
CS281B/Stat241B (Spring 2008) Statistical Learning Theory Lecture: 17

Rademacher Averages and Growth Functions

Lecturer: Peter Bartlett Scribe: Kurt Miller

In previous lectures, we showed that with probability ≥ 1− δ,

R(f̂) ≤ inf
f∈F

R(f) + 2Rn(`F ) + c

√
log(1/δ)

n
, (1)

where
f̂ = arg min

f∈F
R̂(f)

and Rn(F ) is the Rademacher average

Rn(F ) = E

[
sup
f∈F

1
n

n∑
i=1

εif(xi)

]
.

We have also proved various properties of Rademacher averages. The properties relevant here are:

1. When scaling F by a constant factor c,

Rn(cF ) = |c|Rn(F ).

2. The Ledoux-Talagrand contraction inequality: for `-Lipschitz functions φ

Rn(φ ◦ F ) ≤ `Rn(F ).

Example 1

Let F ⊆ RX , φ : R 7→ [0, 1] be 1-Lipschitz, and consider `F = {(x, y) 7→ φ(yf(x)) : f ∈ F}. For example,
φ could be the truncated hinge loss φ(α) = min(1,max(1 − α, 0)). Then, using the contraction mapping
inequality, with probability ≥ 1− δ

Eφ(Y f(X))− Ê(φ(Y f(X))) ≤ 2Rn(`F ) +

√
log(1/δ)

2n

≤ 2Rn(F ) +

√
log(1/δ)

2n
.

This can also be applied to the truncated exponential loss φ(α) = min(1, e−α).

Example 2

Let G ⊆ {±1}X with dVC(G) < ∞. Let F = λco(G) = {x 7→
∑
αigi(x) : gi ∈ G,

∑
αi = λ, αi ≥ 0}, i.e.

F is the convex hull of G scaled by λ, a constant > 0. Then, for a constant c which includes the Lipschitz
constant of our loss φ,

Rn(F ) = λRn(co(G))
= λRn(G)

= cλ

√
dVC(G)

n
.
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So therefore

Rφ((̂f)) ≤ inf
f∈F

Rφ(f) + cλ

√
dVC(G) + log(1/δ)

n
.

As λ increases, the optimal risk inff∈F Rφ(f) decreases, but the second term increases, so there is a tradeoff
when choosing λ.

1 Rademacher Averages of Kernel Classes

Let F be a kernel class. We have previously seen the optimization

minimizef cÊφ(Y f(X)) + ‖f‖H

for RKHS H. For appropriate settings of Lagrangian multipliers, this is equivalent to

minimizef :‖f‖H≤B cÊφ(Y f(X)).

We therefore wish to look at the Rademacher average Rn(FB) of FB = {f ∈ H : ‖f‖H ≤ B}. Let K be the
kernel matrix for Xn

1 = {x1, · · · , xn} using the reproducing kernel for H so that Kij = k(xi, xj).

Theorem 1.1.

R̂n(FB) ≡ E

[
sup

f∈FB

1
n

n∑
i=1

εif(xi)

∣∣∣∣∣Xn
1

]

≤ B

n

√
trace(K)

=
B√
n

√√√√ 1
n

n∑
i=1

k(xi, xi)

Also if {λj} are the eigenvalues of Tk : f 7→
∫
k(·, x)f(x)dP (x), then

Rn(FB) ≤ B

√√√√ ∞∑
i=1

λi/n

Proof. Using properties of the reproducing kernel and linearity,

sup
f∈FB

1
n

n∑
i=1

εif(xi) = sup
f∈FB

1
n

n∑
i=1

εi
〈
k(xi, ·), f

〉
= sup

f :‖f‖H≤B

〈
1
n

n∑
i=1

εik(xi, ·), f

〉

= B
‖ 1

n

∑n
i=1 εik(xi, ·)‖2

‖ 1
n

∑n
i=1 εik(xi, ·)‖

= B

∥∥∥∥∥ 1
n

n∑
i=1

εik(xi, ·)

∥∥∥∥∥
= B

√√√√ 1
n2

n∑
i,j

εiεjk(xi, xj)



Rademacher Averages and Growth Functions 3

Therefore by an application of Jensen’s inequality and using the fact that εi are i.i.d. with E(εi) = 0 and
Var(εi) = 1,

R̂n(FB) = E

B
n

√√√√ n∑
i,j

εiεjk(xi, xj)

∣∣∣∣∣Xn
1



≤ B

n

√√√√√E

 n∑
i,j

εiεjk(xi, xj)
∣∣∣∣Xn

1


=

B

n

√√√√ n∑
i

k(xi, xi)

=
B√
n

√√√√ 1
n

n∑
i

k(xi, xi)

where the last line has been rewritten to emphasize the fact that this is function of the average of k(xi, xi).

