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Online convex optimization: ridge regression, adaptivity

Lecturer: Sasha Rakhlin Scribe: Alekh Agarwal, Lester Mackey

1 Lecture Outline

In the previous lectures we saw a general scheme for deriving regret bounds for online learning algorithms
that try to minimize a regularized loss at every time step. We also argued that the linear loss is the optimal
loss for the adversary if it is constrained to play convex loss functions. The goal of this lecture is to obtain
logarithmic regret bound when the adversary plays sub-optimally in that it plays curved loss functions.
Further, we will see how a time varying learning rate can be used to smoothly interpolate between the regret
regimes of log T and

√
T corresponding to curved and linear losses respectively.

2 Curvature in Online learning

2.1 A rewriting of the regret bound

Last time we saw the game, where at every step we solve the problem:

xt+1 = argminx∈Rn η

t∑
s=1

`s(x) +R(x) (1)

Then we showed last time that ∀u ∈ Rn:

T∑
t=1

(`t(xt)− `t(u)) = η−1DΦ0(u, x1)− η−1DΦT
(u, xT+1) + η−1

T∑
t=1

DΦt(xt, xt+1) (2)

where Φ0 = R, Φt = Φt−1 + η`t(·).

Also, we showed in an earlier lecture on properties of Bregman divergences that:

DΦt
(xt, xt+1) = DΦ∗

t
(∇Φt(xt+1),∇Φt(xt))

= DΦ∗
t
(0,∇Φt(xt)) (3)

where the second line follows from the fact that xt+1 is the minimizer of (1). Also, we have that:

∇Φt(xt) = ∇Φt−1(xt) + η∇`t(xt)
= η∇`t(xt) (4)

where the second line is again using the fact that xt minimizes (1) at time t. Combining (3) and (4), we get:

DΦt(xt, xt+1) = DΦ∗
t
(0, η∇`t(xt)) (5)
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This might look like just some algebraic manipulation at the first sight. But note that the divergence we
have rewritten is exactly the divergence that gets added up over time. In particular, we will now exploit
this simple form to obtain interesting conclusions for the specific case of online ridge regression, which is an
instance of a strongly convex loss.

2.2 Online Ridge Regression

Suppose the game is defined as follows:

For t = 1 . . . T
We pick wt ∈ Rn
Adversary picks (xt, yt), (xt ∈ Rn, yt ∈ R, ‖xt‖2 ≤ B)
We suffer 1

2 (w>t xt − yt)2 = `t(wt).

This game is exactly online ridge regression within a bounded `2 ball if the regularizer is 1
2‖ · ‖

2. We will in
fact assume that the y’s are bounded too. Further, we assume that ∃p∗ such that at every time, `t(wt) ≤ p∗.
It isn’t clear how the boundedness of x and y implies this directly as the weights can still be large, but the
assumption is needed for our analysis and will be clarified in the later lectures. Then the regret of this game
is:

RT =
1
2

T∑
t=1

(w>t xt − yt)2 − 1
2

T∑
t=1

(x>t w
∗ − yt)2 (6)

where w∗ is the minimizer of the cumulative loss. Our goal is to demonstrate that RT

T ≤ O
(

log T
T

)
which is

significantly better than the O
(

1√
T

)
rate that we obtained without any assumptions on the losses.

Now for the ridge regularizer 1
2‖ · ‖

2, we have:

wt+1 = argminw
η

2

t∑
s=1

(w>xs − ys)2 +
1
2
‖w‖2 (7)

Then we have Φ0(u) = 1
2‖u‖

2 and

Φt(u) =
1
2
‖u‖2 +

η

2

t∑
s=1

(w>xs − ys)2

=
1
2
u>Iu+

η

2
u>(

t∑
s=1

xsx
>
s )u+

η

2

t∑
s=1

y2
s − η

t∑
s=1

u>(ysxs)

=
1
2
u>(I + η

t∑
s=1

xsx
>
s )u− u>η

t∑
s=1

ysxs + ct (8)

where ct =
∑t
s=1 y

2
s .

We will now state a lemma that allows us to manipulate the above quantity.

