CS281B/Stat241B (Spring 2008) Statistical Learning Theory Lecture: 11

AdaBoost and large margin classifiers

Lecturer: Peter Bartlett Scribe: Matt Johnson

1 Review

Algorithm 1 AdaBoost

: Di(i) <= L, vie{l,...,n}

: Fo(.]?) <=0

:fort=1,...,T do

choose f; € G to approximately minimize Y. Dy(i)1[fi(z;) # yi)
o = In (122

Fo<=F 1 +af
Du(i) | { e if fi(zi) # vi

Zt e~ % otherwise

7 Dt+1(i) =

8: end for

Note that the Z; term on line 1 can be thought of as simply a normalizer to ensure that D(7) remains a
distribution. We will see later in this lecture that Z; = 24/¢;(1 — €;).

2 AdaBoost Analysis

2.1 Performance Bound

The following theorem shows that, if the ¢;s are significantly below 1/2, then we can get the proportion of
training data misclassified arbitrarily small. The proof actually shows that we can view AdaBoost as an
algorithm that greedily minimizes Re~Y /().

Theorem 2.1.

R 1.
P(YFr(z) < 0) = = [{i : iFr(z:) < 0} (1)
< HQ\/ er(1—e) (2)
t=1
Furthermore, if we know that ¢, is slightly less than %7 say € < % — v Vt, the product above is no more than

(1-47%)7%.

PROOF. Instead of the event Y Fr(X) < 0, look at the equivalent event exp(—Y Fr(X)) > 1. So, plugging
in for Fr, we have
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P (Y Fr(X) <0) <Elexp(—Y Fr(X))] (3)
n T

U exp(ou Y i) (4)
i=1 t=1

=3 Tl exp(-piasi(e) )

We also know that, since y;, f(x;) € {£1}, their product is also in {£1}. Note that the exponentiation in
the above expression is in the D;,; expression of the algorithm, so we have

1 Z H Dt+1 (6)
_ 1 D1y
Sl (rt”t) D)
=12 8)

Where we have the final equality because D1 (i) = 1/n and Dry; is a distribution, so it sums over ¢ to one.

If we choose a; to minimize

Zi= Y D)™+ Y e™ (9)

iy =fr(x4) iy # fr(xq)
= (1 — Gt)e_at + eteo“ (10)

We can differentiate w.r.t. «; and set to zero to solve the optimization to get

1 (1—6t>
ap = —1In
2 €t

Which gives

].—Gt
Zy=(1—¢€),/ 11
t = €t 1_6t+€t (11)

=2ve(1 — &) (12)

We can plug in to (8) to get the desired result. O

We can extend the above theorem to include a margin as well.

Theorem 2.2. If we define ' = "y szatft € co(9) (like 1 normalization) then
t 1 t
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P (F(X) <~) <H2\/ T(1— )it

and if ¢ < % — 27 Vt, then this decreases exponentially fast.

We can think of the first theorem (in the previous subsection) as saying: for all Dy, there exists f; € G
with weighted empirical risk less than 1/2 — ~, then 3F € co(G) with P (YF(X) < 0). The second theorem
replaces the zero in the empirical probability with /2.

The converse result has a similar flavor: if 3F € co(G) margin better than v, then we have ¢, < 1/2 — 7.

Below we examine the converse:

Theorem 2.3. If, for (z1,v1),..., (Zn,yn), IF € co(G) with y; F(x;) > Vi, then for all probability distri-
butions D on {1,...,n},3f € G such that

L—v
> D)Ly # fla:)] < —

ProOOF. We proceed with the probabilistic method:

Suppose F' =), o f¢ with a; as convex coefficients. Choose f randomly according to distribution given by
P(f = fi) = 4. Then

0<E [Z D(i)l[y; = f(xi)]] (13)
= Zat ZD y: # fi(xi)] (14)

ZD Zat yzft xz) (15)
= % (1 - ZD(Z) zt:atft(xi)> < %(1 -7) (16)

2.2 Another interpretation: gradient descent

From last time, we know Eexp(—Y Fp(X)) = Ly, Dgr(li()i) [1; Z:- Recall also that & exp(—y; Fr_1(z;)) =
Dr(i) 1,5 Z-
1

Observation: Choosing f; to minimize ¢, = ;| Dy(i)1[y; # fi(2;)] and setting ay = 5 In (1%1“) is equiva-
lent to choosing ay, f; to minimize
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Besp(—Y F(X)) = =3 exp(—pi(Fiot(@:) + anfu(w) a7)

@
Il
-

Bexp(~YF (X)) = — 3 [(e™ — e )y # fulas) + ] ¥ Fimae) (18)

3=

«
I
—

n

t—1 —ay M
= (e — =) [ Z: Y. Deli)lys # fulas)] + Y emwifima(en (19)
s=1 i=1 i=1

n

Where the last equality holds from noting that %e*yiF =1(#4) is the weighting term recalled above. We also
see that Vo, the best choice of f; minimizes the first summation term above.

Given f;, we can take a partial derivative with respect to oy and set it equal to zero to find

1 1
ZeYiFioa(mi) | pon _ ZeviFimi(wi) | gmar — 20
S (pere)en- 5 (). 20

iy # fr(xq 1y =fe(x;
t—1
(e — (1 —e)e ) [[ Z: = (21)
s=1

Which implies a; = £ In (@)

€t

So this is like a coordinate descent along the o, with the objective of min % Sevi 2 aefi(@i)

3 An alternative formulation
We can create a more general interpretation with other cost functions than the exponential:
min J(F) = E6(Y F(X)) = E[(Y (Fi-1(X) + a0 i(X)))]

Gradient descent would be to choose a direction v = (ay fi(z;), ..., o fi(zy,)) to minimize v'V,J, (Fi—1 + 2),
i.e. choose a direction from restricted options.

v minimizes Zviyiqﬁl(yiFt,l(mi)) (22)
< minZ(—Uz‘yz’)(—ﬁ(@/if’tﬂ(fﬂi))) (23)
< min 1[v; # y;] Dy (4) (24)

With Dy (i) = 7&(”272*1(9”)) and Z; is a normalization term.



