Online bandit problems

Lecturer: Alexander Rakhlin
Scribe: Fabian Wauthier

In the past lectures we have addressed online learning in a setting where we observe the full function l_{t}. In this lecture we will look at online learning with limited feedback. We are interested in the question of how much feedback is needed in order to achieve low regret. Throughout this lecture, we will assume that the functions l_{t} are linear.

We have previously looked at the following game: For time $t=1,2, \ldots, T$, we predict $x_{t} \in K \subset \mathbb{R}^{n}$. At each time step we observe $l_{t} \in \mathbb{R}^{n}$ and suffer $l_{t} \cdot x_{t}$. Then we take a gradient step. In this game we observe the whole loss function l_{t} after having chosen x_{t} and the last few lectures showed that a \sqrt{T} regret can be achieved. We will now step away from the full information game and work in a limited feedback setting where functions l_{t} are linear, but we only observe the value $\left(l_{t} \cdot x_{t}\right)$ at each time step, rather than the whole function l_{t}. This lecture will address the question whether we can still achieve \sqrt{T} regret if we are given only a single number. Before we begin, let us develop more motivation through some examples.

1. Online shortest path

As discussed in the last lecture, the selection of a path in a directed acyclic graph $G=(E, V)$ can be formalised as a binary vector of length $|E|$, where a non-zero component indicates that the corresponding edge is used in this path. Here the graph G loosely corresponds to the set K. Let $\mathcal{P} \subseteq\{0,1\}^{|E|}$ be the subset of the binary hypercube corresponding to legal path vectors from a source to a sink. If arc i is associated with a delay l_{t}^{i}, then the total delay for a particular chosen path $x_{t} \in \mathcal{P}$ can be written as $l_{t} \cdot x_{t}$. In the limited feedback setting we will, after having chosen a path x_{t}, only observe the total delay $\left(l_{t} \cdot x_{t}\right)$. We are interested in choosing paths x_{t} in such a way that adversarially chosen delays on edges lead to low overall regret.
2. Stochastic multi-armed bandit

In this problem, the set K is the simplex and the l_{t} are chosen stochastically. The component l_{t}^{i} is chosen i.i.d. from a fixed distribution with mean μ_{i}. The means are fixed throughout the game, and the l_{t} are not chosen adversarially. We wish to receive the largest gain throughout the game. The regret is given as

$$
\begin{equation*}
R_{T}=\sum_{t=1}^{T} l_{t} \cdot x_{t}-\min _{i} \sum_{t=1}^{T} \mu_{i} \tag{1}
\end{equation*}
$$

Under the previous assumptions the formulation reduces to the multi-armed bandit problem, where one receives l_{t}^{i} reward for choosing arm i. The expected regret is the same for choosing fractional $x_{t} \subseteq K$ and for probabilistically choosing vertices of the simplex with some fractional probability.
3. Non-stochastic multi-armed bandit

The setup for this problem is similar to the previous one, except that now l_{t} are chosen adversarially. We make no assumptions about an underlying distribution for l_{t}.

In the limited feedback formulation only one number $l_{t} \cdot x_{t}$ is given in response to a choice x_{t}. A first observation is that if the strategy is deterministic (i.e. x_{t} is one of the vertices of K), then the adversary

Figure 1: The choice y_{t} is computed from x_{t} by adding or subtracting a value of δ uniformly at random. The distribution of y_{t} is comprised of two delta functions and has mean x_{t}.
could mislead us by playing a function which has low value at our deterministic choice but is large elsewhere. If our choice is stochastic, then the adversary cannot always hide information about l_{t} from us.

