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Sauer’s Lemma
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1 Recap

Consider the pattern classification setting: F ⊆ {±1}X and l : x 7→ {0, 1}. For the minimizer of the empirical
risk Êlf ,

f̂ = argmin
f∈F

Êlf

with probability at least 1− δ, we have:

Elf̂ ≤ inf
f∈F

Elf + 2Rn(lF ) + c

√
log 1

δ

n

= inf
f∈F

Elf + Rn(F ) + c

√
log 1

δ

n
(1)

where lF is defined as {lf : f ∈ F} and Rn(F ) is the Rademacher average:

Rn(F ) = E sup
f∈F

1
n

n∑
i=1

εif(xi) (2)

The Rademacher averages can be bounded, for instance, as follows:

Rn(F ) ≤


√

2 log |F |
n , if |F | < ∞;√

2 log ΠF (n)
n , if we restrict the growth function.

(3)

where,
F|xn

1
= {(f(x1), . . . , f(xn)) : f ∈ F} ⊆ {±1}n

and εi are uniformly distributed random variables ε ∈ {±1}.

In this lecture, two topics are discussed:

* Sauer’s Lemma;

* Rademacher averages: applications.

2 Sauer’s Lemma

Definition. Growth Function:

ΠF (n) = max{|F|s| : s ⊆ X , |s| = n}
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2 Sauer’s Lemma

Definition. VC dimension
dVC(F ) = max{|s| : s ⊆ X , f shatters s}

Here, we say that a family of binary functions F shatters a set S ∈ X if F|S = 2|S|.

Theorem 2.1. Sauer’s Lemma: If F ⊆ {±1}X and dV C = d, then ΠF (n) ≤
∑d

i=0 (n
i ). And for n ≥ d,

ΠF (n) ≤
(

en
d

)d
That means: if dV C(F ) is ∞, we always get exponential growth function; however, if dV C(F ) = d is finite,
the growth function increases exponentially up to d and polynomially for n > d.

Proof. Fix (x1, . . . , xn) ∈ X , and consider a table containing the values of functions in the class F|xn
1

restricted to the sample. For instance, consider the following example:

x1 x2 x3 x4 x5

f1 - + - + +
f2 + - - + +
f3 + + + - +
f4 - + + - -
f5 - - - + -

Each row is one possible evaluation of the functions in F on the fixed sample, and the cardinality of F|xn
1

equals to the number of rows. We transform the table by ”shifting” columns.

Definition. shifting column i: for each row, replace a “+” in column i with a “-” unless it would produce
a row that is already in the table.

After applying the shifting operation in order from x1 to x5, we get the table(F ∗
|xn

1
):

x1 x2 x3 x4 x5

f1 - + - - -
f2 - - - + +
f3 - - - - +
f4 - - - - -
f5 - - - + -

Observations:

(1) Size of the table unchanged, because the rows in F ∗
|xn

1
are still distinct;

(2) The table F ∗
|xn

1
exhibits ”closed below” property, i.e., for each row containing a “+”, replacing that

“+” with a “-” produces another row in the table.

(3) dV C(F ∗
|xn

1
) ≤ dV C(F|xn

1
). To see this, consider the application of the shifting operation to a single

column, and notice that if F ∗ (after shifting) shatters a subset of columns, then so does F (before
shifting).

Therefore,

(3) and (2) ⇒ F ∗ can not have more than d ”+”’s in a row. Hence, #row of F ∗ ≤
∑d

i=0 (n
i );
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(1) ⇒ |F|xn
1
| ≤

∑d
i=1 (n

i )

Also, if n ≥ d, we have:

ΠF (n) ≤
d∑

i=0

(n
i ) ≤

(en

d

)d

Because:

d∑
i=0

(n
i ) ≤ (

n

d
)d

d∑
i=0

(n
i )
(

d

n

)i

= (
n

d
)d

(
1 +

d

n

)n

≤
(en

d

)d

�

In summary, we have:

ΠF (n) =
{

2n, n ≤ d;
≤
(

en
d

)d
, n > d.

