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1 Loss & maximum likelihood

A classification or regression problem is typically formulated with a cost term of the form:

1
n

∑
φ(yi, f(xi)) + penalty(f)

where φ(·, ·) is the estimation error and penalty(f) is the regularization term.

For certain loss functions, we can interpret minimizing this expression as maximizing the probability of the
data. This viewpoint is not useful, although, for the hinge loss function. In that case, because φ is not
differentiable, the minimizer of E [φ(Y, f(X)) X] is not an invertible function of the conditional probability
P (Y = 1|X).

2 Kernel ridge regression

Ridge regression adds a regularization penalty (scaled by λ) to the cost term, as follows:

1
n

n∑
i=1

(yi − f(xi))2 + λ‖f‖2
H

As alluded to earlier, minimizing the empirical risk of a data set, using the above cost term, is equivalent to
maximizing the log-likelihood of the data for a certain probability model and loss function.

If we model Y = f(X) + Z, where Z is additive noise, the kernel regression formulation is

minλ‖w‖2 +
∑

ξ2
i

s.t. ξi = yi − 〈w, xi〉

Computing the Lagrangian and using calculus to minimize over w and ξ, gives

w =
1
2λ

∑
αixi

ξ =
αi

2

and hence the solution to the dual is
α = 2λ(K + λI)−1y
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with

Kij = 〈xi, xj〉
y = (y1, . . . , yn)′

Thus, the solution is
f(x) = y′(K + λI)−1k,

where k = (k(x1, x), . . . , k(xn, x))′ is the vector of inner products between the data and the new point, x.

3 Bayesian viewpoint: Gaussian processes

There is a Gaussian process interpretation of kernel ridge regression. We first define a prior on the regression
function f . Suppose that f is drawn from a Gaussian process, such that for all n and all x1, . . . , xn ∈ X ,
there is a matrix Σ ∈ <n×n and (f(x1), . . . , f(xn))′ ∼ N(0,Σ). The entry Σi,j of the matrix Σ specifies the
covariance between f(xi) and f(xj).

Consider a model y = f(x) + ξ with ξ ∼ N(0, σ2), and suppose that we observe data (x1, y1), . . . , (xn, yn)
and we wish to predict f(x0), where x0 is a new test point. Consider the posterior distribution of

(f(x0), f(x1), . . . , f(xn))

given this data. It is

P ((f(x0), . . . , f(xn))′ x0, x1, . . . , xn, y1, . . . , yn) ∝ P (y t) P (t0, t x0, x1, . . . , xn)

P (y t) ∝ e−
1

2σ2 ‖y−t‖2

P (t0, t x0, x1, . . . , xn) ∝ e−
1
2 (t0,t′)Σ−1(t0,t)′

where

1. Σ is the prior covariance of (f(x0), f(x1), . . . , f(xn))′,

2. t = (f(x1), . . . , f(xn))′, and

3. t0 = f(x0).

It is an easy calculation to see that the posterior mean of t0 = f(x0) is y′(Σ + σ2I)−1k, where k is the first
column of Σ. Notice that we can interpret the Gram matrix K in kernel ridge regression as the covariance
of a Gaussian process prior.

4 Ensemble methods

In pattern classification problems, we use ensemble methods to form a “committee” of classifiers, using
some sort of voting schemes. The hope is that even though any single classifier might not perform well, the
ensemble performs better.

For example, if fi : X → {±1}, we can take a majority vote among f1(x), . . . , fM (x) to determine f(x).

The underlying functions can be many things, e.g.
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• linear threshold functions:
∑

αifi(x) =
∑

αi sign(w′
ix)

• decision trees

• decision stumps: a decision tree with a single test, e.g., y = 1[x7 ≥ 3]

• a dictionary of simple functions

4.1 AdaBoost (Freund-Schapire ’95)

We start with a uniform distribution over the n data points:

D1(i) =
1
n

for i = 1, . . . , n

and the function F0(x) = 0.

We go through a specified number of iterations; for each t ∈ {1, . . . , T}, choose ft ∈ G to (approximately)
minimize εt =

∑n
i=1 Dt(i)1[ft(xi) 6= y1]. Then make the following updates:

Ft = Ft−1 + αtft

Dt+1(i) =
Dt(i)
Zt

×

{
eαt if ft(xi) 6= yi

e−αt otherwise

Here,

αt =
1
2

log
1− εt

εt

Zt = 2
√

εt(1− εt)

AdaBoost will overfit if you let T get very large, e.g., as big as n2. However, T any smaller than linear in n
will not overfit in a precise sense (for a suitably rich class of base classifiers, AdaBoost with T →∞ slower
than linearly in n will be universally consistent, that is, the risk of the classifier it produces will approach
the Bayes risk).

4.1.1 Theorem:

The empirical probability

P̂ (Y FT (X) ≤ 0) =
1
n
|{i : yiFt(xi) ≤ 0}| ≤

T∏
t=1

Zt

=
T∏

t=1

2
√

εt(1− εt)

Furthermore, if εt ≤ 1
2 − γ for all t, then

T∏
i=1

Zt ≤
T∏

i=1

2

√
1
22

− γ2

= (1− 4γ2)T/2

≤ δ, for T ≥ ln 1/δ

2γ2


