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Universal Portfolios

Lecturer: Peter Bartlett Scribes: Boriska Toth and Oriol Vinyals

1 Portfolio optimization setting

Suppose we have m instruments (i.e. stocks). At each period of time t, we have wealth Vt, and we invest
a proportion pt,i in each instrument i. Instrument i increases in value by a factor xt,i ≥ 0. Our capital at
period t thus increases by a factor Vt

Vt−1
=
∑

i xt,ipt,i = x′tpt.

pt is in the simplex ∆m, and xt is a random m-dimensional vector.

The first question to consider is: what is a fair bet? Is E x′b the right measure? Should one be satisfied
making an investment of b, when E x′b > 1?

In this setting of investment, one cares greatly about risk, in other words, the variance and not just the
expectation of returns. The famous example below demonstrates.

Example. St. Petersburg paradox

Suppose x is a r.v. such that, at each time t = 1, 2, .. there is a coin flip. Let t̃ denote the first time a “heads”
comes up. Then the payout is 2t̃ for t = t̃, and 0 otherwise.

Then

E
∞∑

t=1

2i2−i =
∞∑

t=1

1 = ∞

Even though this procedure has infinite expected return, it doesn’t make sense to invest much money in
it, as there is very low probability of a large return. (Note that here we are using an additive and not
multiplicative model of increases in wealth at each time.)

Four main approaches to portfolio optimization, that all capture the tradeoff between expected wealth and
risk, are:

1. Markovitz approach

2. Utility function approach

3. Optimizing for optimal growth rate

4. Constant rebalanced portfolio (CRP) approach

1.1 Markovitz optimization

This approach was developed by Markovitz in the 50’s. We have returns X ∈ Rm
+ , with EX = µ and

Var(X) = Σ.
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We maximize expected return, subject to a constraint on the risk (this example doesn’t contain multiple
time steps):

max EX : ⇔ max µ′p :
p ∈ ∆m p ∈ ∆m

Var(X ′p) ≤ R p′Σp ≤ R

Without the constraints that bound variance, we have a linear optimization [max µ′p] over a simplex ∆m.
The optimal solution to that is always to pick a vertex of the simplex, which corresponds to the pure strategy
of investing in one instrument. The constraint p′Σp ≤ R restricts p ∈ ∆m to also be within an ellipsoid, so
that the solution might involve mixing over more than one instrument (diversification helps control risk).

1.2 Utility function approach

This approach consists of defining a utility function U() of values, chosen to take into account the tradeoff
between expected wealth and risk, so that we maximize E U(x′p). This is the solution to the St. Petersburg
problem proposed by Bernoulli.

To capture the criterion that a given expected gain with higher variance is worth less than one with lower
variance, we should use a concave function with

EU(V ) ≤ U(EV )

Taking the second order Taylor approximation to U(V ) at V = EV , and taking the expectation of both
sides, we have

EU(V ) ≈ U(EV ) +
1
2
U ′′(EV )Var(V )

For a concave function, U ′′(EV ) ≤ 0, so we have a term that penalizes variance in optimizing the expected
utility.

The log() function is used widely as a utility function, as it is in the constant rebalanced portfolio approach.

1.3 Example using log utility function

Suppose we have 2 instruments, with one of them risk-free, such that at all times:

Pr(Xt,1 = 1) = 1

Pr(Xt,2 = 0) = p <
1
2

Pr(Xt,2 = 2) = 1− p

We start with V0 > 0 capital. Putting all our capital on 2, we have E VT = (2(1− p))T
V0. This goes to

infinity in the limit of T .

Now suppose we want to maximize the asymptotic growth rate of the log-of-return. Denote by bt the
proportion of capital bet on instrument 2 at time t. Also define Wt = 1[Xt,2 = 2] (“win”).