So instead of predicting x_{t} directly, we will predict y_{t}, which is drawn from a distribution with mean x_{t}. To learn about the (linear) function l_{t} we want to estimate its slope by suitable queries y_{t}. Consider the following example in two dimensions. Suppose that $K=[0,1] \times\{1\}$ is a flat set, and that the adversary gives a vector-valued response $l_{t}=(\cdot, \cdot)^{\top}$. Here the first component of l_{t} corresponds to the slope of the linear function, and the second to an offset term (hence the fixed second dimension of K). By construction, our choice $x_{t} \in K$ is determined by its first component. Suppose the procedure tells us to predict x_{t}. Then define a randomised y_{t} as

$$
y_{t}= \begin{cases}x_{t}+\delta & \text { w.p. } 1 / 2 \tag{2}\\ x_{t}-\delta & \text { w.p. } 1 / 2\end{cases}
$$

An estimator of the slope of the function l_{t} (its first component) is given by

$$
\begin{equation*}
\tilde{l}_{t}=\frac{l_{t} y_{t}}{\delta} \operatorname{sign}\left(y_{t}-x_{t}\right) \tag{3}
\end{equation*}
$$

This estimator is unbiased, since

$$
\begin{equation*}
E\left(\tilde{l}_{t}\right)=\frac{1}{2}\left[\frac{l_{t}\left(x_{t}+\delta\right)}{\delta}-\frac{l_{t}\left(x_{t}-\delta\right)}{\delta}\right]=l_{t} \tag{4}
\end{equation*}
$$

Although we start with one point x_{t}, we turn it into a randomised strategy for two points that to some extent recovers the function l_{t} of which we only see evaluations. This process is illustrated in Figure 1. Such a randomisation strategy also works in higher dimensions. First choose a coordinate i_{t} uniformly at random from $\{1, \ldots, n\}$. Pick the direction $\varepsilon_{t}= \pm 1$ with probability $1 / 2$ and let $y_{t}=x_{t}+\varepsilon_{t} \cdot \delta \cdot e_{i_{t}}$, where $e_{i_{t}}$ is the i_{t}-th standard basis. We now let \tilde{l}_{t} be defined as

$$
\begin{equation*}
\tilde{l}_{t}=n \frac{l_{t} y_{t}}{\delta} \varepsilon_{t} \cdot e_{i_{t}} \tag{5}
\end{equation*}
$$

Here also, $E\left(\tilde{l}_{t}\right)=l_{t}$. Returning to the one-dimensional case, while the estimator in one dimension is unbiased, its variance depends on the denominator δ. We require for a "good" estimator of the slope that δ is as large as possible. Note in particular that if x_{t} lies near the boundaries at 0 or 1 , then δ must be small and our estimator will be of high variance.

Once we have computed an estimate \tilde{l}_{t}, we will choose the mean of the next distribution x_{t+1} as

$$
\begin{equation*}
x_{t+1}=\operatorname{argmin}_{x \in K} \eta \sum_{s=1}^{t} \tilde{l}_{s} x+R(x) \tag{6}
\end{equation*}
$$

where $R(x)$ is a regulariser. This approach is called Follow The Regularized Leader. We recall that the key terms to control for low regret are $D_{R}\left(x_{t}, x_{t+1}\right)$. Suppose that the regulariser R is chosen as $1 / 2\|\cdot\|^{2}$. Then we have $D_{R}\left(x_{t}, x_{t+1}\right)=D_{R^{*}}\left(0, \eta \tilde{l}_{t}\right)=\eta^{2}\left\|\tilde{l}_{t}\right\|^{2}$. Here, R is self-dual, so R^{*} is the same as R. Heuristically, whenever predicting a point which is close to the boundary, we can step away from the boundary by $O(1 / \sqrt{T})$ without hurting the regret by more than $O(\sqrt{T})$. We can then guarantee that $\delta \geq O(1 / \sqrt{T})$ so that the estimate of the slope \tilde{l}_{t} scales as $1 / \delta \approx \sqrt{T}$. Hence $D_{R}\left(x_{t}, x_{t+1}\right) \approx \eta^{2} T$. This suggests that for the regret

$$
\begin{align*}
R_{T} & \leq \eta^{-1} D_{R}\left(u, x_{1}\right)+\eta^{-1} T\left(\eta^{2} T\right) \tag{7}\\
& \approx \eta^{-1}+\eta T^{2} \tag{8}\\
& =O(T) \tag{9}
\end{align*}
$$

