$1 \quad \Pi_{F}(n)$ for parameterized F

$$
F=\left\{x \rightarrow \operatorname{sign}(f(a, x)) \mid a \in \mathbb{R}^{d}, f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}\right\}
$$

For a family of classifiers F, linear in a, we have $d_{v c}(F)=d$, where $d=$ the number of parameters.

Example. $f(w, x)=\sin (w x) \Rightarrow d_{v c}(F)=\infty$, even though f is smooth.
Set $w=\pi c$, where c has a binary representation $0 . b_{1} b_{2} \ldots . b_{n} 1$.
Set $x_{i}=2^{i}$ for $i=1, \ldots, n$. Then

$$
\begin{aligned}
\sin \left(w x_{i}\right) & =\sin \left(2^{i} \times \pi \times 0 . b_{1} \ldots b_{n} 1\right) \\
& =\sin \left(\pi \times b_{1} \ldots \cdot b_{i} \cdot b_{i+1} \ldots \cdot b_{n} 1\right) \\
& =\sin \left(\pi \times b_{i} \cdot b_{1+1} \ldots \cdot b_{n} 1\right)
\end{aligned}
$$

which implies that $\operatorname{sign}\left(\sin \left(w x_{i}\right)\right)=b_{i}$. Hence, we can always find a set of size $n \forall n$.

Example (Neural Nets).

$$
f(\theta, x)=\sum_{i=1}^{k} \alpha_{i} \underbrace{\sigma\left(\beta_{i}^{T} x\right)}_{\substack{\text { squashing } \\ \text { function }}}+\alpha_{o}
$$

For what $\sigma: \mathbb{R} \rightarrow[0,1]$ is $d_{v c}(F)<\infty$?

For instance, if $\sigma(\alpha)=\underbrace{\frac{1}{1+e^{-\alpha}}+c \alpha^{3} e^{-\alpha^{2}} \sin (\alpha)}_{\begin{array}{c}\text { Looks like a sigmoid but } \\ \text { has a sinusoid hidden in it }\end{array}}$, we have $d_{v c}(F)=\infty$. Take note that σ is convex left of
zero and concave right of zero.

Consider the function $h: \underbrace{\mathbb{R}^{d}}_{a} \times \underbrace{\mathbb{R}^{m}}_{x} \rightarrow\{+-1\}$ that can be computed by an algorithm that takes as input, $(a, x) \in \mathbb{R}^{d} \times \mathbb{R}^{m}$, and returns as $h(a, x)$ after $\leq t$ operations:

- arithmetic, $(+,-, \times, \div)$
- conditionals $(<,>, \leq, \geq)$
- outputs ± 1

Definition. For a class, F, of real valued functions on $\overbrace{\mathbb{R}^{d}}^{\substack{\text { cont. } \\ \text { in a }}} \times \mathcal{X}$, we say h is a $\underline{k-\text { combination of } \operatorname{sign}(F)) ~}$ if:
$\mathcal{H}=\left\{x \rightarrow g\left(\operatorname{sign}\left(f_{1}(a, x)\right), \ldots, \operatorname{sign}\left(f_{k}(a, x)\right)\right) \mid a \in \mathbb{R}^{d}\right\}$ for fixed $g:\{ \pm 1\}^{k} \rightarrow\{ \pm 1\}$ and $f_{1}, \ldots, f_{k} \in F$.
E.g. For a $t-$ step computable h, we have a 2^{t}-combination of $\operatorname{sign}(F)$ for $F=$ polynomials of degree $\leq 2^{t}$.

Theorem 1.1. For H a k-combination of $\operatorname{sign}(F)$,

$$
\Pi_{H}(n) \leq \sum_{i=0}^{d}\binom{k n}{i} \max _{\left\{f_{j}\right\} \in F,\left\{x_{j}\right\} \in \mathcal{X}} \underbrace{C C\left(\bigcap_{j=1}^{i}\left\{a \mid f_{j}\left(a, x_{j}\right)=0\right\}\right)}_{\begin{array}{c}
\text { number of connected components } \\
\text { in the solution set }
\end{array}}
$$

Example. Linear threshold function ($1-$ combination of $\operatorname{sign}(F)$)

- f_{j} is linear in a.
$\underbrace{C C}_{\text {- } \underbrace{C C\left(\bigcap_{j=1}^{i}\left\{a \mid f_{j}\left(a, x_{j}\right)=0\right\}\right)}_{\text {-fines a subspace }}}=0$ or 1

Corollary 1.2. For F, polynomialy parameterized, with degree $\leq m$, we have

$$
\begin{aligned}
\Pi_{H}(n) & \leq 2\left(\frac{2 e n k m}{d}\right)^{d} \\
d_{v c}(H) & \leq 2 d \log (2 e k m)
\end{aligned}
$$

- Hence, t - step computable, H has $d_{v c}(H) \leq 4 d(t+2)$ (using $\Pi_{H}(n)<2^{n} \Rightarrow d_{v c}(H)<n$).