Then
Vt+1 = Vt(1 + bt)

Wt(1− bt)
1−Wt
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The asymptotic growth rate of the log-of-return is:

G = lim
T→∞

1
T

log2

VT

V0
=

lim
T→∞

1
T

T∑
t=1

Wt log2(1 + bt) + (1−Wt) log2(1− bt)

This equality comes from expanding VT

V0
as a telescoping product.

Note that if Zt ∈ Z, t = 1, 2, .. are i.i.d. random variables, and f() a real function on Z, then with probability
1 we have

limT→∞
1
T

∑T
t=1 f(Zt) = E(Zt)

So we have that with probability 1

G = (1− p) log2(1 + bt) + p log2(1− bt) = E log
Vt+1

Vt

It is straightforward to see that the optimal investment at any time t is b∗t = 1− 2p.

Note that in this example, since we have i.i.d. returns, it doesn’t actually make a difference in expectation
to average growth rate over time. Both the expected growth rate, and the optimal bt, are the same in each
period.

Also note that there is a close connection between maximizing the expected log return, and finding the ideal
channel capacity in information theory.

2 Constant rebalanced portfolios

Definition. For random returns xt ∈ Rm
+ , a strategy b∗ is log optimal if

b∗t (x1, x2, ... xt−1) = argmaxb∈∆m
E[log(b′xt)|x0, ... xt−1].

To motivate this definition, suppose we want to maximize E (log VT

V0
) by choosing strategy b∗t (x1, x2, ... xt−1)

that can depend on all known return values. Expressing VT

V0
as a telescoping product, and using Vt

Vt−1
= b′txt,

we have

max
{bt}

E [
T∑

t=1

log(b′txt)]

Thus we choose each bt as

bt = argmaxbt(x1, ... xt−1) E [log(b′txt)] = argmaxbt
E [log(b′txt)|x1, ... xt−1]

Note that if the returns are i.i.d., then b∗t (x1, x2, ... xt−1) = argmaxb∈∆m
E[log(b′x], so we have a constant

log optimal strategy b∗ at each time. This is called a constant rebalanced portfolio (CPR). This means
we must rebalance our investment, after the stocks have grown at non-uniform rates to yield a different
balance than b∗, such that we use strategy b∗ at each discrete time interval.
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Theorem 2.1. Given i.i.d. returns xt, if the log optimal strategy b∗ has capital growth V0, V ∗
1 , ... V ∗

T and
some strategy b has growth V0, V1, ... VT , then

lim sup
T→∞

1
T

log
VT

V ∗
T

≤ 0 almost surely

We can see that this makes sense because log VT

V ∗
T

= log VT

V0
− log V ∗

T

V0
=
∑T

t=1 [log(x′tb)− log(x′tb
∗)]. We saw

that limT→∞
1
T

∑T
t=1 log(x′tb

∗) → E log(x′b), which is maximized by b∗.

Thus, in the i.i.d. case, choosing the log optimal portfolio b∗ as a CPR is optimal.

To summarize, in the i.i.d. case, there is a constant strategy vector b, such that if the investment is
rebalanced at each step to strategy b, then we have optimal asymptotic growth rate of log returns. This
overall investment strategy of finding a log optimal investment vector, and rebalancing to keep investment
constant, is called the CRP.

3 CRPb

We define the CRPb as the strategy described above of rebalancing a portfolio at each time step to the
constant investment vector b ∈ ∆m (here we will not just be considering the case of i.i.d. returns and log
optimal b).

E.g. 1: Let

Xt =
{(

2
1
2

)
,

( 1
2

2

)
,

(
2
1
2

)
, . . .

}

If we pick the constant rebalanced strategy of b =
( 1

2
1
2

)
, that is, uniform allocation of money, the growth is

exponential with rate=5
4 . On the other hand, it is easy to check that any non-rebalanced strategy, where

money is not moved between the two instruments after the first investment, achieves a growth of only 1.

