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1 Model Selection

1.1 Setup

Consider a prediction problem P on X × Y: given examples (X1, Y1), . . . , (Xn, Yn), the goal is to choose a
prediction function f from some class F to minimize the prediction error R(f) := E[l(Y, f(X))]. We attempt
to approximate this choice by choosing the Empirical Risk Minimizer (ERM), defined as that function f̂
which minimizes R̂(f) over F .

1.2 Approximation error versus estimation error

When choosing the class F in which to look for a prediction function, we consider the excess risk that
choosing the ERM from a given class F has over the Bayes risk:

R(f̂)−R∗ =
(

R(f̂)− inf
f∈F

R(f)
)

+
(

inf
f∈F

R(f)−R∗
)

In the above decomposition, we call the first term the estimation error and the second term the approximation
error. There is a tradeoff between these two terms: a richer class F tends to cause a greater estimation error
but a smaller approximation error. So the balancing act that model selection attempts is to ensure that

1. F is large enough to make the approximation error small, and

2. F is small enough to make the estimation error small.

One way to try to choose a function class is to start with an F with zero approximation error and split it
into a hierarchy of increasingly complex subsets.

Example. The following function classes have zero approximation error, for example, in the setting of
minimizing expected squared error on a compact subset of <n.

• Regression trees without size constraints

• span(G) for a suitably large base class G

• RKHSs where the kernel matrix Kn has full rank for all distinct values x1, . . . , xn
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2 Model Selection

1.3 Splitting a function class

Suppose we have a function class F . We could split it into

F =
⋃
λ∈I

Fλ

where I is some index set and Fλ ⊆ F for all λ. Frequently the splitting is increasing: λ ≥ λ′ =⇒ Fλ′ ⊂ Fλ.
Then, as λ increases, the complexity of the class increases, meaning that the estimation error goes up and
the approximation error goes down. The ideal choice of λ minimizes the sum of the two error terms. In the
diagram below, the solid line shows the sum of the error terms, and λ∗ is the optimal choice of λ:

λ
λ*

Approximation Error

Estimation Error

1.4 Regularization

Of course, to draw a graph like the one above for a real set of function classes would require knowing the
approximation error and estimation error for f̂λ as functions of λ. Then we could optimize

R(f̂λ) = R̂(f̂λ) +
(
R(f̂λ)− R̂(f̂λ)

)
,

Where f̂λ is the ERM within Fλ. Since in general we don’t know the correction term in parentheses above,
we attempt to find an approximate solution by using regularization: we pick a function Cn(λ) which we hope
will approximate R(f̂λ)− R̂(f̂λ). Then, conceptually, we choose f = f̂λ̂, where

λ̂ = argmin
λ

(
R̂(f̂λ) + Cn(λ)

)
.

This would require finding f̂λ for all the (possibly infinitely many) values of λ. So we often reduce the
problem to a single optimization, reformulating it as

f̂k̂ = argmin
f∈F

(
R̂(f) + Cn(λ(f))

)
,

where λ(f) = min{λ : f ∈ Fλ}.

Frequently, Cn(λ) will be a (high-probability) bound on R(f̂λ)− R̂(f̂λ), giving a near-optimality guarantee
in lieu of a promise of the ideal choice of f .

Example: Structural Risk Minimization. If F ⊆ {−1, 1}X and the loss function is 0-1 loss then, with
high probability,

sup
f∈Fλ

|R(f)− R̂(f)| ≤ Cn(λ),
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where

Cn(λ) = c

√
dVC(Fλ)

n
or Cn(λ) = c′

√
dVC(Fλ) log n

n
.

1.5 Oracle Inequality

Suppose the model class F is split countably into F1, F2, . . . and we have a risk estimator rn,k that, for some
choice of b and c, satisfies

P
(
R(f̂k) > rn,k + ε

)
≤ ce−2bnε2

for all n, k, and ε. (1)

Let

Cn(k) = rn,k − R̂(f̂k) +

√
log k

bn
. (2)

Then choosing k̂ to minimize R̂(f̂k) + Cn(k) will be the same as picking

k̂ = argmin
k

(
rn,k +

√
log k

bn

)
.

Theorem 1.1. If (1) is satisfied and Cn(k) is defined as in (2) then

E
[
R(f̂k̂)

]
−R∗ ≤ inf

k

(
inf

f∈Fk

(R(f)−R∗)) + E [Cn(k)]
)

+

√
log(2ce)

2bn
.

Example: Hold-out set. Suppose

(X1, Y1), (X2, Y2), . . . , (Xn, Yn), (X ′
1, Y

′
1), (X ′

2, Y
′
2), . . . , (X ′

bn, Y ′
bn)

are i.i.d. and we use the (Xi, Yi) as the training data and the (X ′
i, Y

′
i ) as the test data for a model selection

problem. Define

rn,k =
1
bn

bn∑
i=1

1f̂k(X′
i) 6=Y ′

i
,

i.e., the empirical risk of f̂ on the test set. Then, since the indicators summed above are i.i.d. in [0, 1], each
with expectation R(f̂k),

P
(
R(f̂k) > rn,k + ε

)
≤ e−2bnε2

,

by Hoeffding, satisfying (1) with c = 1. Then Theorem 1.1 implies

E
[
R(f̂k̂)

]
−R∗ ≤ min

k

(
inf

f∈Fk

(R(f)−R∗) + E
[
rn,k − R̂(f̂k)

]
+

√
log k

bn

)
+

1√
bn

.

That is, if you define f̂k as the ERM of the training set for each k and then choose k̂ to minimize the
empirical risk of f̂k on the test set, penalized by (log k/bn)1/2, then the above risk bound applies to f̂k̂.

Also note that although the analysis in this example may appear to extend to cross-validation, additional
difficulties arise in finding error bounds in that case due in part to fact that the final classifier is trained on
the entire data set, including the data used to validate the choice of k̂.
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Example: Structural Risk Minimization. With F ⊆ {−1, 1}X and 0-1 loss,

rn,k = R̂(f̂k) +

√
dVC(Fk) log(2n + 1) + log 4

n

satisfies (1) with b = 1/2 and c = 1, so

E
[
R(f̂k̂)

]
−R∗ ≤ min

k

(
inf

f∈Fk

(R(f)−R∗) +

√
dVC(Fk) log(2n + 1) + log 4

n
+

√
2 log k

n

)
+

1√
n

.

Example: Rademacher Averages. Recall

P

(
sup
f∈F

(
R(f)− R̂(f)

)
> R̂n(F ) + ε

)
≤ e−2cnε2

.

Then letting
rn,k = R̂(f̂k) + R̂n(Fk)

gives

E
[
R(f̂k̂)

]
−R∗ ≤ min

k

(
inf

f∈Fk

(R(f)−R∗) + Rn(Fk) +

√
log k

n

)
+

1√
n

.

Note that local Rademacher averages can be used to get a better bound than the one provided by Theorem
1.1. See Local Rademacher Complexities, by Bartlett, Bousquet, and Mendelson, for more.

http://arxiv.org/pdf/math/0508275
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