CS281B/Stat241B (Spring 2008) Statistical Learning Theory

Lecture: 11

AdaBoost and large margin classifiers

Lecturer: Peter Bartlett

Scribe: Matt Johnson

1 Review

Algorithm 1 AdaBoost

1: $D_1(i) \Leftarrow \frac{1}{n}, \forall i \in \{1, \dots, n\}$ 2: $F_0(x) \Leftarrow 0$ 3: for $t = 1, \dots, T$ do 4: choose $f_t \in G$ to approximately minimize $\sum_{i=1}^n D_t(i) \mathbb{1} [f_t(x_i) \neq y_i]$ 5: $\alpha_t \Leftarrow \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t}\right)$ 6: $F_t \Leftarrow F_{t-1} + \alpha_t f_t$ 7: $D_{t+1}(i) \Leftarrow \frac{D_t(i)}{Z_t} \cdot \begin{cases} e^{\alpha_t} & \text{if } f_t(x_i) \neq y_i \\ e^{-\alpha_t} & \text{otherwise} \end{cases}$ 8: end for

Note that the Z_t term on line 1 can be thought of as simply a normalizer to ensure that $D_t(i)$ remains a distribution. We will see later in this lecture that $Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)}$.

2 AdaBoost Analysis

2.1 Performance Bound

The following theorem shows that, if the ϵ_t s are significantly below 1/2, then we can get the proportion of training data misclassified arbitrarily small. The proof actually shows that we can view AdaBoost as an algorithm that greedily minimizes $\hat{\mathbb{E}}e^{-Yf(X)}$.

Theorem 2.1.

$$\hat{P}(YF_T(x) \le 0) = \frac{1}{n} |\{i : y_i F_T(x_i) \le 0\}|$$
(1)

$$\leq \prod_{t=1}^{I} 2\sqrt{\epsilon_t (1 - \epsilon_t)} \tag{2}$$

Furthermore, if we know that ϵ_t is slightly less than $\frac{1}{2}$, say $\epsilon_t \leq \frac{1}{2} - \gamma \,\forall t$, the product above is no more than $(1 - 4\gamma^2)^{\frac{T}{2}}$.

PROOF. Instead of the event $YF_T(X) \leq 0$, look at the equivalent event $\exp(-YF_T(X)) \geq 1$. So, plugging in for F_T , we have

$$\hat{P}\left(YF_T(X) \le 0\right) \le \hat{\mathbb{E}}\left[\exp(-YF_T(X))\right] \tag{3}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \exp(-y_i \sum_{t=1}^{T} \alpha_t f_t(x_i))$$
(4)

$$= \frac{1}{n} \sum_{i} \prod_{t} \exp(-y_i \alpha_t f_t(x_i))$$
(5)

We also know that, since $y_i, f(x_i) \in \{\pm 1\}$, their product is also in $\{\pm 1\}$. Note that the exponentiation in the above expression is in the D_{t+1} expression of the algorithm, so we have

$$= \frac{1}{n} \sum_{i} \prod_{t} \frac{D_{t+1}(i)}{D_{t}(i)} Z_{t}$$
(6)

$$= \frac{1}{n} \sum_{i} \left(\prod_{t} Z_{t} \right) \frac{D_{T+1}}{D_{1}(i)}$$

$$\tag{7}$$

$$=\prod_{t} Z_t \tag{8}$$

Where we have the final equality because $D_1(i) = 1/n$ and D_{T+1} is a distribution, so it sums over i to one. If we choose α_t to minimize

$$Z_{t} = \sum_{i:y_{i}=f_{t}(x_{i})} D_{t}(i)e^{-\alpha_{t}} + \sum_{i:y_{i}\neq f_{t}(x_{i})} e^{\alpha_{t}}$$
(9)

$$= (1 - \epsilon_t)e^{-\alpha_t} + \epsilon_t e^{\alpha_t} \tag{10}$$

We can differentiate w.r.t. α_t and set to zero to solve the optimization to get

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Which gives

$$Z_t = (1 - \epsilon_t) \sqrt{\frac{\epsilon_t}{1 - \epsilon_t}} + \epsilon_t \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}}$$
(11)

$$=2\sqrt{\epsilon_t(1-\epsilon_t)}\tag{12}$$

We can plug in to (8) to get the desired result.

We can extend the above theorem to include a margin as well.

Theorem 2.2. If we define $\overline{F} = \frac{F_T}{\sum_{t=1}^T \alpha_t} = \frac{\sum_t \alpha_t f_t}{\sum_t \alpha_t} \in co(\mathcal{G})$ (like ℓ_1 normalization) then

$$\hat{P}\left(\overline{F}(X) \le \gamma\right) \le \prod_{t} 2\sqrt{\epsilon_t^{1-\gamma}(1-\epsilon_t)^{1+\gamma}}$$

and if $\epsilon_t \leq \frac{1}{2} - 2\gamma \,\forall t$, then this decreases exponentially fast.

We can think of the first theorem (in the previous subsection) as saying: for all D_t , there exists $f_t \in \mathcal{G}$ with weighted empirical risk less than $1/2 - \gamma$, then $\exists \overline{F} \in co(\mathcal{G})$ with $\hat{P}(Y\overline{F}(X) \leq 0)$. The second theorem replaces the zero in the empirical probability with $\gamma/2$.

