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1 Recap

For a function f ∈ F the empirical risk function is

R̂(f) =
1
n

n∑
i=1

`(f(Xi), Yi)

and the empirical risk minimizing function is

fn = arg min
f∈F

R̂(f).

Often, we are interested in the true performance of fn

R(fn) = E[`(fn(X), Y )].

For example, this might correspond to the performance of the hinge-loss cost function using an SVM.

Previously, we showed that for finite classes F the statement

∀f ∈ F P
(
R(f) ≥ R̂(f) + ε

)
≤ e−cε2n

implies that

P
(
∃f ∈ F : R(f) ≥ R̂(f) + ε

)
≤ |F |e−cε2n

or equivalently, w.p. ≥ 1− δ, ∀f ∈ F ,

R(f) ≤ R̂(f) + c

√
log |F |

n
+

log(1/δ)
n

1.1 Recap of Inequalities

We want to show that the expected risk R(f) is close to the sample average R̂(f). To do so we use
concentration inequalities; two simple inequalities are the following:

• Markov’s Inequality: For X ≥ 0, P (X ≥ t) ≤ EX
t

• Chebyshev’s Inequality: P (|X − EX| ≥ t) ≤ Var(X)
t2

Although the above inequalities are very general, we want bounds which give us stronger (exponential)
convergence. This lecture introduces Hoeffding’s Inequality for sums of independent bounded variables and
shows that exponential convergence can be achieved. Then, a generalization of Hoeffding’s Inequality called
McDiarmid’s (or Bounded Differences or Hoeffding/Azuma) Inequality is presented.
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2 Hoeffding’s Inequality

Consider the sum Sn =
∑n

i=1 Xi of independent random variables, X1, · · · , Xn. Then, we have for all s > 0,

P (Sn − ESn ≥ t) = P
(
exp {s(Sn − ESn)} ≥ est

)
≤ e−stEes(Sn−ESn)

= e−st
n∏

i=1

Ees(Xi−EXi) (1)

where the inequality is true through the application of Markov’s Inequality, and the second equality follows
from the independence of Xi. Note that Ees(Xi−EXi) is the moment-generating function of Xi − EXi.

Lemma 2.1 (Hoeffding). For a random variable X with EX = 0 and a ≤ X ≤ b then for s > 0

EesX ≤ es2(b−a)2/8

Proof. Note that esx is convex in x and is thus uniformly bounded as

esx ≤ x− a

b− a
esb +

b− x

b− a
esa.

Taking expectation yields

EesX ≤ besa − aesb

b− a
,

and taking the Taylor series expansion of log EesX about s = 0 reveals that

log EesX ≤ s2(b− a)2

8
.

By combining (1) and Lemma 2.1 we see that if Xi ∈ [ai, bi] then

P (Sn − ESn ≥ t) ≤ inf
s>0

(
e−st

n∏
i=1

es2(bi−ai)
2/8

)

= inf
s>0

exp

(
−st +

s2

8

n∑
i=1

(bi − ai)2
)

= exp
(

−2t2∑n
i=1(bi − ai)2

)
where the minimizing value of s is given by s2 = 4t/

∑n
i=1(bi − ai)2. Thus we have just proved the following

theorem.

Theorem 2.2 (Hoeffding’s Inequality). For bounded random variables Xi ∈ [ai, bi] where X1, · · · , Xn are
independent, then

P (Sn − ESn ≥ t) ≤ exp
(

−2t2∑n
i=1(bi − ai)2

)
and

P (ESn − Sn ≥ t) ≤ exp
(

−2t2∑n
i=1(bi − ai)2

)
.
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Remark. With Hoeffding’s Inequalities the tails of the error probability are starting to look more Gaussian,
i.e. they decay exponentially with t2, and they correspond to the worst case variance given the bounds ai

and bi.

Example. Consider minimizing R̂(f) with `(ŷ, y) ∈ [0, 1]. We have

P
(
|R(f)− R̂(f)| ≥ ε

)
≤ 2 exp

(
−2ε2n

1
n

∑n
i=1(bi − ai)2

)
= 2e−2ε2n.

This is what the Central Limit Theorem would suggest with σ2 = 1
2 (1− 1

2 ), which corresponds to the variance
of a Bernoulli(1/2) variable.

3 McDiarmid’s Inequality

We now look at a generalization of Hoeffding’s inequality where the quantity of interest is some function
of the data, i.e. Sn = φ(X1, X2, · · · , Xn). Some restrictions on φ are required to get exponential bounds.
The following theorem makes this precise (The critical property of φ required is that each component (Xi)
cannot influence the outcome too much).

