Rademacher Averages and Growth Functions

Lecturer: Peter Bartlett
Scribe: Kurt Miller

In previous lectures, we showed that with probability $\geq 1-\delta$,

$$
\begin{equation*}
R(\hat{f}) \leq \inf _{f \in F} R(f)+2 R_{n}\left(\ell_{F}\right)+c \sqrt{\frac{\log (1 / \delta)}{n}} \tag{1}
\end{equation*}
$$

where

$$
\hat{f}=\arg \min _{f \in F} \hat{R}(f)
$$

and $R_{n}(F)$ is the Rademacher average

$$
R_{n}(F)=\mathbb{E}\left[\sup _{f \in F} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f\left(x_{i}\right)\right]
$$

We have also proved various properties of Rademacher averages. The properties relevant here are:

1. When scaling F by a constant factor c,

$$
R_{n}(c F)=|c| R_{n}(F)
$$

2. The Ledoux-Talagrand contraction inequality: for ℓ-Lipschitz functions ϕ

$$
R_{n}(\phi \circ F) \leq \ell R_{n}(F)
$$

Example 1

Let $F \subseteq \mathbb{R}^{\mathcal{X}}, \phi: \mathbb{R} \mapsto[0,1]$ be 1-Lipschitz, and consider $\ell_{F}=\{(x, y) \mapsto \phi(y f(x)): f \in F\}$. For example, ϕ could be the truncated hinge loss $\phi(\alpha)=\min (1, \max (1-\alpha, 0))$. Then, using the contraction mapping inequality, with probability $\geq 1-\delta$

$$
\begin{aligned}
\mathbb{E} \phi(Y f(X))-\hat{\mathbb{E}}(\phi(Y f(X))) & \leq 2 R_{n}\left(\ell_{F}\right)+\sqrt{\frac{\log (1 / \delta)}{2 n}} \\
& \leq 2 R_{n}(F)+\sqrt{\frac{\log (1 / \delta)}{2 n}}
\end{aligned}
$$

This can also be applied to the truncated exponential loss $\phi(\alpha)=\min \left(1, e^{-\alpha}\right)$.

Example 2

Let $G \subseteq\{ \pm 1\}^{\mathcal{X}}$ with $d_{\mathrm{VC}}(G)<\infty$. Let $F=\lambda \operatorname{co}(G)=\left\{x \mapsto \sum \alpha_{i} g_{i}(x): g_{i} \in G, \sum \alpha_{i}=\lambda, \alpha_{i} \geq 0\right\}$, i.e. F is the convex hull of G scaled by λ, a constant >0. Then, for a constant c which includes the Lipschitz constant of our loss ϕ,

$$
\begin{aligned}
R_{n}(F) & =\lambda R_{n}(\operatorname{co}(G)) \\
& =\lambda R_{n}(G) \\
& =c \lambda \sqrt{\frac{d_{\mathrm{VC}}(G)}{n}}
\end{aligned}
$$

So therefore

$$
\left.R_{\phi}(\hat{(} f)\right) \leq \inf _{f \in F} R_{\phi}(f)+c \lambda \sqrt{\frac{d_{\mathrm{VC}}(G)+\log (1 / \delta)}{n}} .
$$

As λ increases, the optimal risk $\inf _{f \in F} R_{\phi}(f)$ decreases, but the second term increases, so there is a tradeoff when choosing λ.

1 Rademacher Averages of Kernel Classes

Let F be a kernel class. We have previously seen the optimization

$$
\operatorname{minimize}_{f} \quad c \hat{\mathbb{E}} \phi(Y f(X))+\|f\|_{\mathcal{H}}
$$

for RKHS \mathcal{H}. For appropriate settings of Lagrangian multipliers, this is equivalent to

$$
\operatorname{minimize}_{f:\|f\|_{\mathcal{H}} \leq B} c \hat{\mathbb{E}} \phi(Y f(X)) .
$$

We therefore wish to look at the Rademacher average $R_{n}\left(F_{B}\right)$ of $F_{B}=\left\{f \in \mathcal{H}:\|f\|_{\mathcal{H}} \leq B\right\}$. Let K be the kernel matrix for $X_{1}^{n}=\left\{x_{1}, \cdots, x_{n}\right\}$ using the reproducing kernel for \mathcal{H} so that $K_{i j}=k\left(x_{i}, x_{j}\right)$.

