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Glivenko-Cantelli Classes

Lecturer: Peter Bartlett Scribe: Michelle Bensi

1 Introduction

This lecture will cover Glivenko-Cantelli (GC) classes and introduce Rademacher averages. We are interested
in GC classes because, for these classes, we get uniform convergence of the empirical average to the true
expectation. Rademacher averages provide a measure of complexity. In this lecture, the primary focus will
be on introducing the GC classes of functions and proving the GC Theorem. It will end with the definition
of Rademacher averages.

Recall from previous lectures that:

We can choose:
f̂ = argmin

f∈F
R̂(f)

And we want:
R̂(f) ' inf

f∈F
R(f)

And it suffices to show:
sup
f∈F

|R(f)− R̂(f)| is small

For GC class functions this sufficient condition is satisfied as n gets large.

2 GC Classes

We begin with a definition of the GC class of functions.

Definition. F is a GC Class if, for all ε > 0:

lim
n→∞

sup
P

Pn

(
sup
f∈F

∣∣∣Ef − Ênf
∣∣∣ > ε

)
= 0

Note: Pn means n independent draws from a distribution.

2.1 The Glivenko-Cantelli Theorem

Let:
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• x1, ..., xn be i.i.d. data points from a distribution F.

• Fn(x) be the empirical distribution function

• F (t) be the true distribution function fn of P

We have the following expressions for the CDF’s:

F (t) = E[1[x ≤ t]]

Fn(t) = En[1[x ≤ t]]

Now define:
G = {x 7→ 1[x ≤ 0] : θ ∈ R}

That is, there is a one-to-one mapping between G and R. Therefore:

Glivenko-Cantelli Theorem ⇐⇒ ∀P, sup
g∈G

|Eg − Eng| → 0

Thus, we can interpret this classical result as a result about uniform convergence over this class of subsets
of the reals.

2.2 GC Theorem

We’ll now formally present the GC Theorem, and give a proof that is suggestive of an approach that applies
much more generally (which we’ll meet in the next lecture).

Theorem 2.1. Define:

• Fn(t) = Pn((−∞, t]) (the empirical distribution function)

• F (t) = P ((−∞, t]) (the true distribution function fn of P )

For all probability distributions P on R, Fn
a.s.−→ F uniformly on R

Or, symbolically we can write:
sup
x∈R

|Fn(x)− F (x)| a.s.−→ 0

Note: the law of large numbers ensures pointwise convergence of distribution functions, however, with the
GC class of functions we obtain something stronger, namely uniform convergence.

The proof of the Glivenko-Cantelli Theorem involves three parts:

1. Use of the McDiarmid concentration equality

2. Use of symmetrization

3. Application of ”simple” restrictions

Proof.
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1. Through application of the McDiarmid concentration inequality we know that
with probability at least 1− exp(−2ε2n),

sup
g∈G

|Eng − Eg| ≤ E
(

sup
g∈G

|Eng − Eg|
)

+ ε

That is, the deviations are concentrated around their expectation.

2. Next we apply symmetrization.
Recall that we ultimately would like to prove:

sup
g∈g

|Eng − Eg| a.s.−→ 0

Also, note that we can write:

|Eng − Eg| =

∣∣∣∣∣ 1n
n∑

i=1

g(xi)− E
1
n

n∑
i=1

g(xi)

∣∣∣∣∣
Let: x′1, ..., x

′
n be i.i.d. copies of x1, ..., xn.

sup
g∈g

|Eng − Eg| = E sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1

g(xi)− Eg

∣∣∣∣∣ (expanding on definition of En)

= E sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1

(g(xi)− Eg(x′i))

∣∣∣∣∣
= E sup

g∈G

∣∣∣∣∣E
[

1
n

n∑
i=1

(g(xi)− g(x′i))|x1, ..., xn

]∣∣∣∣∣ (properties of conditional expectation)

≤ EE sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1

(g(xi)− g(x′i))

∣∣∣∣∣ (bringing the E out front)

= Esup
g∈G

∣∣∣∣∣ 1n
n∑

i=1

εi(g(xi)− g(x′i))

∣∣∣∣∣
Where εi is a Rademacher variable (uniform on {±1}). So we have the following upperbound on the
previous expression:

≤ E sup
g∈G

(∣∣∣∣∣ 1n
n∑

i=1

εi g(xi)

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

εig(x′i)

∣∣∣∣∣
)
≤ 2 E sup

g∈G

∣∣∣∣∣ 1n
n∑

i=1

εig(xi)

∣∣∣∣∣︸ ︷︷ ︸
Rademacher averages of G

3. Next, we consider ”simple” restrictions on G.
We can write:

2 E sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1

εig(xi)

∣∣∣∣∣ = 2 E E

[
sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1

εi g(xi)

∣∣∣∣∣ |x1, ..., xn

]
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But,|{(g(x1), ..., g(xn)) : g ∈ G}| = |{(g(x(1)), ..., g(x(n))) : g ∈ G}| ≤ n + 1
Where we have ordered the data: {x1, ...xn} = {x(1), ..., x(n)} and x(1) ≤ ... ≤ x(n)

Next we apply the follow lemma to seek the bound of the expression from above:

2 EE

[
sup
g∈G

∣∣∣∣∣
n∑

i=1

εig(xi)

∣∣∣∣∣ |x1, ..., xn

]

Lemma 2.2. For A ⊆ Rn with R = max
a∈A

(
∑

i a2
i )

1
2 , we have:

E sup
a∈A

(
n∑

i=1

εiai

)
︸ ︷︷ ︸

Za

≤ R
√

2 log |A|

Proof.

exp[ s︸︷︷︸
s>0

E sup
a∈A

Za] ≤ E exp
[
s sup

a∈A
Za

]
(because exponential function is convex)

= E sup
a∈A

(exp(sZa))

≤
∑
a∈A

E exp[sZa]

≤
∑
a∈A

exp

s2

2

n∑
i=1

a2
i︸ ︷︷ ︸

≤R2

 (by Hoeffding’s inequality)

≤ |A| exp(s2 R2

s
)

So,

E sup
a∈A

(
n∑

i=1

εiai

)
≤ inf

s>0

(
log |A|

s
+

sR2

2

)
= R

√
2 log |A|

Note: For our application, R ≤ 1√
n

and |A| ≤ n + 1
Hence:

Pr

(
sup
g∈G

|Ê(g)− Eg|
)
≥ ε + 2

√
2 log(n + 1)

n
≤ exp(−2ε2n),

which completes the proof.

3 Rademacher averages

Definition. For a class F of real-valued functions defined on X, for i.i.d. x1, ..., xn ∈ X, and for independent
Rademacher random variables ε1, ..., εn, define:
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• Rn(F ) = E sup
f∈F

1
n

∑n
i=1 εif(xi) (Rademacher averages on F)

• R̂n(F ) = E[sup
f∈F

1
n

∑n
i=1 εif(xi)|x1, ..., xn] (empirical Rademacher averages)


