Follow the perturbed leader, online shortest path

1 Oracle Regret

We begin by a lemma
Lemma 1.1. If

$$
x_{t+1}=\arg \min _{x \in K} \eta \sum_{s=1}^{t} l_{s}(x)+R(x)
$$

then for any $u \in K$

$$
\begin{equation*}
\sum_{t=1}^{T} l_{t}\left(x_{t+1}\right) \leq \sum_{t=1}^{T} l_{t}(u)+\eta^{-1}\left(R(u)-R\left(x_{1}\right)\right) \tag{1}
\end{equation*}
$$

where $x_{1}=\arg \min R(x)$.
This says that the hypothetical forecaster who knows l_{t} before having to predict x_{t} is almost perfect.
Proof. Use induction.
$T=0$ true, because $R\left(x_{1}\right) \leq R(u), \forall u \in K$.
Suppose statement holds for $T-1$.

$$
\begin{equation*}
\sum_{t=1}^{T-1} l_{t}\left(x_{t+1}\right)+\eta^{-1} R\left(x_{1}\right) \leq \sum_{t=1}^{T-1} l_{t}(u)+\eta^{-1} R(u), \forall u \tag{2}
\end{equation*}
$$

in particular, this holds for $u=x_{T+1}$.

$$
\begin{equation*}
\sum_{t=1}^{T-1} l_{t}\left(x_{t+1}\right)+\eta^{-1} R\left(x_{1}\right) \leq \sum_{t=1}^{T-1} l_{t}\left(x_{T+1}\right)+\eta^{-1} R\left(x_{T+1}\right) \tag{3}
\end{equation*}
$$

Add $l_{T}\left(x_{T+1}\right)$ to both sides

$$
\begin{gather*}
\sum_{t=1}^{T} l_{t}\left(x_{t+1}\right)+\eta^{-1} R\left(x_{1}\right) \leq \sum_{t=1}^{T} l_{t}\left(x_{T+1}\right)+\eta^{-1} R\left(x_{T+1}\right) \tag{4}\\
\sum_{t=1}^{T} l_{t}\left(x_{t+1}\right)+\eta^{-1} R\left(x_{1}\right) \leq \sum_{t=1}^{T} l_{t}(u)+\eta^{-1} R(u), \forall u \tag{5}
\end{gather*}
$$

As a consequence, for $x^{*}=\arg \min _{x \in K} \sum_{t=1}^{T} l_{t}(x)$,

$$
\begin{equation*}
\sum_{t=1}^{T} l_{t}\left(x_{t}\right)-\sum_{t=1}^{T} l_{t}\left(x^{*}\right) \leq \sum_{t=1}^{T}\left(l_{t}\left(x_{t}\right)-l_{t}\left(x_{t+1}\right)\right)+\eta^{-1}\left(R\left(x^{*}\right)-R\left(x_{1}\right)\right) \tag{6}
\end{equation*}
$$

2 Regret Bounds for Follow the Perturbed Leader

Now we focus on linear $l_{t}($.
Solve $x_{t+1}=\arg \min _{x \in K} \eta \sum_{s=1}^{t} l_{s} x+r x$, where r is drawn at the beginning of the game from distribution f.

Assume oblivious adversary: $l_{1} \ldots l_{T}$ are chosen by the adversary before the game.
Theorem 2.1 (A). Suppose $l_{t} \in \mathbb{R}_{+}^{n}, K \subset \mathbb{R}_{+}^{n}, f(r)$ has support on \mathbb{R}_{+}^{n}.

$$
\begin{equation*}
\forall u \in K, \mathbb{E} \sum_{t=1}^{T} l_{t} x_{t} \leq \sum_{t=1}^{T} l_{t} u+\sum_{t=1}^{T} l_{t} \int_{\left\{r: f(r) \geq f\left(r-\eta l_{t}\right)\right\}} x_{t} f(r) \mathrm{d} r+\eta^{-1} \mathbb{E} \sup _{x \in K} r x \tag{7}
\end{equation*}
$$

Proof. Let $x^{*}=\arg \min \sum_{t=1}^{T} l_{t} x$.