Lemma 2.1. If Φ(u) = 1
2u
>Mu+ u>v + c for M positive definite (elliptic potential), then:

(a) ∇Φ(u) = Mu+ v

(b) Φ∗(u) = 1
2u
>M−1u− u>M−1v + 1

2v
>M−1v
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(c) ∇Φ∗(u) = M−1u−M−1v

(d) DΦ(u,w) = (u− w)>M(u− w)

(e) DΦ∗(u,w) = (u− w)>M−1(u− w)

All of these follow from simple matrix algebra and will not be proved.

Let At = I + η
∑t
s=1 xsx

>
s . Then it is easily seen to be positive definite as the identity matrix is positive

definite, and the rank-one matrices xsx>s are positive semidefininte. So we have an elliptic potential in the
ridge regression updates and can apply the above lemma to our case. Substituting At and vt = η

∑t
s=1 xsys

in (8) we get:

Φt(u) =
1
2
u>Atu− u>vt + ct

DΦ∗
t
(0, η∇`t(wt)) = η2∇`t(wt)>A−1

t ∇`t(wt)
∇`t(wt) = (w>t xt − yt)xt

DΦ∗
t
(0, η∇`t(wt)) = η2(w>t xt − yt)2x>t A

−1
t xt

By the earlier assumption of bounded losses, (w>t xt − yt)2 ≤ 2p∗. Further set η = 1 and w1 = ~0 to be the
zero vector. Then using equations (2), (5) and above results for our specific potential we get:

T∑
t=1

(`t(wt)− `t(u)) ≤ 1
2
‖u‖2 +

T∑
t=1

2p∗x>t A
−1
t xt (9)

Now intuitively we expect At to grow linearly with t as it keeps on accumulating identical terms over time,
so that A−1

t goes as 1/t giving us log T regret. We will now make this intuition concrete using the following
lemma about quadratic forms:

Lemma 2.2. Let B be an arbitrary n× n full rank matrix and x be any vector. Let A = B + xx>. Then
x>A−1x = x>(B + xx>)−1x = 1− det(B)

det(A)

where det(A) is the determinant of the matrix A. In our setup, we intend to apply this lemma with B = At−1,
x = xt and A = At to the quadratic form of (9) which gives us:

RT ≤
1
2
‖u‖2 + 2p∗

T∑
t=1

(
1− det(At−1)

det(At)

)

≤ 1
2
‖u‖2 − 2p∗

T∑
t=1

log
det(At−1)
det(At)

(using 1− x ≤ − log x ∀x > 0)

=
1
2
‖u‖2 + 2p∗ log

det(AT )
A0

=
1
2
‖u‖2 + 2p∗ log det(AT ) (10)

where the first equality follows from telescoping of terms in the summation, and the second one follows from
the fact that det(A0) = det(I) = 1.

Next we note that

log(det(AT )) = log

(
det

(
I +

T∑
t=1

xtx
>
t

))
= log

(
n∏
i=1

(1 + λi)

)
=

n∑
i=1

log(1 + λi)
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where λ1, ..., λn are the eigenvalues of the matrix
∑T
t=1 xtx

>
t . The eigenvalues of

∑T
t=1 xtx

>
t are known to

be equal to the eigenvalues of the Gram matrix G, where Gij = x>i xj . This implies

n∑
i=1

λi =
T∑
t=1

x>t xt ≤ TB2.

Our expression for log(det(AT )) is therefore maximized when λ1 = λ2 = ... = λn = TB2

n . We conclude that

RT ≤
1
2
‖u‖2 + 2p∗n log

(
1 +

TB2

n

)
(11)

2.3 Mirror Descent with Euclidean Norm Squared

In this section, we propose an algorithm that can exploit the suboptimal play of an adversary who plays only
curved (strictly convex) loss functions. Consider again the mirror descent algorithm with R(x) = 1

2‖x‖
2:

For t = 1 . . . T
Play xt
Observe `t(·)
Update xt+1 = xt − ηt+1∇`t(xt).

After observing `t(·), we can calculate

Ht ≥ 0, s.t. ∇2`t � HtI (12)
Gt ≥ 0, s.t. Gt = ‖∇`t(xt)‖ (13)

where ∇2 is the Hessian, and A � B means A−B is positive semidefinite.