Furthermore, since Rn(FB) = ER̂n(FB), then using the above result along with Jensen’s inequality again,
we get that

Rn(FB) = ER̂n(FB)

≤ E
B√
n

√√√√ 1
n

n∑
i

k(xi, xi)

≤ B√
n

√√√√E
1
n

n∑
i

k(xi, xi)

=
B√
n

√
Ek(x, x).

Now using the fact that k(x, y) =
∑∞

i=1 λiψi(x)ψi(y) for an orthonormal eigenbasis ψi, then we get

Rn(FB) ≤ B√
n

√
Ek(x, x)

≤ B√
n

√√√√ ∞∑
i=1

λi

as desired.

Therefore

Eφ(Y f(X)) ≤ Êφ(Y f(X)) + 2Rn(`F ) +
√

log(1/δ)/2n

≤ Êφ(Y f(X)) +
cB√
n

√√√√ ∞∑
i=1

λi +
√

log(1/δ)/2n

where c is a constant that includes the Lipschitz constant of φ used in our loss function.
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2 Growth Functions

We have defined the growth function ΠF (n) to be

ΠF (n) = max
{
|F|Xn

1
| : {x1, · · · , xn} ⊆ X

}
and have shown that

Rn(F ) ≤
√

2 log(ΠF (n))/n

for F ⊆ {±1}X . In other words, ΠF (n) is the maximum number of distinct labelings that functions f ∈ F
can assign to any set of n points in X . Therefore, by definition, dVC = max{n : ΠF (n) = 2n}.

Motivation: We wish to compute the growth function for parameterized binary functions

F = {x 7→ f(x, θ) : θ ∈ Θ}

where Θ ⊆ R. If we can bound the growth function, then we can bound the risk of f̂ in equation (1). For
now, we will focus on the special case of linear threshold functions

F = {x 7→ sign(w′x− θ) : w ∈ Rd, θ ∈ R}

where (for concreteness), we let

sign(α) =

{
1 α ≥ 0
−1 α < 0

.

Theorem 2.1. For the class F of linear threshold functions

ΠF (n) = 2
d∑

i=0

(
n− 1
i

)
.

Proof sketch. We provide only a sketch of the proof here1.

Start by fixing a set of points S ⊆ Rd where |S| = n. The idea of the proof is to divide the parameter
space of (w, θ) = Rd+1 into “decision equivalence classes.” We will show that there are finitely many such
equivalence classes and that they can be counted by a geometric argument originally given by Schaffli in
1851.

1. Assume the points in S are in “general position,” i.e. all subsets{(
x1

1

)
,

(
x2

1

)
, · · · ,

(
xn

1

)}
of size ≤ d + 1 are linearly independent. This implies that no three points are in a line, no four are
in a plane, etc. If this is not true, then note that a small random perturbation will put the points in
general position.

2. For each xi ∈ S, define the hyperplane

Pi =
{
(w, θ) ∈ Rd+1 : w′xi + θ = 0

}
.

1The full version of this proof can be found in Neural Network Learning: Theoretical Foundations by M. Anthony and
P. Bartlett, pages 30–35. This proof emphasizes the link to the parameterized classes that we consider in the next lecture.
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In order for (w, θ) and (w′, θ′) to label xi differently, they must lie on opposite sides of Pi (assuming
neither is on Pi). So define the set of connected components (CC) in Rd+1 when split by all Pi to be∣∣F|S∣∣ = CC(Rd+1 \ ∪n

i=1Pi)
≡ C(n, d+ 1).

Note that C(n, d + 1) does not depend on the actual choice of S. It only depends on the number
of points n and the dimensionality of the space d that they lie in. The key here is that all (w, θ) in
the same connected component label each point identically. For each (w, θ) and (w′, θ′) in different
connected components, they label at least one point differently. Therefore, the number of connected
components directly corresponds to the number of different labelings of S that can be achieved by F .

3. We first note that C(1, d) = 2 ∀d. This is because in any dimension with 1 point, P1 will always split
Rd into two.

4. Next, we show C(n + 1, d) = C(n, d) + C(n, d − 1). This is because C(n, d) corresponds to how
many connected components there are with only n points. When we add the n + 1th point, all these
components still exist, but some of them are broken in two. This means that C(n + 1, d) = C(n, d)+
the number of components in C(n, d) that were split by Pn+1. This additional value is equal to the
number of connected components of Pn+1 \ ∪n

i=1Pi, which is equal to c(n, d− 1).

5. By induction, this shows that C(n, d) = 2
∑d−1

k=0

(
n−1

k

)
, which proves the desired result.

This gives us the growth function for linear threshold functions. In the next lecture, we will give a similar
result for more general parameterized binary classes

F = {x 7→ f(x, θ) : θ ∈ Θ}.


