CS281B/Stat241B (Spring 2008) Statistical Learning Theory

Lecture: 18

 $\Pi_F(n)$ for parameterized F, covering numbers, $R_n(F)$

Lecturer: Peter Bartlett Scribe: Eilyan Bitar

1 $\Pi_F(n)$ for parameterized F

$$F = \{x \to \operatorname{sign}(f(a, x)) \mid a \in \mathbb{R}^d, \ f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}\}\$$

For a family of classifiers F, linear in a, we have $d_{vc}(F) = d$, where d = the number of parameters.

Example. $f(w,x) = \sin(wx) \Rightarrow d_{vc}(F) = \infty$, even though f is smooth.

Set $w = \pi c$, where c has a binary representation $0.b_1b_2....b_n1$.

Set $x_i = 2^i$ for i = 1, ..., n. Then

$$sin(wx_i) = sin(2^i \times \pi \times 0.b_1....b_n 1)
= sin(\pi \times b_1....b_i.b_{i+1}....b_n 1)
= sin(\pi \times b_i.b_{1+1}....b_n 1)$$

which implies that $sign(sin(wx_i)) = b_i$. Hence, we can always find a set of size $n \ \forall n$.

Example (Neural Nets).

$$f(\theta, x) = \sum_{i=1}^{k} \alpha_i \underbrace{\sigma(\beta_i^T x)}_{\text{squashing}} + \alpha_o$$

For what $\sigma : \mathbb{R} \to [0,1]$ is $d_{vc}(F) < \infty$?

For instance, if $\sigma(\alpha) = \underbrace{\frac{1}{1 + e^{-\alpha}} + c\alpha^3 e^{-\alpha^2} \sin(\alpha)}_{\text{Looks like a sigmoid but has a sinusoid hidden in it}}$, we have $d_{vc}(F) = \infty$. Take note that σ is convex left of

zero and concave right of zero.

Consider the function $h: \underbrace{\mathbb{R}^d}_a \times \underbrace{\mathbb{R}^m}_x \to \{+-1\}$ that can be computed by an algorithm that takes as input, $(a,x) \in \mathbb{R}^d \times \mathbb{R}^m$, and returns as h(a,x) after $\leq t$ operations:

- arithmetic, $(+, -, \times, \div)$
- conditionals $(<,>,\leq,\geq)$
- \bullet outputs ± 1

Definition. For a class, F, of real valued functions on $\mathbb{R}^d \times \mathcal{X}$, we say h is a $\underline{k-combination}$ of $\operatorname{sign}(F)$ if:

$$\mathcal{H} = \{x \to g(\text{sign}(f_1(a, x)),, \text{sign}(f_k(a, x))) \mid a \in \mathbb{R}^d\} \text{ for fixed } g : \{\pm 1\}^k \to \{\pm 1\} \text{ and } f_1,, f_k \in F.$$

E.g. For a t-step computable h, we have a 2^t -combination of sign(F) for F= polynomials of degree $\leq 2^t$.

Theorem 1.1. For H a k – combination of sign(F),

$$\Pi_{H}(n) \leq \sum_{i=0}^{d} \binom{kn}{i} \max_{\{f_{j}\} \in F, \{x_{j}\} \in \mathcal{X}} \underbrace{CC\left(\bigcap_{j=1}^{i} \{a \mid f_{j}(a, x_{j}) = 0\}\right)}_{\text{number of connected components}}$$

Example. Linear threshold function (1 - combination of sign(F))

- f_j is linear in a.
- $CC\left(\bigcap_{j=1}^{i} \{a \mid f_j(a, x_j) = 0\}\right) = 0 \text{ or } 1$

Corollary 1.2. For F, polynomialy parameterized, with degree $\leq m$, we have

$$\Pi_{H}(n) \leq 2\left(\frac{2enkm}{d}\right)^{d}$$

$$d_{vc}(H) \leq 2d\log(2ekm)$$

• Hence, t - step computable, H has $d_{vc}(H) \le 4d(t+2)$ (using $\Pi_H(n) < 2^n \Rightarrow d_{vc}(H) < n$).

