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Ada Boost, Risk Bounds, Concentration Inequalities

Lecturer: Peter Bartlett Scribe: Subhransu Maji

1 AdaBoost and Estimates of Conditional Probabilities

We continue with our discussion on AdaBoost and derive risk bounds of the classifier. Recall that for a func-
tion f , we have the following relationship between the expected excess risk and the excess φ approximation
risk for a loss function φ,

Ψ (R(f)−R∗) ≤ Rφ(f)−R∗φ

where, R∗ is the optimal Bayes Risk, R∗φ is the risk of the optimal f i.e.R∗φ = inff R∗φ(f) and H(η) is the
function

H(η) = inf
α∈R

[ηφ(α) + (1− η)φ(−α)]

and Ψ(θ) is the function

Ψ(θ) = H−
(

1 + θ

2

)
+ H

(
1 + θ

2

)
= φ(0)− inf

α∈R

[
1 + θ

2
φ(α) +

1− θ

2
φ(−α)

]
In the context of AdaBoost the loss function φ(α) = e−α is convex and classification calibrated. Thus,

H(η) = inf
α∈R

[
ηe−α + (1− η)eα

]
Differentiating w.r.t. α and setting to zero gives us the optimal

α(η) = ln
√

η

1− η

This suggests that if we could choose f(x) separately for each x, it would be a monotonically transformed
version of conditional probability(see next section). Plugging this α∗ into H yields

H(η) = 2
√

η(1− η),

which is concave and symmetric around 1/2. Then Ψ(θ) simplifies to

Ψ(θ) = 1−
√

(1 + θ)(1− θ) = 1−
√

1− θ2.

Finally, plugging this in to the original inequality yields

1−
√

1− (R(f)−R∗)2 ≤ Rφ(f)−R∗φ.

Examining the Taylor series of the left side about 0 shows that this is equivalent, for some constant c, to

R(f)−R∗ ≤ c
√

(Rφ(f)−R∗φ)

when the excess φ-risk is sufficiently small. Thus, driving the excess φ-risk to zero will drive the discrete loss
to zero as well, which justifies AdaBoost’s use of this particular convex loss function.
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2 Relationship to logistic regression

It turns out that we can interpret the value of F (x) (where F is the boosted classifier returned by AdaBoost)
as a transformed estimate of Pr(Y = 1|X = x). Consider a logistic model where

Pr(Y = 1|X = x) =
1

1 + e−2f(x)
=

ef(x)

ef(x) + e−f(x)
,

a rescaled version of the logistic function. In this model, the log loss (negative log likelihood) takes the form

− ln
n∏

i=1

Pr(Y = yi|X = xi) = −
∑
yi=1

ln
1

1 + e−2f(x)
−

∑
yi=−1

ln
(

1− 1
1 + e−2f(x)

)
=

∑
yi=1

ln
(
1 + e−2f(x)

)
+

∑
yi=−1

ln
(
1 + e2f(x)

)
=

n∑
i=1

ln
(
1 + e−2yif(xi)

)
.

Thus, the maximum likelihood logistic regression solution attempts to minimize the sample average of φ(α) =
ln

(
1 + e−2α

)
. This is closely related to AdaBoost, which minimizes the sample average of φ(α) = e−α. To

see the connection, note that the first few terms of the Taylor expansion of ln
(
1 + e−2α

)
+ 1− ln 2 about 0,

1− α +
α2

2
− . . . ,

are identical to those of e−α.

While the two functions are very similar near zero, their asymptotic behavior is very different. In general
we have that

ln
(
1 + e−2α

)
≤ e−α;

furthermore, the former grows linearly as α approaches −∞, whereas the latter grows exponentially. Thus,
we can view AdaBoost as approximating the maximum likelihood logistic regression solution, except with
(sometimes exponentially) larger penalties for mistakes. A further similarity between the methods is that
the α∗ for φ(α) = ln

(
1 + e−2α

)
is the same as for AdaBoost.

3 Risk Bounds and Uniform Convergence

So far, we’ve looked at algorithms (including AdaBoost) that optimize over a set of training samples:

min
f∈F

R̂(f) = Êl(y, f(x)) =
1
n

n∑
i=1

l(yi, f(xi)).

If the empirical minimizer is f̂ , we are interested in bounding the true loss R(f̂) = El(y, f̂(x)) under this
function. In particular, we hope that R̂(f̂) will converge to inff∈F R(f) as n →∞

For the (trivial) case where our function class F contains only a single function, we can simply appeal to the
law of large numbers. For example, in the case of discrete loss, the Chernoff bound gives an upper bound
on Pr(|R̂(f)−R(f)| > ε) that shrinks exponentially in n for any given ε.

This argument, however, fails when F is not a singleton. We cannot simply apply the law of large numbers
to each f ∈ F and then argue that the desired property holds when minimizing over all of F . The problem
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is that we are considering R(argminf∈F R̂(f)), where the inner part depends on the data. In particular, if F

is such that for any n and data set there are functions f ∈ F with small R̂(f) but large R(f), then choosing
an f that minimizes R̂(f) may not tend to minimize R(f).

Example. Let F = F+ ∪ F− with

F+ = {x 7→ f(x) : |{x : f(x) = +1}| < ∞}

F− = {x 7→ f(x) : |{x : f(x) = −1}| < ∞}

Note that for any finite sequence, we can choose f from either F+ or F− to explain it. Now, suppose we
have a distribution P such that P (Y = 1|X) = 0.95 almost surely, and for all x, P (X = x) = 0. Then, we
have

f ∈ F+ ⇒ R(f) = 0.05 = R∗

f ∈ F− ⇒ R(f) = 0.95 > R∗

where, R∗ is the Bayes risk. However, for any finite sample there is an f ∈ F+ with R(f) = 0 but
R(f) − R∗ = 0.9. So, choosing a function from a class via empirical risk minimization does not guarantee
risk minimization with such a rich class. Restated,

R(argminf∈F R(f)) 6= inf
f∈F

R(f)

Example. If the set of functions F ∈ {+1,−1}X is finite, then we can say something about the true risk
given that the empirical risk is zero. The following theorem makes this explicit.

