% P %*% t(C) + R, y[i,] - C %*% siim1))
res$Pi[i,,] <- P - P %*% t(C) %*% solve(C %*% P + C %*% P %*% t(C) + R, C %*% P)
if(i < T)
{
 res$siim1[i+1,] <- as.vector(A %*% res$sii[i,])
 res$Piim1[i+1,,] <- A %*% res$Pi[i,,] %*% t(A) + GQG
}
}
res
}

RTSsmoother <- function(KFOutput, A)
{
 T <- dim(KFOutput$sii)[1]
 stateDim <- dim(A)[2]
 res <- list(siT = matrix(0, nrow = T, ncol = stateDim),
 PiT = array(0, dim = c(T, stateDim, stateDim)))
 res$siT[T,] <- KFOutput$sii[T,]
 res$PiT[T,,] <- KFOutput$Pii[T,,]
 for(i in (T-1):1)
 {
 L <- t(solve(KFOutput$Piim1[i+1,,], A %*% KFOutput$Pii[i,,]))
 res$siT[i,] <- as.vector(KFOutput$sii[i,] + L %*% (res$siT[i+1,] - KFOutput$siim1[i+1,]))
 res$PiT[i,,] <- KFOutput$Pii[i,,] + L %*% (res$PiT[i+1,,] - KFOutput$Piim1[i+1,,]) %*% t(L)
 }
 res
}

plotPartE <- function(smoothed)
{
 prepareDataPlot("Particle’s smoothed location", smoothed)
 plotTrueData("red", "dashed")
 lines(smoothed$siT[,1], smoothed$siT[,2])
 x <- smoothed$siT[1,]
 points(x[1], x[2], col = "blue", bg = "blue", pch = 23)
 arrows(x[1], x[2], x[1] + 7.8*x[3], x[2] + 7.8*x[4], col = "blue")
}

main <- function()
{
 # Do part (a) - plot the particle’s true location
 plotDataPS(".\graphics/hw5p1a", 6, 6, plotPartA)
}
plotDataPDF("../graphics/hw5p1a", 6, 6, plotPartA)

#Do part (b) - plot the observed location on top of the true location
plotDataPS("../graphics/hw5p1b", 6, 6, plotPartB)
plotDataPDF("../graphics/hw5p1b", 6, 6, plotPartB)

#Do part (d)
A <- rbind(c(1, 0, 1, 0),
 c(0, 1, 0, 1),
 c(-0.02, 0, 0.98, 0),
 c(0, -0.02, 0, 0.98))
GQG <- 0.05 * diag(c(0, 0, 1, 1))
C <- rbind(c(1, 0, 0, 0),
 c(0, 1, 0, 0))
R <- 100 * diag(1, 2)
data <- read.table("../data/hw5-2.data")
P0 <- diag(5, 4)
KFOutput <- kalmanFilter(data, A, GQG, C, R, P0)
smoothedState <- RTSsmoother(KFOutput, A)
print("Filtered estimate of the initial state")
print(KFOutput$sii[1,])
print("MAP estimate of the initial state")
print(smoothedState$siT[1,])
print("Covariance matrix for the initial state")
print(smoothedState$PiT[1,,])

#Do part (e)
plotDataPS("../graphics/hw5p1e", 6, 6, plotPartE, smoothedState)
plotDataPDF("../graphics/hw5p1e", 6, 6, plotPartE, smoothedState)
}