The converse result has a similar flavor: if $\exists \overline{F} \in co(\mathcal{G})$ margin better than γ , then we have $\epsilon_t \leq 1/2 - \gamma$.

Below we examine the converse:

Theorem 2.3. If, for $(x_1, y_1), \ldots, (x_n, y_n)$, $\exists F \in co(\mathcal{G})$ with $y_i F(x_i) > \gamma \forall i$, then for all probability distributions D on $\{1, \ldots, n\}, \exists f \in \mathcal{G}$ such that

$$\sum D(i)\mathbb{1}\left[y_i \neq f(x_i)\right] \le \frac{1-\gamma}{2}$$

PROOF. We proceed with the probabilistic method:

Suppose $F = \sum_t \alpha_t f_t$ with α_t as convex coefficients. Choose f randomly according to distribution given by $P(f = f_t) = \alpha_t$. Then

$$0 \le \mathbb{E}\left[\sum_{i} D(i)\mathbf{1}[y_i = f(x_i)]\right]$$
(13)

$$=\sum_{t} \alpha_t \sum_{i} D(i) \mathbb{1}[y_i \neq f_t(x_i)]$$
(14)

$$=\sum_{i} D(i) \sum_{t} \alpha_t \frac{1 - y_i f_t(x_i)}{2} \tag{15}$$

$$=\frac{1}{2}\left(1-\sum_{i}D(i)\sum_{t}\alpha_{t}f_{t}(x_{i})\right) \leq \frac{1}{2}(1-\gamma)$$
(16)

2.2 Another interpretation: gradient descent

From last time, we know $\hat{\mathbb{E}}\exp(-YF_T(X)) = \frac{1}{n}\sum_i \frac{D_{T+1}(i)}{D_1(i)}\prod_t Z_t$. Recall also that $\frac{1}{n}\exp(-y_iF_{T-1}(x_i)) = D_T(i)\prod_{t=1}^{T-1}Z_t$.

<u>Observation</u>: Choosing f_t to minimize $\epsilon_t = \sum_{i=1}^n D_t(i) \mathbb{1}[y_i \neq f_t(x_i)]$ and setting $\alpha_t = \frac{1}{2} \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$ is equivalent to choosing α_t , f_t to minimize

$$\hat{\mathbb{E}}\exp(-YF_t(X)) = \frac{1}{n} \sum_{i=1}^n \exp(-y_i(F_{t-1}(x_i) + \alpha_t f_t(x_i)))$$
(17)

$$\hat{\mathbb{E}}\exp(-YF_t(X)) = \frac{1}{n} \sum_{i=1}^n \left[(e^{\alpha_t} - e^{-\alpha_t}) \mathbf{1} [y_i \neq f_t(x_i) + e^{\alpha_t}] \right] e^{-y_i F_{t-1}(x_i)}$$
(18)

$$= (e^{\alpha_t} - e^{-\alpha_t}) \prod_{s=1}^{t-1} Z_s \sum_{i=1}^n D_t(i) \mathbb{1}[y_i \neq f_t(x_i)] + \frac{e^{-\alpha_t}}{n} \sum_{i=1}^n e^{-y_i F_{t-1}(x_i)}$$
(19)

Where the last equality holds from noting that $\frac{1}{n}e^{-y_iF_{t-1}(x_i)}$ is the weighting term recalled above. We also see that $\forall \alpha_t$, the best choice of f_t minimizes the first summation term above.

Given f_t , we can take a partial derivative with respect to α_t and set it equal to zero to find

$$\sum_{i:y_i \neq f_t(x_i)} \left(\frac{1}{n} e^{-y_i F_{t-1}(x_i)}\right) e^{\alpha_t} - \sum_{i:y_i = f_t(x_i)} \left(\frac{1}{n} e^{-y_i F_{t-1}(x_i)}\right) e^{-\alpha_t} = 0$$
(20)

$$\left(\epsilon_t e^{\alpha_t} - (1 - \epsilon_t) e^{-\alpha_t}\right) \prod_{s=1}^{t-1} Z_s = 0$$
(21)

Which implies $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$

So this is like a coordinate descent along the α_t with the objective of $\min \frac{1}{n} \sum e^{-y_i \sum_t \alpha_t f_t(x_i)}$.

3 An alternative formulation

We can create a more general interpretation with other cost functions than the exponential:

$$\min_{F} J(F) = \hat{\mathbb{E}}\phi(YF(X)) = \hat{\mathbb{E}}\left[\phi(Y(F_{t-1}(X) + \alpha_t f_t(X)))\right]$$

Gradient descent would be to choose a direction $v = (\alpha_t f_t(x_i), \dots, \alpha_t f_t(x_n))$ to minimize $v' \nabla_z J_n(F_{t-1} + z)$, i.e. choose a direction from restricted options.

$$v \text{ minimizes } \sum v_i y_i \phi'(y_i F_{t-1}(x_i))$$
 (22)

$$\Leftrightarrow \min \sum (-v_i y_i) (-\phi'(y_i F_{t-1}(x_i))) \tag{23}$$

$$\Leftrightarrow \min \mathbb{1}[v_i \neq y_i] D_t(i) \tag{24}$$

With $D_t(i) = \frac{-\phi'(y_i F_{t-1}(x_i))}{Z_t}$ and Z_t is a normalization term.