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Online Convex Optimization

Lecturer: Alexander Rakhlin Scribe: Jiening Zhan

1 Recap: Prediction with Expert Advice

In the last lecture, the following online prediction algorithm based on expert advice was presented. Given a
convex loss function l(·),

For t = 1, ..., T

player observes f1,t, ..., f1,N

player predicts pt

adversary reveals outcome yt

player suffers loss l(pt, yt)
experts suffer loss l(fi,t, yt)

End

The goal is to minimize the regret,

RT =

T
∑

t=1

l(pt, yt) − min
i∈[N ]

T
∑

i=1

l(fi,t, yt) (1)

By using exponential weights e−ηLi,t , and predictions pt =
P

i
wi,tfi,t

P

i
wi,t

, an upper bound to the regret was

found to be RT ≤
√

T
2 log N .

Based on this algorithm, the online linear optimization and the online convex optimization algorithm are
derived.

2 Online Linear Optimization

Let ∆N denote the N dimensional simplex.

For t = 1, ..., T

player predicts wt ∈ ∆N (wt is essentially a probability distribution)
adversary reveals lt ∈ R

N

player suffers loss wt · lt where lt(i) = l(fi,t, yt)
End
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2 Online Convex Optimization

The regret is defined as,

RT =

T
∑

t=1

wt · lt − min
w∗∈∆N

T
∑

t=1

w∗ · lt (2)

Note that for the simplex, the distribution w∗ will place all the probability on the best expert.

Figure 1: Online Linear Optimization (K is simplex)

3 Online Convex Optimization

Let K be a convex region. Also, ∀t ∈ [T ], let lt : R
N → R be conxex.

For t = 1, ..., T

player predicts wt ∈ K

adversary reveals lt(·)
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player suffers loss lt(wt)
End

The regret is

RT =

T
∑

t=1

lt(wt) − min
w∗∈K

T
∑

t=1

lt(w
∗) (3)

Figure 3 gives an example of the online convex optimization algorithm. In this algorithm, the adversary is
quite ’handicapped.’ The worst that an adversary can do is change the loss function as demonstrated in
Figure 3. However, we can always choose a w∗ such that the adversary cannot produce too much loss.

Figure 2: Online Convex Optimization
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Figure 3: Adversary is quite handicapped in the algorithm

4 Algorithm: Online Gradient Descent, Zinkevich 03

For t = 1, ..., T

Predict wt

Observe lt(·)
Update wt+1 = Πk(wt − η∇lt(wt)) where Πk(·) is the euclidean projection onto the set K.

End

Theorem 4.1. Let G = maxt∈[T ] ‖∆lt(wt)‖ and D = diameter K. The online gradient descent algorithm

attains regret RT ≤ GD
√

T .
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Proof. Let w̄t+1 = wt − η∆lt(wt), w∗ = argminw∈K

∑T
t=1 lt(w) and ∆t = ∆lt(wt).

‖wt+1 − w∗‖ ≤ ‖w̄t+1 − w∗‖ (4)

= ‖w̄t − η∆lt(wt) − w∗‖2
(5)

= ‖wt − w∗‖2
+ η2 ‖∆t‖2 − 2η∆t(wt − w∗) (6)

Rearranging terms, it can be seen that

∆t(wt − w∗) ≤ ‖wt − w∗‖2 − ‖wt+1 − w∗‖2

2η
+

η

2
‖∆t‖2 (7)

For a convex loss function lt,
lt(wt) − lt(w

∗) ≤ ∆t(wt − w∗) (8)

Summing over t = 1, ..., T ,

T
∑

t=1

(lt(wt) − lt(w
∗)) ≤ ∆t(wt − w∗) (9)

≤ ‖w1 − w∗‖2

2η
+

η

2
‖∆t‖2

(10)

≤ D2

2η
+

η

2
TG2 (11)

Setting η = D

G
√

T
, we get RT ≤ GD

√
T

Let K be a simplex of dimension N. It follows that D = 1, and G ≤
√

N . Therefore, the regret from the
online gradient descent is RT ≤

√
TN . Compared to the regret bound from the prediction using exponential

weights RT ≤
√

T
2 log N , this bound scales much more quickly in N .

The online descent algorithm behaves differently from the prediction with exponential weights algorithm.
Assume that we are choosing weights from a three dimensional simplex. At time t, we choose weight wt.
If the there is no loss lt = (0, 0, 0), then for both algorithms, wt+1 = wt. That is, our position does not
change. However, if lt = (1, 0, 0), then at time t + 1, in the case of online gradient descent, we will move a
distance of η away while in the case of exponential weights, we will move an exponential distance away. This
is demonstated in Figure 4.

5 Bergman Divergence

Suppose R : R
N → R is strictly convex with continuous 1st order partial derivatives.

Definition. Bregman Divergence between x and y with respect to R is

DR(x, y) = R(x) − R(y) − ∆R(y)(x − y) (12)

Note that the Bregman distance is in general not symmetric.

Example.

R(x) =
1

2
‖x‖2 ⇒ DR(x, y) =

1

2
‖x − y‖2

(13)
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Figure 4: Exponential weights algorithm vs. online gradient descent
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Example.

R(x) =

N
∑

i=1

(xi log xi − xi) ⇒ DR(x, y) = KL(x, y) −
N

∑

i=1

xi log
xi

yi

+

N
∑

i=1

(yi − xi) (14)

Property.
DA+B(x, y) = DA(x, y) + DB(x, y) (15)

Property.
DR(x, v) + DR(v, w) = DR(u, v) + (u − v)(∆R(w) − ∆R(v)) (16)

Property. The Bergman projection unto a convex set K exists and is unique. Let w′ be the Bergman
projection of the point w unto the convex set K. It follows

w′ = arg min
v∈K

DR(v, w) (17)

Property. Generalized Pythagorean Theorem: for all u ∈ K

DR(u, w) ≥ DR(u, w′) + DR(w′, w) (18)