The last step follows by choosing η to balance the two terms. We were hoping to get a regret on the order of \sqrt{T}, but under the previous assumption we only achieved a regret which is linear in T. The previous result can be improved by clever sampling choices for y_{t} only up to $O\left(T^{2 / 3}\right)$ regret. For a long time it was unclear whether a regret on the order of \sqrt{T} could be achieved. The key to proceeding was to exploit the additional freedom of choosing the regulariser R. Under a suitable choice of R it turns out that $O(\sqrt{T})$ regret is possible.

We will give a heuristic argument for the choice of R. We know that the problem occurs when x_{t} is close to the boundary, since then the variance of \tilde{l}_{t} blows up as $1 / d$, where d is the distance to the boundary. We also know that in order to get the desired regret, we need to control the divergence $D_{R^{*}}\left(0, \eta \tilde{l}_{t}\right)$. This term is small if R^{*} is close to linear when \tilde{l}_{t} is large. It turns out that the curvature in the primal corresponds to linearity in the dual. So heuristically, the primal R has to be relatively "curved" when \tilde{l}_{t} is large, that is, when x_{t} is close to the boundary. If \bar{H} is the Hessian of R^{*}, then

$$
\begin{align*}
D_{R^{*}}\left(0, \eta \tilde{l}_{t}\right) & \approx \eta^{2} \tilde{l}_{t}^{\top} \bar{H} \tilde{l}_{t} \tag{10}\\
& \stackrel{\text { want }}{=} O\left(\eta^{2}\right) \tag{11}
\end{align*}
$$

The last equality must hold if we want to get $O(\sqrt{T})$ regret. So we need the linearity of R^{*} to kill the large magnitude l_{t}. Earlier we claimed that \tilde{l}_{t} will scale approximately like $1 / d$. It follows that in one dimension \bar{H} should behave like d^{2}. The Hessian of R^{*} is the inverse Hessian of R, so then we see that the Hessian of R should behave like $1 / d^{2}$. A function of d which has $1 / d^{2}$ as its Hessian is $-\log (d)$. Hence the key property of R is that it behaves like the $-\log$ of the distance to the boundary. We have heuristically argued for key qualities of R. To understand how this function can be constructed for general sets, we appeal to the theory of interior point methods.

Definition. Self-concordant function
A function $R: K \rightarrow \mathbb{R}$ is self-concordant if it is a C^{3} convex function such that

$$
\begin{equation*}
\left|D^{3} R(x)[h, h, h]\right| \leq 2\left(D^{2} R(x)[h, h]\right)^{3 / 2} \tag{12}
\end{equation*}
$$

where the third order differential is defined as

$$
\begin{equation*}
D^{3} R(x)\left[h_{1}, h_{2}, h_{3}\right]=\left.\frac{\partial^{3}}{\partial t_{1} \partial t_{2} \partial t_{3}}\right|_{t_{1}=t_{2}=t_{3}=0} R\left(x+t_{1} h_{1}+t_{2} h_{2}+t_{3} h+3\right) \tag{13}
\end{equation*}
$$

Definition. θ-self concordant barrier
A θ-self concordant barrier is a self-concordant function with

$$
\begin{equation*}
|D R(x)[h]| \leq \theta^{1 / 2}\left[D^{2} R(x)[h, h]\right]^{1 / 2} \tag{14}
\end{equation*}
$$

We now present some examples of θ-self concordant functions

1. If we have an n-dimensional ball, $B_{n}=\left\{x \in \mathbb{R}^{n}, \sum_{i} x_{i}^{2} \leq 1\right\}$, then $R(x)=-\log \left(1-\|x\|^{2}\right)$ is 1-self concordant.
2. If we have a constraint $a^{\top} x \leq b$, then $R(x)=-\log \left(b-a^{\top} x\right)$. The constraint is a hyperplane and $R(x)$ is the negative log distance to the constraint.
3. Additionally, if R_{1} is θ_{1}-self concordant and R_{2} is θ_{2}-self concordant, then $R_{1}+R_{2}$ is $\left(\theta_{1}+\theta_{2}\right)$-self concordant.

