CS281B/Stat241B (Spring 2008) Statistical Learning Theory Lecture: 18

[Ip(n) for parameterized F', covering numbers, R, (F)

Lecturer: Peter Bartlett Scribe: Filyan Bitar

1 TIIg(n) for parameterized F

F = {z —sign(f(a,z)) |a €RY, f:RYx R — R}

For a family of classifiers F' | linear in a, we have d,.(F') = d, where d = the number of parameters.

Example. f(w,z) = sin(wz) = dy.(F) = 00, even though f is smooth.
Set w = mwe, where ¢ has a binary representation 0.b1bs....0,, 1.

Set z; = 2% for i = 1,...,n. Then

sin(wr;) = sin(2" x 7 x 0.b;....b, 1)
= Sin(ﬂ' X b1b1b1+1bn1)
= Sin(’IT X b1b1+1bn1)

which implies that sign(sin(wz;)) = b;. Hence, we can always find a set of size n Vn.

Example (Neural Nets).
k
f0,z) = Zai o (Bl x) +a,
- T~

squashing
function

For what 0 : R — [0,1] is dye(F) < 00 ?

For instance, if o(a) +cate™™ sin(a), we have d,.(F) = co. Take note that o is convex left of

14+e@
Looks like a sigmoid but

has a sinusoid hidden in it
zero and concave right of zero.




2 IIp(n) for parameterized F', covering numbers, Ry, (F')

Consider the function h: R? x R™ — {+ — 1} that can be computed by an algorithm that takes as input,

a x
(a,z) € R? x R™, and returns as h(a,z) after < t operations:

e arithmetic, (+, —, x, =)

e conditionals (<, >, <, >)

e outputs *+1

cont.
in a
=
Definition. For a class, F, of real valued functions on R? xX, we say h is a k — combination of sign(F")

if:

H = {z — g(sign(fi(a,z)), ....,sign(fr(a,z))) | a € R?} for fixed g : {+1}* — {£1} and fi,...., fr € F.

E.g. For a t — step computable h, we have a 2t-combination of sign(F') for F' = polynomials of degree < 2°.

Theorem 1.1. For H a k — combination of sign(F),

d 7
Ma(n) < Z(’“”) max cc [ el fa,z;) =0}
j=1

=0 i) {f;}eF{z;}ex

number of connected components
in the solution set

Example. Linear threshold function (1 — combination of sign(F'))

e f; is linear in a.

o CC h{a|fj(a,xj):0} =0orl

j=1

defines a subspace

Corollary 1.2. For F, polynomialy parameterized, with degree < m, we have

) (26nkm> d
d

2d log(2ekm)

dye(H)
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e Hence, t — step computable, H has dy.(H) < 4d(t + 2)
(using Iy (n) < 2" = dy.(H) < n).

Note: With the addition of exponentials in the model of computation, we have d,.(H) = O(t*d?).

Proof. Proof idea of previous theorem.

o lly(n) =max{|Hg| : SCX,|S|=n}
e Z;j ={a]| fi(a,xz;) = 0}, assume regular intersections between these subspaces.

Lemma 1.3 (Warren 1960).

corR -Jz;| < > cc(ﬂzi)
i,

I1C€{(@,5)} i€l
O

Summarize: d,.(H) = O(dt) for t — step computeable h: 2 — combination of sign(F) for F = polynomial
with degree < 2¢.

2 Covering Numbers

Definition. For a metric space, (S,p), and a subspace, T C S, we say that T is an € — cover of T if
VteT, 3t e T such that p(t,t) < e.

Definition. The ¢ — covering number of (7, p):

N(e,T,p) = min{|T| : T is an & — cover of T'}.

Note: Entropy :=log N(e, T, p)

Example. T C [0,1]™ is a d-dimensional subspace. A bound on the covering number for this subspace can
be found in terms of a uniform grid of e-balls over the subspace, i.e.

N(e, T, Ly(Py)) < (1)



4 IIp(n) for parameterized F', covering numbers, Ry, (F')

Consider,

[ ]
« o
IN
o
v)—‘
=
=

={x1,...,2n} C X.
Flo ={(f(@1), o, flan) [ f € F} C [=1,1]"

Lo(P), plu,v) = (2 3, (u — v)?) /%

Theorem 2.1.

Proof. Fix a, a-cover FofF.

1 n
R, (F) = E.sup— e flx;
n( ) Efeg‘n; zf( )

= Esup sup %Z&f(%)—F %Z&(f(l'i) —f(l”z))

feF feFnB.(f)

(_€ 7f_f>L2(ﬁ)

ell=1 . i<a

< E lsup (i Zeif(aci)) ta

feF
Note:
o F=Ujep(FNBal(f))
o |F| = N(a, F, Ly(P))

= log N(«, F) = dlog(1/a) for the linear case.

Set o = ﬁ7:> R, (F) < 20“(;8(") +1



