
CS281B/Stat241B (Spring 2008) Statistical Learning Theory Lecture: 26

Online bandit problems

Lecturer: Alexander Rakhlin Scribe: Fabian Wauthier

In the past lectures we have addressed online learning in a setting where we observe the full function lt. In
this lecture we will look at online learning with limited feedback. We are interested in the question of how
much feedback is needed in order to achieve low regret. Throughout this lecture, we will assume that the
functions lt are linear.

We have previously looked at the following game: For time t = 1, 2, . . . , T , we predict xt ∈ K ⊂ Rn. At
each time step we observe lt ∈ Rn and suffer lt · xt. Then we take a gradient step. In this game we observe
the whole loss function lt after having chosen xt and the last few lectures showed that a

√
T regret can be

achieved. We will now step away from the full information game and work in a limited feedback setting
where functions lt are linear, but we only observe the value (lt · xt) at each time step, rather than the whole
function lt. This lecture will address the question whether we can still achieve

√
T regret if we are given

only a single number. Before we begin, let us develop more motivation through some examples.

1. Online shortest path

As discussed in the last lecture, the selection of a path in a directed acyclic graph G = (E, V ) can be
formalised as a binary vector of length |E|, where a non-zero component indicates that the correspond-
ing edge is used in this path. Here the graph G loosely corresponds to the set K. Let P ⊆ {0, 1}|E| be
the subset of the binary hypercube corresponding to legal path vectors from a source to a sink. If arc
i is associated with a delay lit, then the total delay for a particular chosen path xt ∈ P can be written
as lt · xt. In the limited feedback setting we will, after having chosen a path xt, only observe the total
delay (lt · xt). We are interested in choosing paths xt in such a way that adversarially chosen delays
on edges lead to low overall regret.

2. Stochastic multi-armed bandit

In this problem, the set K is the simplex and the lt are chosen stochastically. The component lit is
chosen i.i.d. from a fixed distribution with mean µi. The means are fixed throughout the game, and
the lt are not chosen adversarially. We wish to receive the largest gain throughout the game. The
regret is given as

RT =
T∑

t=1

lt · xt −min
i

T∑
t=1

µi (1)

Under the previous assumptions the formulation reduces to the multi-armed bandit problem, where
one receives lit reward for choosing arm i. The expected regret is the same for choosing fractional
xt ⊆ K and for probabilistically choosing vertices of the simplex with some fractional probability.

3. Non-stochastic multi-armed bandit

The setup for this problem is similar to the previous one, except that now lt are chosen adversarially.
We make no assumptions about an underlying distribution for lt.

In the limited feedback formulation only one number lt · xt is given in response to a choice xt. A first
observation is that if the strategy is deterministic (i.e. xt is one of the vertices of K), then the adversary
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Figure 1: The choice yt is computed from xt by adding or subtracting a value of δ uniformly at random.
The distribution of yt is comprised of two delta functions and has mean xt.

could mislead us by playing a function which has low value at our deterministic choice but is large elsewhere.
If our choice is stochastic, then the adversary cannot always hide information about lt from us.

So instead of predicting xt directly, we will predict yt, which is drawn from a distribution with mean xt.
To learn about the (linear) function lt we want to estimate its slope by suitable queries yt. Consider the
following example in two dimensions. Suppose that K = [0, 1] × {1} is a flat set, and that the adversary
gives a vector-valued response lt = (·, ·)>. Here the first component of lt corresponds to the slope of the
linear function, and the second to an offset term (hence the fixed second dimension of K). By construction,
our choice xt ∈ K is determined by its first component. Suppose the procedure tells us to predict xt. Then
define a randomised yt as

yt =
{
xt + δ w.p. 1/2
xt − δ w.p. 1/2. (2)

An estimator of the slope of the function lt (its first component) is given by

l̃t =
ltyt

δ
sign(yt − xt). (3)

This estimator is unbiased, since

E
(
l̃t

)
=

1
2

[
lt(xt + δ)

δ
− lt(xt − δ)

δ

]
= lt (4)

Although we start with one point xt, we turn it into a randomised strategy for two points that to some
extent recovers the function lt of which we only see evaluations. This process is illustrated in Figure 1. Such
a randomisation strategy also works in higher dimensions. First choose a coordinate it uniformly at random
from {1, . . . , n}. Pick the direction εt = ±1 with probability 1/2 and let yt = xt + εt · δ · eit

, where eit
is the

it-th standard basis. We now let l̃t be defined as

l̃t = n
ltyt

δ
εt · eit

(5)

Here also, E(l̃t) = lt. Returning to the one-dimensional case, while the estimator in one dimension is
unbiased, its variance depends on the denominator δ. We require for a “good” estimator of the slope that δ
is as large as possible. Note in particular that if xt lies near the boundaries at 0 or 1, then δ must be small
and our estimator will be of high variance.
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Once we have computed an estimate l̃t, we will choose the mean of the next distribution xt+1 as

xt+1 = argminx∈Kη

t∑
s=1

l̃sx+R(x), (6)

where R(x) is a regulariser. This approach is called Follow The Regularized Leader. We recall that the key
terms to control for low regret are DR(xt, xt+1). Suppose that the regulariser R is chosen as 1/2|| · ||2. Then
we have DR(xt, xt+1) = DR∗(0, ηl̃t) = η2||l̃t||2. Here, R is self-dual, so R∗ is the same as R. Heuristically,
whenever predicting a point which is close to the boundary, we can step away from the boundary by O(1/