Theorem 1.1.

$$
\begin{aligned}
\hat{R}_{n}\left(F_{B}\right) & \equiv \mathbb{E}\left[\left.\sup _{f \in F_{B}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f\left(x_{i}\right) \right\rvert\, X_{1}^{n}\right] \\
& \leq \frac{B}{n} \sqrt{\operatorname{trace}(K)} \\
& =\frac{B}{\sqrt{n}} \sqrt{\frac{1}{n} \sum_{i=1}^{n} k\left(x_{i}, x_{i}\right)}
\end{aligned}
$$

Also if $\left\{\lambda_{j}\right\}$ are the eigenvalues of $T_{k}: f \mapsto \int k(\cdot, x) f(x) d P(x)$, then

$$
R_{n}\left(F_{B}\right) \leq B \sqrt{\sum_{i=1}^{\infty} \lambda_{i} / n}
$$

Proof. Using properties of the reproducing kernel and linearity,

$$
\begin{aligned}
\sup _{f \in F_{B}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f\left(x_{i}\right) & =\sup _{f \in F_{B}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i}\left\langle k\left(x_{i}, \cdot\right), f\right\rangle \\
& =\sup _{f:\|f\|_{\mathcal{H}} \leq B}\left\langle\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} k\left(x_{i}, \cdot\right), f\right\rangle \\
& =B \frac{\left\|\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} k\left(x_{i}, \cdot\right)\right\|^{2}}{\left\|\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} k\left(x_{i}, \cdot\right)\right\|} \\
& =B\left\|\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} k\left(x_{i}, \cdot\right)\right\| \\
& =B \sqrt{\frac{1}{n^{2}} \sum_{i, j}^{n} \epsilon_{i} \epsilon_{j} k\left(x_{i}, x_{j}\right)}
\end{aligned}
$$

Therefore by an application of Jensen's inequality and using the fact that ϵ_{i} are i.i.d. with $\mathbb{E}\left(\epsilon_{i}\right)=0$ and $\operatorname{Var}\left(\epsilon_{i}\right)=1$,

$$
\begin{aligned}
\hat{R}_{n}\left(F_{B}\right) & =\mathbb{E}\left[\left.\frac{B}{n} \sqrt{\sum_{i, j}^{n} \epsilon_{i} \epsilon_{j} k\left(x_{i}, x_{j}\right)} \right\rvert\, X_{1}^{n}\right] \\
& \leq \frac{B}{n} \sqrt{\mathbb{E}\left[\sum_{i, j}^{n} \epsilon_{i} \epsilon_{j} k\left(x_{i}, x_{j}\right) \mid X_{1}^{n}\right]} \\
& =\frac{B}{n} \sqrt{\sum_{i}^{n} k\left(x_{i}, x_{i}\right)} \\
& =\frac{B}{\sqrt{n}} \sqrt{\frac{1}{n} \sum_{i}^{n} k\left(x_{i}, x_{i}\right)}
\end{aligned}
$$

where the last line has been rewritten to emphasize the fact that this is function of the average of $k\left(x_{i}, x_{i}\right)$. Furthermore, since $R_{n}\left(F_{B}\right)=\mathbb{E} \hat{R}_{n}\left(F_{B}\right)$, then using the above result along with Jensen's inequality again, we get that

$$
\begin{aligned}
R_{n}\left(F_{B}\right) & =\mathbb{E} \hat{R}_{n}\left(F_{B}\right) \\
& \leq \mathbb{E} \frac{B}{\sqrt{n}} \sqrt{\frac{1}{n} \sum_{i}^{n} k\left(x_{i}, x_{i}\right)} \\
& \leq \frac{B}{\sqrt{n}} \sqrt{\mathbb{E} \frac{1}{n} \sum_{i}^{n} k\left(x_{i}, x_{i}\right)} \\
& =\frac{B}{\sqrt{n}} \sqrt{\mathbb{E} k(x, x)} .
\end{aligned}
$$

Now using the fact that $k(x, y)=\sum_{i=1}^{\infty} \lambda_{i} \psi_{i}(x) \psi_{i}(y)$ for an orthonormal eigenbasis ψ_{i}, then we get

$$
\begin{aligned}
R_{n}\left(F_{B}\right) & \leq \frac{B}{\sqrt{n}} \sqrt{\mathbb{E} k(x, x)} \\
& \leq \frac{B}{\sqrt{n}} \sqrt{\sum_{i=1}^{\infty} \lambda_{i}}
\end{aligned}
$$

as desired.
Therefore

$$
\begin{aligned}
\mathbb{E} \phi(Y f(X)) & \leq \hat{\mathbb{E}} \phi(Y f(X))+2 R_{n}\left(\ell_{F}\right)+\sqrt{\log (1 / \delta) / 2 n} \\
& \leq \hat{\mathbb{E}} \phi(Y f(X))+\frac{c B}{\sqrt{n}} \sqrt{\sum_{i=1}^{\infty} \lambda_{i}}+\sqrt{\log (1 / \delta) / 2 n}
\end{aligned}
$$

where c is a constant that includes the Lipschitz constant of ϕ used in our loss function.