We are now ready to show that for a self-concordant barrier R there is a suitable sampling strategy so that for the divergence $D_{R^{*}}\left(0, \eta \tilde{l}_{t}\right)=O\left(\eta^{2}\right)$. The latter will then imply that we can achieve $O(\sqrt{T})$ regret.

Define the local Euclidean geometry at $x \in K$ by $\langle g, h\rangle_{x}=g^{\top} \nabla^{2} R(x) h$. This induces the norm at x to be $\|h\|_{x}=\sqrt{\langle h, h\rangle_{x}}$. That is, locally the space is stretched according to the Hessian at x. Define an r-ball at x as $W_{r}(x)=\left\{z \in K:\|z-x\|_{x} \leq r\right\}$. Then the 1-ball $W_{1}(x)$ is called a Dikin ellipsoid that reflects the curvature of R at x in the length of its axes. A nice fact about the Dikin ellipsoid here is that it will always lie inside the set K. For this reason it is particularly relevant to interior point methods. For our purpose, the Dikin ellipsoid tells us in which directions we have a lot of space to move and we will adapt our sampling strategy according to its induced local geometry. Specifically, if $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ and $\left\{e_{1}, \ldots, e_{n}\right\}$ are eigenvalues and eigenvectors of $\nabla^{2} R\left(x_{t}\right)$, then we let $y_{t}=x_{t}+\epsilon_{t} \lambda_{i_{t}}^{-1 / 2} e_{i_{t}}$ and estimate the slope as $\tilde{l}_{t}=n\left(l_{t}^{\top} y_{t}\right) \epsilon_{t} \lambda_{i_{t}}^{1 / 2}$. The key to bounding the regret will be that the divergence is approximately $D_{R^{*}}\left(0, \eta \tilde{l}_{t}\right) \approx \eta^{2} \tilde{l}_{t}\left(\nabla^{2} R\left(x_{t}\right)\right)^{-1} \tilde{l}_{t}$. Here, the inverse Hessian will kill the largeness of \tilde{l}_{t} in exactly the right directions, leaving us with terms on the order of η^{2}.

$$
\begin{align*}
D_{R^{*}}\left(0, \eta \tilde{l}_{t}\right) & \approx \eta^{2} \tilde{l}_{t}\left(\nabla^{2} R\left(x_{t}\right)\right)^{-1} \tilde{l}_{t} \tag{15}\\
& =\eta^{2} n^{2}\left(l_{t}^{\top} y_{t}\right)^{2} \lambda_{i_{t}} e_{i_{t}}^{\top}\left(\nabla^{2} R\left(x_{t}\right)\right)^{-1} e_{i_{t}} \tag{16}\\
& =\eta^{2} n^{2}\left(l_{t}^{\top} y_{t}\right)^{2} . \tag{17}
\end{align*}
$$

This latter property relies on our sampling strategy along the eigendirections and would not hold if we were to mix eigendirections. In brief, the regulariser gives us a geometry so that we can sample and through the Hessian gives us control on the regret.

The full details for this lecture can be found Abernethy et al. [1]. Of specific relevance are Lemma 4.1 as well as Theorem 3.1. A proof sketch for Theorem 3.1 is given in Section 6 and the complete argument in Section 8.

References

[1] Jacob Duncan Abernethy, Elad Hazan, and Alexander Rakhlin. An efficient algorithm for bandit linear optimization. Technical Report UCB/EECS-2008-18, EECS Department, University of California, Berkeley, Feb 2008.