Note: With the addition of exponentials in the model of computation, we have $d_{v c}(H)=O\left(t^{2} d^{2}\right)$.

Proof. Proof idea of previous theorem.

- $\Pi_{H}(n)=\max \left\{\left|H_{\mid S}\right|: S \subseteq \mathcal{X},|S|=n\right\}$
- $Z_{i j}=\left\{a \mid f_{i}\left(a, x_{j}\right)=0\right\}$, assume regular intersections between these subspaces.

Lemma 1.3 (Warren 1960).

$$
C C\left(\mathbb{R}^{d}-\bigcup_{i, j} Z_{i j}\right) \leq \sum_{I \subseteq\{(i, j)\}} C C\left(\bigcap_{i \in I} Z_{i}\right)
$$

Summarize: $d_{v c}(H)=O(d t)$ for $t-$ step computeable h : $2^{t}-\operatorname{combination}$ of $\operatorname{sign}(F)$ for $F=$ polynomial with degree $\leq 2^{t}$.

2 Covering Numbers

Definition. For a metric space, (S, ρ), and a subspace, $T \subseteq S$, we say that \hat{T} is an $\underline{\varepsilon-c o v e r}$ of T if $\forall t \in T, \exists \hat{t} \in \hat{T}$ such that $\rho(t, \hat{t})<\varepsilon$.

$N(\varepsilon, T, \rho)=\min \{|\hat{T}|: \hat{T}$ is an $\varepsilon-$ cover of $T\}$.

Note: Entropy $:=\log N(\varepsilon, T, \rho)$

Example. $T \subseteq[0,1]^{n}$ is a d-dimensional subspace. A bound on the covering number for this subspace can be found in terms of a uniform grid of ε-balls over the subspace, i.e.
$N\left(\varepsilon, T, L_{2}\left(P_{n}\right)\right) \leq\left(\frac{1}{\varepsilon}\right)^{d}$

Consider,

- $F \subseteq[-1,1]^{\mathcal{X}}$
- $S=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathcal{X}$.
- $F_{\mid s}=\left\{\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right) \mid f \in F\right\} \subseteq[-1,1]^{n}\right.$.
- $L_{2}(\hat{P}), \quad \rho(u, v)=\left(\frac{1}{n} \sum_{i}\left(u_{i}-v_{i}\right)^{2}\right)^{1 / 2}$.

Theorem 2.1.

$$
\hat{R}_{n}(F) \leq \inf _{\alpha>0}\left(\sqrt{\frac{2 \log \left(N\left(\alpha, F, L_{2}(\hat{P})\right)\right.}{n}}+\alpha\right)
$$

Proof. Fix α, α-cover $\hat{F} o f F$.

$$
\left.\begin{array}{rl}
\hat{R}_{n}(F) & =\mathbb{E}_{\varepsilon} \sup _{f \in F} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f\left(x_{i}\right) \\
& =\mathbb{E} \sup _{\hat{f} \in \hat{F}} \sup _{f \in F \cap B_{\alpha}(\hat{f})}(\frac{1}{n} \sum \varepsilon_{i} \hat{f}\left(x_{i}\right)+\underbrace{\frac{1}{n} \underbrace{f-\hat{f}}_{\|\cdot\| \leq \alpha} \hat{l}_{L_{2}(\hat{p})}}_{\langle\underbrace{\varepsilon}_{\|\varepsilon\|=1}} \varepsilon_{i}\left(x_{i}\right)-\hat{f}\left(x_{i}\right))
\end{array}\right)
$$

Note:

- $F=\bigcup_{\hat{f} \in \hat{F}}\left(F \cap B_{\alpha}(\hat{f})\right)$
- $|\hat{F}|=N\left(\alpha, F, L_{2}(\hat{P})\right)$
$\Rightarrow \log N(\alpha, F)=d \log (1 / \alpha)$ for the linear case.
Set $\alpha=\frac{1}{\sqrt{n}}, \Rightarrow R_{n}(F) \leq \sqrt{\frac{2 d \log (n)}{n}}+\frac{1}{n}$