2 Growth Functions

We have defined the growth function $\Pi_{F}(n)$ to be

$$
\Pi_{F}(n)=\max \left\{\left|F_{\mid X_{1}^{n}}\right|:\left\{x_{1}, \cdots, x_{n}\right\} \subseteq \mathcal{X}\right\}
$$

and have shown that

$$
R_{n}(F) \leq \sqrt{2 \log \left(\Pi_{F}(n)\right) / n}
$$

for $F \subseteq\{ \pm 1\}^{\mathcal{X}}$. In other words, $\Pi_{F}(n)$ is the maximum number of distinct labelings that functions $f \in F$ can assign to any set of n points in \mathcal{X}. Therefore, by definition, $d_{\mathrm{VC}}=\max \left\{n: \Pi_{F}(n)=2^{n}\right\}$.
Motivation: We wish to compute the growth function for parameterized binary functions

$$
F=\{x \mapsto f(x, \theta): \theta \in \Theta\}
$$

where $\Theta \subseteq \mathbb{R}$. If we can bound the growth function, then we can bound the risk of \hat{f} in equation (1). For now, we will focus on the special case of linear threshold functions

$$
F=\left\{x \mapsto \operatorname{sign}\left(w^{\prime} x-\theta\right): w \in \mathbb{R}^{d}, \theta \in \mathbb{R}\right\}
$$

where (for concreteness), we let

$$
\operatorname{sign}(\alpha)= \begin{cases}1 & \alpha \geq 0 \\ -1 & \alpha<0\end{cases}
$$

Theorem 2.1. For the class F of linear threshold functions

$$
\Pi_{F}(n)=2 \sum_{i=0}^{d}\binom{n-1}{i}
$$

Proof sketch. We provide only a sketch of the proof here ${ }^{1}$.
Start by fixing a set of points $S \subseteq \mathbb{R}^{d}$ where $|S|=n$. The idea of the proof is to divide the parameter space of $(w, \theta)=\mathbb{R}^{d+1}$ into "decision equivalence classes." We will show that there are finitely many such equivalence classes and that they can be counted by a geometric argument originally given by Schaffli in 1851.

1. Assume the points in S are in "general position," i.e. all subsets

$$
\left\{\binom{x_{1}}{1},\binom{x_{2}}{1}, \cdots,\binom{x_{n}}{1}\right\}
$$

of size $\leq d+1$ are linearly independent. This implies that no three points are in a line, no four are in a plane, etc. If this is not true, then note that a small random perturbation will put the points in general position.
2. For each $x_{i} \in S$, define the hyperplane

$$
P_{i}=\left\{(w, \theta) \in \mathbb{R}^{d+1}: w^{\prime} x_{i}+\theta=0\right\} .
$$

[^0]In order for (w, θ) and $\left(w^{\prime}, \theta^{\prime}\right)$ to label x_{i} differently, they must lie on opposite sides of P_{i} (assuming neither is on $\left.P_{i}\right)$. So define the set of connected components (CC) in \mathbb{R}^{d+1} when split by all P_{i} to be

$$
\begin{aligned}
\left|F_{\mid S}\right| & =\mathrm{CC}\left(\mathbb{R}^{d+1} \backslash \cup_{i=1}^{n} P_{i}\right) \\
& \equiv C(n, d+1)
\end{aligned}
$$

Note that $C(n, d+1)$ does not depend on the actual choice of S. It only depends on the number of points n and the dimensionality of the space d that they lie in. The key here is that all (w, θ) in the same connected component label each point identically. For each (w, θ) and $\left(w^{\prime}, \theta^{\prime}\right)$ in different connected components, they label at least one point differently. Therefore, the number of connected components directly corresponds to the number of different labelings of S that can be achieved by F.
3. We first note that $C(1, d)=2 \forall d$. This is because in any dimension with 1 point, P_{1} will always split \mathbb{R}^{d} into two.
4. Next, we show $C(n+1, d)=C(n, d)+C(n, d-1)$. This is because $C(n, d)$ corresponds to how many connected components there are with only n points. When we add the $n+1^{\text {th }}$ point, all these components still exist, but some of them are broken in two. This means that $C(n+1, d)=C(n, d)+$ the number of components in $C(n, d)$ that were split by P_{n+1}. This additional value is equal to the number of connected components of $P_{n+1} \backslash \cup_{i=1}^{n} P_{i}$, which is equal to $c(n, d-1)$.
5. By induction, this shows that $C(n, d)=2 \sum_{k=0}^{d-1}\binom{n-1}{k}$, which proves the desired result.

This gives us the growth function for linear threshold functions. In the next lecture, we will give a similar result for more general parameterized binary classes

$$
F=\{x \mapsto f(x, \theta): \theta \in \Theta\}
$$

[^0]: ${ }^{1}$ The full version of this proof can be found in Neural Network Learning: Theoretical Foundations by M. Anthony and P. Bartlett, pages 30-35. This proof emphasizes the link to the parameterized classes that we consider in the next lecture.