(4)

Plug Eqn.(4) and Eqn.(3) into Eqn.(1), we have: for dV C(F ) ≤ d, with probability at least 1− δ,

Elf̂ ≤ inf
f∈F

Elf +

√
2d · log(en/d)

n
+ c

√
log 1

δ

n

Now let’s look at a lower bound on the expected loss of a function class. We have the following converse of
Theorem 2.1.

Theorem 2.2. Converse Theorem: For a function class F with dV C(F ) ≥ d, δ < 1/200 (a small constant),
and any fn : (X × {±1})n ×X 7→ {±1}, ∃ probability distribution P on X × Y, such that w.p. ≥ δ:

E [l(Y, fn(X1, Y1, . . . , Xn, Yn ; X))|x1, y1, . . . , xn, yn]− inf
f∈F

El(f(X), Y ) ≥ c ·min

(√
d

n
, 1

)

Proof. Proof Idea: Suppose we have a shattered set {x1, . . . , xn} by class F , and we choose our Y based
on the following probability distribution P :

P (Y = 1|X = xi) =
1
2
± ε

Because ε > 0 is a very small number, it is very hard to distinguish its probability (either be 1 or 0) for
each xi. Therefore, it requires a large number of examples from each position of the set in order to get the
correct estimation. This will make the learning problem harder.

Intuitively, this Theorem tells us that: there remains a probability distribution such that the expected loss
drops very slowly.
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3 Rademacher averages: applications

In this section, we will learn how to estimate the Rademacher averages for function classes that are built
from simpler classes. The following lists some properties of Rademacher averages (recall its definition in
Eqn.(2)).

(1) F ⊆ G ⇒ Rn(F ) ≤ Rn(G); [based on the definition]

(2) Rn(c · F ) = |c|Rn(F ), where c · F = {x 7→ c · f(x) : f ∈ F}. Based on the definition:

Rn(cF ) = E sup
f∈F

1
n

n∑
i=1

cεif(xi)

where εi is uniformly distributed r.v., ε ∈ ±1. |c|εi has the same distribution as cεi, which leads to,

Rn(cF ) = |c|E sup
f∈F

1
n

n∑
i=1

εif(xi) = |c| ·Rn(F )

(3) Rn(F + g) = Rn(F ), where F + g is defined as {x 7→ f(x) + g(x) : f ∈ F}. This is because:

Rn(F + g) = E sup
f∈F

1
n

n∑
i=1

εi(f(xi) + g(xi))

= E sup
f∈F

1
n

n∑
i=1

εif(xi) + E
1
n

n∑
i=1

εig(xi)

= E sup
f∈F

1
n

n∑
i=1

εif(xi) = Rn(F )

The last equality is because g(xi) is constant, therfore, its expectation is zero.

(4) For a class of functions F , let co(F ) represents its convex hull,

co(F ) :=

{
k∑

i=1

αifi : k ≥ 1, αi ≥ 0, ‖α‖1 = 1, fi ∈ F

}
.

Then we have: Rn(F ) = Rn(co(F )). Based on the definition:

Rn(co(F )) = E sup
f1,...,fm∈F

||α||1=1

1
n

n∑
i=1

εi

m∑
j=1

αjfj(xi)

= E sup
fj∈F

sup
||α||1=1

m∑
j=1

αj

(
1
n

n∑
i=1

εifj(xi)

)

= E sup
fj∈F

max
j

1
n

∑
εifj(xi)

= Rn(F )

where the third equality follows from the fact that the maximum of a linear function over the simplex
is always achieved at one of the vertices.

(5) Ledoux-Talagrand contraction inequality: If φi : R → R satisfies |φi(a)− φi(b)| ≤ L|a− b|), then

E sup
f∈F

1
n

n∑
i=1

εiφi(f(xi)) ≤ L · E sup
f∈F

1
n

n∑
i=1

εif(xi)