Theorem 3.1.
Pr(∃f ∈ F and R̂(f) = 0 & R(f) ≥ ε) ≤ |F |e−εn

i.e., with probability at least 1− δ,

if, R̂(f) = 0, then R(f) ≤ log |F |
n

+
log 1/δ

n

Proof. To show this we use the properties of the exponential functions and union bounds. For any f ∈ F
with R(f) ≥ ε, we have

Pr(R̂(f) = 0) ≤ (1− ε)n

= exp(n log(1− ε))
≤ exp(−nε) (1)

Using the union bound (Boole’s inequality: the probability of a union of events is no more than the sum of
their probabilities), we have

Pr
(⋃

{f ∈ F : R(f) ≥ ε & R̂(f) = 0}
)
≤

∑
f∈F

Pr
(
R(f) ≥ ε & R̂(f) = 0

)
≤ |F |e−εn (2)

Example. (Decision Trees) Consider the class of decision trees of finite number of nodes N over x ∈
{+1,−1}d. Thus |F | ≤ (d + 2)N , because we can specify the tree by listing, in breadth-first order, the N
nodes of the tree, and each can be either one of the covariates or outputs {+1,−1}. Thus, if R̂(f) = 0, then
with probability ≥ 1− δ,

R(f) ≤ N log(d + 2)
n

+
log 1/δ

n
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Example. F is parameterized using N bits, ı.e. F = {x 7→ φ(x, b), b ∈ {0, 1}N} with fb(x) = φ(x, b).
|F | = 2N and thus if R̂(f) = 0, then with probability ≥ 1− δ,

R(f) ≤ N

n
+

log 1/δ

n

Typically when we learn classifiers on training data the empirical risk is small but not zero and the above
theorem can not be applied directly. In the next few sections we will be developing tools to show properties
relating the empirical risk minimizer and the minimal risk.

4 Concentration Inequalities

We will be interested not only in whether R(arg minf∈F R̂(f)) → inff∈F R(f), but how fast this convergence
happens, called the rate of convergence.

4.1 Classic bounds

For this, several classic inequalities are useful that impose upper bounds on the total probability mass
contained within the tail of a distribution.

Theorem 4.1. (Markov’s Inequality) If X ≥ 0 a.s. and t > 0, then Pr(X ≥ t) ≤ E(X)
t

Proof. EX ≥ E[X1(X ≥ t)] ≥ t Pr(X ≥ t) + 0 Pr(X < t) = t Pr(X ≥ t)

Theorem 4.2. (Chebyshev’s Inequality) If t > 0, then Pr(|X − EX| ≥ t)) ≤ V ar(X)
t2

Proof. Apply Markov’s inequality to (X − EX)2

These upper bounds are not necessarily tight as seen in the following example

Example. Let Zi = {0, 1} be i.i.d with Pr(Zi = 1) = p. Denote Sn =
∑n

i zi, then using Chebyshev’s
inequality on the variable Sn/n we have

Pr
(∣∣∣∣Sn

n
− ESn

n

∣∣∣∣ > t

)
≤ V ar(Sn/n)

t2
=

p(1− p)
nt2

On the other hand, the central limit theorem says√
n

σ2

(
Sn

n
− p

)
→ N(0, 1)

Thus,

lim
n→∞

Pr
(√

n

σ2

(
Sn

n
− p

))
= 1− Φ(t) ≤ c

t
exp

−t2

2

where Φ(t) is the cumulative distribution function of N(0, 1). So, Pr(Sn

n − p ≥ ε) should decrease as

exp
(
−ε2n
2σ2

)
, which is much faster than the rate implied by Chebyshev’s inequality.
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4.2 Hoeffding’s Inequality

We can show concentration inequalities for sums of independent random variables more generally. Note that
the following bounds leverage independence, but don’t require identical distributions among the variables
involved.

Theorem 4.3. (Hoeffding’s Inequality) Consider independent Xi ∈ [ai, bi] and their sum, Sn =
∑n

i=1 Xi.
Then,

Pr(Sn − ESn ≥ t) ≤ exp
(

−2t2∑n
i=1(bi − ai)2

)

Proof. A monotonic transformation and exponentiation using s > 0, gives us a positive random variable.
Applying Markov’s inequality we get,

Pr(Sn − ESn ≥ t) = Pr(es(Sn−ESn) ≥ est)

≤ e−stE
[
es(Sn−ESn)

]
(Markov’s Inequality)

= e−stE

[
exp(s(

n∑
i=1

(Xi − EXi)))

]

= e−stE
n∏

i=1

[
es(Xi−EXi)

]
(3)

where, the last inequality uses the independence of the variables. We will see in the next lecture a bound on
the last inequality, which will complete the proof.

Example. Let Xi = {0, 1} denote the loss on the i′th example. Then, Sn = nR̂(f) and ESn = nR(f).
Applying Hoeffding’s inequality we get

P (|R̂(f)−R(f)| > ε) ≤ 2 exp
(
−2ε2n2∑n

i=1 12

)
= 2 exp(−2nε2)

Note that though the rate is right and this bound is tighter than Markov’s, there is still a factor of σ2 missing
compared to the bounds one would expect from central limit theorem.