√
T )

without hurting the regret by more than O(
√
T ). We can then guarantee that δ ≥ O(1/

√
T ) so that the

estimate of the slope l̃t scales as 1/δ ≈
√
T . Hence DR(xt, xt+1) ≈ η2T . This suggests that for the regret

RT ≤ η−1DR(u, x1) + η−1T (η2T ) (7)

≈ η−1 + ηT 2 (8)
= O(T ) (9)

The last step follows by choosing η to balance the two terms. We were hoping to get a regret on the order
of
√
T , but under the previous assumption we only achieved a regret which is linear in T . The previous

result can be improved by clever sampling choices for yt only up to O(T 2/3) regret. For a long time it was
unclear whether a regret on the order of

√
T could be achieved. The key to proceeding was to exploit the

additional freedom of choosing the regulariser R. Under a suitable choice of R it turns out that O(
√
T )

regret is possible.

We will give a heuristic argument for the choice of R. We know that the problem occurs when xt is close to
the boundary, since then the variance of l̃t blows up as 1/d, where d is the distance to the boundary. We
also know that in order to get the desired regret, we need to control the divergence DR∗(0, ηl̃t). This term
is small if R∗ is close to linear when l̃t is large. It turns out that the curvature in the primal corresponds to
linearity in the dual. So heuristically, the primal R has to be relatively “curved” when l̃t is large, that is,
when xt is close to the boundary. If H is the Hessian of R∗, then

DR∗(0, ηl̃t) ≈ η2 l̃>t Hl̃t (10)
want= O(η2). (11)

The last equality must hold if we want to get O(
√
T ) regret. So we need the linearity of R∗ to kill the large

magnitude lt. Earlier we claimed that l̃t will scale approximately like 1/d. It follows that in one dimension
H should behave like d2. The Hessian of R∗ is the inverse Hessian of R, so then we see that the Hessian of R
should behave like 1/d2. A function of d which has 1/d2 as its Hessian is − log(d). Hence the key property
of R is that it behaves like the − log of the distance to the boundary. We have heuristically argued for key
qualities of R. To understand how this function can be constructed for general sets, we appeal to the theory
of interior point methods.

Definition. Self-concordant function

A function R : K → R is self-concordant if it is a C3 convex function such that∣∣D3R(x)[h, h, h]
∣∣ ≤ 2

(
D2R(x)[h, h]

)3/2
, (12)

where the third order differential is defined as

D3R(x)[h1, h2, h3] =
∂3

∂t1∂t2∂t3

∣∣∣∣
t1=t2=t3=0

R(x+ t1h1 + t2h2 + t3h+ 3) (13)
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Definition. θ-self concordant barrier

A θ-self concordant barrier is a self-concordant function with

|DR(x)[h]| ≤ θ1/2
[
D2R(x)[h, h]

]1/2
(14)

We now present some examples of θ-self concordant functions

1. If we have an n-dimensional ball, Bn =
{
x ∈ Rn,

∑
i x

2
i ≤ 1

}
, then R(x) = − log(1 − ||x||2) is 1-self

concordant.

2. If we have a constraint a>x ≤ b, then R(x) = − log(b−a>x). The constraint is a hyperplane and R(x)
is the negative log distance to the constraint.

3. Additionally, if R1 is θ1-self concordant and R2 is θ2-self concordant, then R1 + R2 is (θ1 + θ2)-self
concordant.

We are now ready to show that for a self-concordant barrier R there is a suitable sampling strategy so that
for the divergence DR∗(0, ηl̃t) = O(η2). The latter will then imply that we can achieve O(

√
T ) regret.

Define the local Euclidean geometry at x ∈ K by 〈g, h〉x = g>∇2R(x)h. This induces the norm at x to be
||h||x =

√
〈h, h〉x. That is, locally the space is stretched according to the Hessian at x. Define an r-ball

at x as Wr(x) = {z ∈ K : ||z − x||x ≤ r}. Then the 1-ball W1(x) is called a Dikin ellipsoid that reflects the
curvature of R at x in the length of its axes. A nice fact about the Dikin ellipsoid here is that it will always
lie inside the set K. For this reason it is particularly relevant to interior point methods. For our purpose,
the Dikin ellipsoid tells us in which directions we have a lot of space to move and we will adapt our sampling
strategy according to its induced local geometry. Specifically, if {λ1, . . . , λn} and {e1, . . . , en} are eigenvalues
and eigenvectors of ∇2R(xt), then we let yt = xt + εtλ

−1/2
it

eit and estimate the slope as l̃t = n(l>t yt)εtλ
1/2
it

.
The key to bounding the regret will be that the divergence is approximately DR∗(0, ηl̃t) ≈ η2 l̃t(∇2R(xt))−1 l̃t.
Here, the inverse Hessian will kill the largeness of l̃t in exactly the right directions, leaving us with terms on
the order of η2.

DR∗(0, ηl̃t) ≈ η2 l̃t(∇2R(xt))−1 l̃t (15)

= η2n2(l>t yt)2λit
e>it

(∇2R(xt))−1eit
(16)

= η2n2(l>t yt)2. (17)

This latter property relies on our sampling strategy along the eigendirections and would not hold if we were
to mix eigendirections. In brief, the regulariser gives us a geometry so that we can sample and through the
Hessian gives us control on the regret.

The full details for this lecture can be found Abernethy et al. [1]. Of specific relevance are Lemma 4.1 as
well as Theorem 3.1. A proof sketch for Theorem 3.1 is given in Section 6 and the complete argument in
Section 8.
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