$$
\begin{equation*}
\sum_{t=1}^{T} l_{t} x_{t}-\sum_{t=1}^{T} l_{t} x^{*} \leq \sum_{t=1}^{T} l_{t}\left(x_{t}-x_{t+1}\right)+\eta^{-1}\left(r x^{*}-r x_{1}\right) \tag{8}
\end{equation*}
$$

and since $r x \geq 0$,

$$
\begin{equation*}
\sum_{t=1}^{T} l_{t} x_{t}-\sum_{t=1}^{T} l_{t} x^{*} \leq \sum_{t=1}^{T} l_{t}\left(x_{t}-x_{t+1}\right)+\eta^{-1} r x^{*} \tag{9}
\end{equation*}
$$

Taking expectations, we have

$$
\begin{equation*}
\mathbb{E}\left(\sum_{t=1}^{T} l_{t} x_{t}-\sum_{t=1}^{T} l_{t} x^{*}\right) \leq \mathbb{E}\left(\sum_{t=1}^{T}\left(l_{t} x_{t}-l_{t} x_{t+1}\right)\right)+\eta^{-1}\left(r x^{*}-r x_{1}\right) \tag{10}
\end{equation*}
$$

We want to have $\mathbb{E}\left(\sum_{t=1}^{T}\left(l_{t} x_{t}-l_{t} x_{t+1}\right)\right)$ small.

$$
\begin{align*}
\mathbb{E} l_{t} x_{t} & =\int l_{t} \arg \min _{x}\left(\left(\eta \sum_{s=1}^{t-1} l_{s}+r\right) x\right) f(r) \mathrm{d} r \tag{11}\\
\mathbb{E} l_{t} x_{t+1} & =\int l_{t} \arg \min _{x}\left(\left(\eta \sum_{s=1}^{t} l_{s}+r\right) x\right) f(r) \mathrm{d} r \tag{12}
\end{align*}
$$

Let $r^{\prime}=r+l_{t}$

$$
\begin{gather*}
\mathbb{E} l_{t} x_{t}=\int l_{t} \arg \min _{x}\left(\left(\eta \sum_{s=1}^{T-1} l_{s}+r^{\prime}\right) x\right) f\left(r^{\prime}-\eta l_{t}\right) \mathrm{d} r^{\prime} \tag{13}\\
\mathbb{E} l_{t}\left(x_{t}-x_{t+1}\right)=\int l_{t} x_{t}\left(f(r)-f\left(r-\eta l_{t}\right)\right) \mathrm{d} r=l_{t} \int x_{t}\left(f(r)-f\left(r-\eta l_{t}\right)\right) \mathrm{d} r \tag{14}\\
\leq l_{t} \int_{\left\{r: f(r)>f\left(r-\eta l_{t}\right)\right\}} x_{t} f(r) \mathrm{d} r=l_{t} \mathbb{E} x_{t} 1_{\left\{r: f(r)>f\left(r-\eta l_{t}\right)\right\}} \tag{15}
\end{gather*}
$$

Now, we prove an analogous theorem where we relax the restriction to the positive orthant.

Theorem 2.2 (B).

$$
\begin{equation*}
\mathbb{E} \sum_{t=1}^{T} l_{t} x_{t} \leq \sup r, t \frac{f(r)}{f\left(r-\eta l_{t}\right)}\left[\sum l_{t}+\eta^{-1} \mathbb{E} \sup _{x \in K} r \cdot x+\eta^{-1} \mathbb{E} \sup _{x \in K}-r \cdot x\right] \tag{16}
\end{equation*}
$$

for any $u \in K$
Proof.

$$
\begin{align*}
\mathbb{E} l_{t} x_{t} & =\int l_{t} \underset{x \in K}{\operatorname{argmin}}\left[\left(\eta \sum_{s=1}^{t-1} l_{s}+r\right) x\right] f(r) d r \tag{17}\\
& \leq \sup _{r, t} \frac{f(r)}{f\left(r-\eta l_{t}\right)} \int l_{t} \underset{x \in K}{\operatorname{argmin}}\left[\left(\eta \sum_{s=1}^{t} l_{s}+r\right) x\right] f(r) d r \tag{18}\\
& =\sup _{r, t} \frac{f(r)}{f\left(r-\eta l_{t}\right)} \mathbb{E} l_{t} x_{t+1} \tag{19}
\end{align*}
$$