Note: With the addition of exponentials in the model of computation, we have $d_{vc}(H) = O(t^2d^2)$.

Proof. Proof idea of previous theorem.

- $\bullet \Pi_H(n) = \max\{|H_{|S}| : S \subseteq \mathcal{X}, |S| = n\}$
- $Z_{ij} = \{a \mid f_i(a, x_j) = 0\}$, assume regular intersections between these subspaces.

Lemma 1.3 (Warren 1960).

$$CC\left(\mathbb{R}^d - \bigcup_{i,j} Z_{ij}\right) \le \sum_{I \subseteq \{(i,j)\}} CC\left(\bigcap_{i \in I} Z_i\right)$$

Summarize: $d_{vc}(H) = O(dt)$ for t - step computeable h: $2^t - combination$ of sign(F) for F = polynomial with degree $\leq 2^t$.

2 Covering Numbers

Definition. For a metric space, (S, ρ) , and a subspace, $T \subseteq S$, we say that \hat{T} is an $\underline{\varepsilon - cover}$ of T if $\forall t \in T$, $\exists \hat{t} \in \hat{T}$ such that $\rho(t, \hat{t}) < \varepsilon$.

Definition. The ε – covering number of (T, ρ) :

 $N(\varepsilon, T, \rho) = \min\{|\hat{T}| : \hat{T} \text{ is an } \varepsilon - \text{cover of } T\}.$

Note: $Entropy := \log N(\varepsilon, T, \rho)$

Example. $T \subseteq [0,1]^n$ is a d-dimensional subspace. A bound on the covering number for this subspace can be found in terms of a uniform grid of ε -balls over the subspace, i.e.

$$N(\varepsilon, T, L_2(P_n)) \le \left(\frac{1}{\varepsilon}\right)^d$$

Consider,

• $F \subseteq [-1,1]^{\mathcal{X}}$

• $S = \{x_1, ..., x_n\} \subseteq \mathcal{X}$.

• $F_{|s} = \{(f(x_1), ..., f(x_n) \mid f \in F\} \subseteq [-1, 1]^n.$

• $L_2(\hat{P}), \quad \rho(u,v) = \left(\frac{1}{n} \sum_i (u_i - v_i)^2\right)^{1/2}.$

Theorem 2.1.

$$\hat{R}_n(F) \le \inf_{\alpha > 0} \left(\sqrt{\frac{2\log(N(\alpha, F, L_2(\hat{P})))}{n}} + \alpha \right)$$

Proof. Fix α , α -cover $\hat{F}ofF$.

$$\hat{R}_{n}(F) = \mathbb{E}_{\varepsilon} \sup_{f \in F} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f(x_{i})$$

$$= \mathbb{E} \sup_{\hat{f} \in \hat{F}} \sup_{f \in F \cap B_{\alpha}(\hat{f})} \left(\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \hat{f}(x_{i}) + \underbrace{\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} (f(x_{i}) - \hat{f}(x_{i}))}_{\langle \underbrace{\varepsilon}_{||\varepsilon||=1}, \underbrace{f - \hat{f}}_{||\cdot|| \leq \alpha} \rangle} \right)$$

$$\leq \mathbb{E} \left[\sup_{\hat{f} \in \hat{F}} \left(\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \hat{f}(x_{i}) \right) + \alpha \right]$$

Note:

• $F = \bigcup_{\hat{f} \in \hat{F}} (F \cap B_{\alpha}(\hat{f}))$

• $|\hat{F}| = N(\alpha, F, L_2(\hat{P}))$

 $\Rightarrow \log N(\alpha, F) = d \log(1/\alpha)$ for the linear case.

Set
$$\alpha = \frac{1}{\sqrt{n}}, \Rightarrow R_n(F) \le \sqrt{\frac{2d \log(n)}{n}} + \frac{1}{n}$$