The following lemma bounds our regret in terms of Ht and Gt.

Lemma 2.3. Define H1:t =
∑t
s=1Hs. If we set ηt+1 = 1

H1:t
in xt+1 = xt − ηt+1∇`t(xt), then RT ≤

1
2

∑T
t=1

G2
t

H1:t
.

Proof. Let x∗ = argminx
∑T
t=1 `t(x) and ∇t = ∇`t(xt). By (12),

`t(xt)− `t(x∗) ≤ ∇>t (xt − x∗)−Ht
1
2
‖xt − x∗‖2.

Further,
1
2
‖xt+1 − x∗‖2 ≤

1
2
‖xt − x∗‖2 − ηt+1∇>t (xt − x∗) + η2

t+1

1
2
‖∇t‖2,

which implies

∇>t (xt − x∗) ≤
1
2‖xt − x

∗‖2 − 1
2‖xt+1 − x∗‖2

ηt+1
+
ηt+1

2
G2
t .

Combining, we get

`t(xt)− `t(x∗) ≤
1
2‖xt − x

∗‖2 − 1
2‖xt+1 − x∗‖2

ηt+1
+
ηt+1

2
G2
t −Ht

1
2
‖xt − x∗‖2,

which summed over t = 1, ..., T gives,

T∑
t=1

(`t(xt)− `t(x∗)) ≤
T∑
t=1

(
1
2
‖xt − x∗‖2

(
1

ηt+1
− 1
ηt
−Ht

))
+

1
2

T∑
t=1

G2
tηt+1.
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Since ∀t, 1
2‖xt − x

∗‖2
(

1
ηt+1
− 1

ηt
−Ht

)
≤ 0, we have established

RT ≤
1
2

T∑
t=1

G2
t

H1:t
.

Note that our procedure does not require that we know the curvature of an adversary’s functions in advance.
With the sole requirement that our adversary play only curved functions, our algorithm provides a logarithmic
regret bound. To see this, note that when H1 = ... = HT = σ,

RT ≤
1
2

T∑
t=1

G2
t

tσ
= O(log(T )).

However, if the adversary begins to play linear functions at some time step, we do not achieve the optimal
O(
√
T ) regret guarantee for arbitrary convex functions: our regret bound instead grows like O(T ). Is it

possible to guarantee O(
√
T ) growth when arbitrary convex functions are played while still exploiting the

suboptimality of curved functions? We explore this issue in the next section.

2.4 Adaptive Mirror Descent

Consider the following modified version of our mirror descent algorithm:

For t = 1 . . . T
Play xt
Observe `t(·)
Pretend you observed ˜̀

t(·) = `t(·) + λt
1
2‖ · ‖

2

Update xt+1 = xt − ηt+1∇ ˜̀
t(xt).

If we choose Ht and Gt according to (12) and (13) and set ηt+1 = 1
H1:t+λ1:t

, we have

T∑
t=1

(`t(xt) + λt
1
2
‖xt‖2) ≤

T∑
t=1

(`t(x∗) + λt
1
2
‖x∗‖2) +

1
2

T∑
t=1

(Gt + λtD)2

H1:t + λ1:t
,

where D is the diameter of the set from which vectors xt are selected.

The purpose of the transformation ˜̀
t is to inject curvature into a possibly linear function `t. 1 We want

to select λt values which increase the curvature of linear functions without overly penalizing those functions
which are already curved. That is, we want to choose λt values which balance the two terms in the following
upper bound:

RT =
T∑
t=1

`t(xt)−
T∑
t=1

`t(x∗) ≤
1
2
D2λ1:T +

1
2

T∑
t=1

(Gt + λtD)2

H1:t + λ1:t
,

As it turns out, the right choice is given by

λt =
1
2

(√
(H1:t + λ1:t)2 +

8G2
t

3D2
− (H1:t + λ1:t)

)
.

1Alternatively, we may view the transformation as L-2 regularization, which favors shrinking the player’s actions xt toward
the origin.
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This small modification to our original mirror descent algorithm allows us to adapt to the curvature of an
adversary’s functions and to achieve regret guarantees between O(log(T )) and O(

√
T ) depending on that

curvature.