Theorem 3.1 (McDiarmid’s (or Bounded Differences or Hoeffding/Azuma) Inequality). Consider indepen-
dent random variables X1, · · · , Xn ∈ X and a mapping f : Xn → R. If, for all i ∈ {1, · · · , n}, and for all
x1, · · · , xn, x′i ∈ X , the function φ satisfies

|φ(x1, · · · , xi−1, xi, xi+1, · · · , xn)− φ(x1, · · · , xi−1, x
′
i, xi+1, · · · , xn)| ≤ ci (2)

then

P (φ(X1, · · · , Xn)− Eφ ≥ t) ≥ exp
(

−2t2∑n
i=1 c2

i

)
and

P (φ(X1, · · · , Xn)− Eφ ≤ −t) ≥ exp
(

−2t2∑n
i=1 c2

i

)

Before looking at the proof of Theorem 3.1 we consider some examples.

Example. Hoeffding’s Inequality

Example. Leave-one-out error estimate of 1-nearest neighbor. Given a data set, we label based upon the
closest point in the data. For a leave-one-out error estimate, for i = 1, · · ·n we classify the ith sample based
on all the other data to create the estimate Ŷi. Thus the error for each sample is εi = `(Ŷi, Yi), and the total
error estimate is given by

φ ((X1, Y1), · · · , (Xn, Yn)) =
1
n

n∑
i=1

εi

If we change (Xi, Yi) to (X ′
i, Y

′
i ) then we affect both εi and potentially other εj ’s for j 6= i. If we assume

that the geometry is such that at most k other sample errors can be affected, then the total affect is less
than k/n and φ obeys the necessary condition.

Example. Consider the traveling salesman problem, where we desire to find the shortest path through all
cities. We note that by changing one path, the total distance can only increase by at most twice the diameter.
Thus, for random choice of the city locations in a bounded region, the length of the shortest path is tightly
concentrated about its expectation.
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Example. Consider

φ(X1, · · · , Xn) = max
f∈F

|Ef − Enf |

where Enf is the sample average. If for all f : X → [a, b], then ci = (b− a)/n. This means that

P

(
sup
f∈F

|Ef − Enf | − E

(
sup
f∈F

|Ef − Enf |

)
≥ t

)
≤ e

−2nt2

(b−a)2 .

We now give the proof of McDiarmid’s Inequality

Proof. We will think of a martingale sequence. We define

Vi = E [φ|X1, · · · , Xi]− E [φ|X1, · · · , Xi−1] ,

and note that EVi = 0 and

n∑
i=1

Vi = E[φ|X1, · · · , Xn]− Eφ = φ(X1, · · · , Xn)− Eφ. (3)

We further define upper and lower bounds

Li = inf
x

E [φ|X1, · · · , Xi−1, x]− E [φ|X1, · · · , Xi−1]

Ui = sup
x

E [φ|X1, · · · , Xi−1, x]− E [φ|X1, · · · , Xi−1]

and note that Li ≤ Vi ≤ Ui. We can use the independence of Xi to show that Ui − Li ≤ ci.

As in Hoeffding, we have

P (φ− Eφ ≥ t) ≤ inf
s>0

e−stE

(
n∏

i=1

esVi

)
.

Furthermore,

E

(
n∏

i=1

esVi

)
= E E

[
n−1∏
i=1

esVissVn |X1, · · · , Xn−1

]

= E
n−1∏
i=1

esViE
[
esVn |X1, · · · , Xn−1

]
≤ E

(
n−1∏
i=1

esVi

)
es2c2

n/8

· · ·

≤ exp(s2
n∑

i=1

c2
i /8)

More details of this proof can be found on the course website.
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4 Concluding Remarks

So far, the bound we have discussed corresponds to the worst case variance for the given constraints. We
can say more if we have some bound on the variance.

Example. Let R(f) = E(Y − f(X))2 and then

R(f)−R(f∗) = E
[
(Y − f(X))2 − (Y − f∗(X))2

]
,

where f∗ = arg minf∈F R(f). If F is convex, then the variance decreases as the risk decreases.

Also, we see that summations are the worst case for bounded differences inequalities (Hoeffing’s Inequality
gives the same result).

Lastly, for

f̂ = arg min
f∈F

R̂(f)

f∗ = arg min
f∈F

R(f)

we may compare R(f̂) and R(f∗). We have

R(f̂)−R(f∗) = R(f̂)− R̂(f̂) (4)

+ R̂(f̂)− R̂(f∗)

+ R̂(f∗)−R(f∗)

≤ 2 sup
f∈F

|R(f)− R̂(f)| (5)

because the second term on the right hand side of (4) is non-positive.