E.g. 2: Dow Jones Industrial Averages (DJIA), which is a commonly used index to evaluate the US market
performance and which equally distributes the weight among 30 companies, is another example of CRP. The
year-to-date change for 2008 is −1.56 %.

Theorem 3.1. There is a strategy bU (universal strategy) for which, for all X1, . . . , XT , log(VT (bU )) ≥
log(VT (b∗)) − (m − 1) log(T + 1) − 1, where CRPb∗ is the CRP having optimal log returns (best constant
strategy in retrospect).

Before giving proof, we first demonstrate a simplified version of this theorem. Consider the m pure CRP s:
CRPb, b ∈ {ei, i = 1 . . .m}. Suppose we want to do reasonably well (in the usual, log optimal sense) as
compared to the best of these CRP’s. A good strategy then is to use CRPbW

, where bW places 1
m in each

instrument and does not rebalance. Then

log(VT (bW )) = log

 m∑
j=1

T∏
t=1

Xt,jV0/m

 ≥ log max
j

T∏
t=1

Xt,jV0/m =

= max
j

log

(
T∏

t=1

Xt,jV0

)
− log m = max

j
log(VT (ej))− log m
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which means that, by not knowing which is the best instrument, we pay at most a price of log m.

Proof. The universal strategy bU consists of allocating capital uniformly across the simplex ∆m at the
first time step, so that we have V0dµ(b) capital at each strategy b ∈ ∆m. Once we allocate capital uniformly
across the simplex, money is never moved between the different portfolios b, so the different portfolios grow
at different rates and don’t have uniform allocation across the simplex after the first iteration. Note that
the money invested in each portfolio b ∈ ∆m is rebalanced at each step.

Further, let Vt(b) denote the ratio of capital at time t to capital at time 0 resulting from an investment of
CRPb. By definition, V0(b) = 1 ∀b. Thus, at time t, we have Vt(b) V0dµ(b) capital on strategy b.

The actual strategy chosen at each time t is found by integrating across the simplex as follows:

bt =

∫
∆m

bVt−1(b) V0dµ(b)∫
∆m

Vt−1(b) V0dµ(b)
=

∫
∆m

bVt−1(b)dµ(b)∫
∆m

Vt−1(b)dµ(b)

Let us now consider the set S a ball (in a topological sense) on the simplex centered on the optimal solution
b∗ and with radius ε,

S = {(1− ε)b∗ + εa : a ∈ ∆m}

For b ∈ S,

V1(b)
V0

=
V1((1− ε)b∗ + εa)

V0
≥ (1− ε)

V1(b∗)
V0

and, using the same inequality for times t, t − 1 and telescoping the product, we get VT (b)
VT (b∗) ≥ (1 − ε)T .

So far, we’ve seen that choosing b ∈ S is not a bad choice. Also, the proportion of V0 allocated to S is
µ(S) = µ({εa : a ∈ ∆m}) = εm−1. It is straightforward to see that

log
VT (bU )
VT (b∗)

≥ log((1− ε)T εm−1)

If we choose ε = 1
T+1 , log(VT ) ≥ log(VT (b∗))− (m− 1) log(T + 1)− 1.

Some references here are Kelly, Breiman, Algoet, and Cover.

4 Prediction with log loss

Given a distribution Xt, we want to predict it using an estimation p̂t. The log loss is defined as:

l(p̂t, Xt) = − log(p̂t(Xt))

In the i.i.d. case, the expected log loss and the KL divergence are closely related (they are the same except
for an additional term of the entropy of the true distribution).

If we have several predictions of the probability function p̂t,1, . . . , p̂t,m, we can formulate the problem to find
the optimal mixture weight in terms of log loss (eg. language models). In particular, we want to find the
optimal b ∈ ∆m to minimize the following loss function:
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l(p̂t, Xt) = − log

(
m∑

i=1

bip̂t,i(Xt)

)

This is equivalent to the problem presented in this lecture and, therefore, we can use portfolio strategies to
solve it.