By lemma 1.1,

$$
\begin{equation*}
\forall u \in K, \sum_{t=1}^{T} l_{t} x_{t+1} \leq \sum_{t=1}^{T} l_{t} \cdot u+\eta^{-1} \sup _{x \in K}(r \cdot x)+\eta^{-1} \sup _{x \in K}(-r \cdot x) \tag{20}
\end{equation*}
$$

So,

$$
\begin{equation*}
\mathbb{E} \sum_{t=1}^{T} l_{t} x_{t}=\sup _{r, t} \frac{f(r)}{f\left(r-\eta l_{t}\right)} \mathbb{E}\left(\sum_{t=1}^{T} l_{t} \cdot u+\eta^{-1} \sup _{x \in K}(r \cdot x)+\eta^{-1} \sup _{x \in K}(-r \cdot x)\right) \tag{21}
\end{equation*}
$$

3 Examples

3.1 Expert Setting

Here, K is the n-simplex. We will draw $r \sim \operatorname{Unif}\left([0,1]^{N}\right)$ and $l_{t} \in[0,1]^{N}$
Applying Theorem A,

$$
\begin{align*}
\mathbb{E} R_{T} & \leq \sum_{t=1}^{T} l_{t} \int_{\left\{r: f(r)>f\left(r-\eta l_{t}\right)\right\}} x_{t} f(r) d r+\eta^{-1} \underbrace{\mathbb{E} \sup _{x \in K} r \cdot x}_{\leq 1} \tag{22}\\
& \leq \sum_{t=1}^{T} \int_{\left\{r: f(r)>f\left(r-\eta l_{t}\right)\right\}} f(r) d r+\eta^{-1} \tag{23}\\
& \leq \sum_{t=1}^{T} \operatorname{Vol}\left(\left\{r: \exists i, r_{i}-\eta l_{t}(i)<0\right\}\right)+\eta^{-1} \tag{24}\\
& \leq \sum_{t=1}^{T} \eta \sum_{i=1}^{N} l_{t}(i)+\eta^{-1} \tag{25}\\
& \leq \eta^{-1}+T \eta N \tag{26}\\
& =2 \sqrt{T N}\left(\text { with } \eta=\frac{1}{\sqrt{T N}}\right) \tag{27}
\end{align*}
$$

By using Theorem B, this result can be improved to replace the N term with $\log (N)$.

3.2 Online Shortest Path

In this setting, there is a fixed DAG with labeled vertices u and v such that v is reachable from u. At each time step, the player picks a path from u to v, and then the opponent reveals the cost of each edge. The loss is the cost of the chosen path.
Each path can be associated with some $x \in\{0,1\}^{|E|}$, and the set of paths is $P \subseteq\{0,1\}^{|E|}$.
The adversary picks $l_{t} \in \mathbb{R}_{+}^{n}$, so the loss can be written as $l_{t} \cdot x_{t}$ as usual.
To use the Follow the Perturbed Leader methodology, we draw $r \sim \operatorname{Unif}\left([0,1]^{|E|}\right)$. Suppose, $l_{t} \in[0,1]^{|E|}$ and the length of the longest path (number of edges) is ξ.

Then, applying Theorem A,

$$
\begin{align*}
l_{t} \int_{\left\{r: f(r)>f\left(r-\eta l_{t}\right)\right\}} x_{t} f(r) d r & \leq\left\|l_{t}\right\|_{\infty}\left\|\int_{\left\{r: f(r)>f\left(r-\eta l_{t}\right)\right\}} x_{t} f(r) d r\right\|_{1} \tag{28}\\
& \leq \xi \int_{\left\{r: f(r)>f\left(r-\eta l_{t}\right)\right\}} f(r) d r \tag{29}\\
& \leq \xi|E| \eta \tag{30}
\end{align*}
$$

So,

$$
\begin{align*}
\mathbb{E} R_{T} & \leq \eta^{-1} \xi+\xi|E| \eta T \tag{31}\\
& =2 \xi \sqrt{|E| T}\left(\text { with } \eta=\frac{1}{\sqrt{|E| T}}\right) \tag{32}
\end{align*}
$$

By using Theorem B, this result can be improved to replace the $|E|$ term with $\log (|E|)$.

