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AdaBoost and large margin classifiers

Lecturer: Peter Bartlett Scribe: Matt Johnson

1 Review

Algorithm 1 AdaBoost
1: D1(i) ⇐ 1

n , ∀i ∈ {1, . . . , n}
2: F0(x) ⇐ 0
3: for t = 1, . . . , T do
4: choose ft ∈ G to approximately minimize

∑n
i=1 Dt(i)1 [ft(xi) 6= yi]

5: αt ⇐ 1
2 ln

(
1−εt

εt

)
6: Ft ⇐ Ft−1 + αtft

7: Dt+1(i) ⇐ Dt(i)
Zt

·
{

eαt if ft(xi) 6= yi

e−αt otherwise
8: end for

Note that the Zt term on line 1 can be thought of as simply a normalizer to ensure that Dt(i) remains a
distribution. We will see later in this lecture that Zt = 2

√
εt(1− εt).

2 AdaBoost Analysis

2.1 Performance Bound

The following theorem shows that, if the εts are significantly below 1/2, then we can get the proportion of
training data misclassified arbitrarily small. The proof actually shows that we can view AdaBoost as an
algorithm that greedily minimizes Êe−Y f(X).

Theorem 2.1.

P̂ (Y FT (x) ≤ 0) =
1
n
|{i : yiFT (xi) ≤ 0}| (1)

≤
T∏

t=1

2
√

εt(1− εt) (2)

Furthermore, if we know that εt is slightly less than 1
2 , say εt ≤ 1

2 − γ ∀t, the product above is no more than
(1− 4γ2)

T
2 .

Proof. Instead of the event Y FT (X) ≤ 0, look at the equivalent event exp(−Y FT (X)) ≥ 1. So, plugging
in for FT , we have
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P̂ (Y FT (X) ≤ 0) ≤ Ê [exp(−Y FT (X))] (3)

=
1
n

n∑
i=1

exp(−yi

T∑
t=1

αtft(xi)) (4)

=
1
n

∑
i

∏
t

exp(−yiαtft(xi)) (5)

We also know that, since yi, f(xi) ∈ {±1}, their product is also in {±1}. Note that the exponentiation in
the above expression is in the Dt+1 expression of the algorithm, so we have

=
1
n

∑
i

∏
t

Dt+1(i)
Dt(i)

Zt (6)

=
1
n

∑
i

(∏
t

Zt

)
DT+1

D1(i)
(7)

=
∏

t

Zt (8)

Where we have the final equality because D1(i) = 1/n and DT+1 is a distribution, so it sums over i to one.

If we choose αt to minimize

Zt =
∑

i:yi=ft(xi)

Dt(i)e−αt +
∑

i:yi 6=ft(xi)

eαt (9)

= (1− εt)e−αt + εte
αt (10)

We can differentiate w.r.t. αt and set to zero to solve the optimization to get

αt =
1
2

ln
(

1− εt

εt

)
Which gives

Zt = (1− εt)
√

εt

1− εt
+ εt

√
1− εt

εt
(11)

= 2
√

εt(1− εt) (12)

We can plug in to (8) to get the desired result.

We can extend the above theorem to include a margin as well.

Theorem 2.2. If we define F = FTPT
t=1 αt

=
P

t αtftP
t αt

∈ co(G) (like `1 normalization) then
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P̂
(
F (X) ≤ γ

)
≤
∏

t

2
√

ε1−γ
t (1− εt)1+γ

and if εt ≤ 1
2 − 2γ ∀t, then this decreases exponentially fast.

We can think of the first theorem (in the previous subsection) as saying: for all Dt, there exists ft ∈ G
with weighted empirical risk less than 1/2− γ, then ∃F ∈ co(G) with P̂

(
Y F (X) ≤ 0

)
. The second theorem

replaces the zero in the empirical probability with γ/2.

The converse result has a similar flavor: if ∃F ∈ co(G) margin better than γ, then we have εt ≤ 1/2− γ.

Below we examine the converse:

Theorem 2.3. If, for (x1, y1), . . . , (xn, yn), ∃F ∈ co(G) with yiF (xi) > γ ∀i, then for all probability distri-
butions D on {1, . . . , n},∃f ∈ G such that

∑
D(i)1 [yi 6= f(xi)] ≤

1− γ

2

Proof. We proceed with the probabilistic method:

Suppose F =
∑

t αtft with αt as convex coefficients. Choose f randomly according to distribution given by
P (f = ft) = αt. Then

0 ≤ E

[∑
i

D(i)1[yi = f(xi)]

]
(13)

=
∑

t

αt

∑
i

D(i)1[yi 6= ft(xi)] (14)

=
∑

i

D(i)
∑

t

αt
1− yift(xi)

2
(15)

=
1
2

(
1−

∑
i

D(i)
∑

t

αtft(xi)

)
≤ 1

2
(1− γ) (16)

2.2 Another interpretation: gradient descent

From last time, we know Ê exp(−Y FT (X)) = 1
n

∑
i

DT+1(i)
D1(i)

∏
t Zt. Recall also that 1

n exp(−yiFT−1(xi)) =

DT (i)
∏T−1

t=1 Zt.

Observation: Choosing ft to minimize εt =
∑n

i=1 Dt(i)1[yi 6= ft(xi)] and setting αt = 1
2 ln

(
1−εt

εt

)
is equiva-

lent to choosing αt, ft to minimize
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Ê exp(−Y Ft(X)) =
1
n

n∑
i=1

exp(−yi(Ft−1(xi) + αtft(xi))) (17)

Ê exp(−Y Ft(X)) =
1
n

n∑
i=1

[
(eαt − e−αt)1[yi 6= ft(xi) + eαt ]

]
e−yiFt−1(xi) (18)

= (eαt − e−αt)
t−1∏
s=1

Zs

n∑
i=1

Dt(i)1[yi 6= ft(xi)] +
e−αt

n

n∑
i=1

e−yiFt−1(xi) (19)

Where the last equality holds from noting that 1
ne−yiFt−1(xi) is the weighting term recalled above. We also

see that ∀αt, the best choice of ft minimizes the first summation term above.

Given ft, we can take a partial derivative with respect to αt and set it equal to zero to find

∑
i:yi 6=ft(xi)

(
1
n

e−yiFt−1(xi)

)
eαt −

∑
i:yi=ft(xi)

(
1
n

e−yiFt−1(xi)

)
e−αt = 0 (20)

(
εte

αt − (1− εt)e−αt
) t−1∏

s=1

Zs = 0 (21)

Which implies αt = 1
2 ln

(
1−εt

εt

)
So this is like a coordinate descent along the αt with the objective of min 1

n

∑
e−yi

P
t αtft(xi).

3 An alternative formulation

We can create a more general interpretation with other cost functions than the exponential:

min
F

J(F ) = Êφ(Y F (X)) = Ê [φ(Y (Ft−1(X) + αtft(X)))]

Gradient descent would be to choose a direction v = (αtft(xi), . . . , αtft(xn)) to minimize v′∇zJn(Ft−1 + z),
i.e. choose a direction from restricted options.

v minimizes
∑

viyiφ
′(yiFt−1(xi)) (22)

⇔ min
∑

(−viyi)(−φ′(yiFt−1(xi))) (23)

⇔ min 1[vi 6= yi]Dt(i) (24)

With Dt(i) = −φ′(yiFt−1(xi))
Zt

and Zt is a normalization term.


