Online-to-batch conversions

1 Intro

Much of today's lecture comes from the paper [2].
Recap: We've shown that low regret algorithms, where regret \mathcal{R}_{T} is defined as

$$
\mathcal{R}_{T}:=\sum_{t=1}^{T} \ell_{t}\left(x_{t}\right)-\min _{x \in \mathcal{K}} \sum_{t=1}^{T} \ell_{t}(x)
$$

can be obtained by, for each t, finding

$$
x_{t+1}=\arg \min _{x \in \mathcal{K}} R(x)+\eta \sum_{s=1}^{t} \ell_{s}(x)
$$

where $R(x)$ is some reguarlizing function (not to be confused with regret \mathcal{R} or risk $R(f)$).
Suppose $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{T}, y_{T}\right)\right\}=z_{1}^{T}$ iid, and we wish to find a function f that predicts y given x (the standard classification setting). In terms of our low regret algorithms, we can think of x as a hypothesis f and $\ell_{t}(x)$ as $\ell\left(f\left(x_{t}\right), y_{t}\right)$. Then, a plausible training procedure is to run an online algorithm on this sequence, obtaining f_{1}, \ldots, f_{T}. Let's look at the regret:

$$
\frac{1}{T} \mathcal{R}_{T}=\frac{1}{T} \sum_{t=1}^{T} \ell\left(f_{t-1}\left(x_{t}\right), y_{t}\right)-\min _{f \in \mathcal{K}} \frac{1}{T} \sum_{t=1}^{T} \ell\left(f\left(x_{t}\right), y_{t}\right)
$$

We have shown that this regret is "small" $\left(\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)\right)$. However, in the classification setting, we would like to find small expected risk $R(f)$ among $f_{1}, f_{2}, \ldots, f_{T}$.

Define:

$$
\begin{aligned}
R(f) & :=\mathbb{E}[\ell(f(X), Y)] \\
\hat{R}(f) & :=\frac{1}{T} \sum_{i=1}^{T} \ell\left(f\left(X_{i}\right), Y_{i}\right) \\
\bar{f} & :=\frac{1}{T} \sum_{t=1}^{T} f_{t} \\
f^{*} & :=\arg \min _{f \in \mathcal{K}} R(f)
\end{aligned}
$$

If $\ell(\hat{y}, y)$ is convex in \hat{y}, and $0 \leq \ell(\cdot, \cdot) \leq 1$, then:

$$
\begin{array}{rlr}
R(\bar{f}) & \leq \frac{1}{T} \sum_{t=1}^{T} R\left(f_{t}\right) & \text { (by convexity) } \\
& \leq \frac{1}{T} \sum^{\ell} \ell\left(f_{t}\left(x_{t}\right), y_{t}\right)+\sqrt{\frac{2}{T} \log \left(\frac{1}{\delta}\right)} & \text { (w.h.p. - see next lemma) } \\
& \leq \min _{f \in K} \frac{1}{T} \sum_{t=1}^{T} \ell\left(f\left(x_{t}\right), y_{t}\right)+\frac{\mathcal{R}_{T}}{T}+\sqrt{\frac{2}{T} \log \left(\frac{1}{\delta}\right)} & \text { (due to regret bound) } \\
& \leq \frac{1}{T} \sum_{t=1}^{T} \ell\left(f^{*}\left(x_{t}\right), y_{t}\right)+\frac{\mathcal{R}_{T}}{T}+\sqrt{\frac{2}{T} \log (1 / \delta)} & \text { (assuming } f^{*} \text { is optimal) } \\
& \leq R\left(f^{*}\right)+\frac{\mathcal{R}_{T}}{T}+2 \sqrt{\frac{2}{T} \log (1 / \delta)} & \text { (by def'n of risk) }
\end{array}
$$

The second inequality is true by the following Lemma:
Lemma 1.1. Define $M_{T}=\frac{1}{T} \sum_{t=1}^{T} \ell\left(f_{t-1}\left(x_{t}\right), y_{t}\right)$. Then

$$
\begin{equation*}
\mathbb{P}\left[\frac{1}{T} \sum_{t=1}^{T} R\left(f_{t-1}\right) \leq M_{T}+\sqrt{\frac{2}{T} \log (1 / \gamma)}\right] \geq 1-\delta \tag{1}
\end{equation*}
$$

Proof. (Using Martingale's) Define

$$
V_{t-1}:=R\left(f_{t-1}\right)-\ell\left(f_{t-1}\left(x_{t}\right), y_{t}\right)
$$

Then

$$
\frac{1}{T} \sum_{t=1}^{T} V_{t-1}=\frac{1}{T} \sum R\left(f_{t-1}\right)-M_{T}
$$

and $-1 \leq V_{t-1} \leq 1$.
If $\mathbb{E}_{t}[\cdot]=E\left[\cdot \mid\left(X_{1}=x_{1}, Y_{1}=y_{1}\right), \ldots,\left(X_{t-1}=x_{t-1}, Y_{t-1}=y_{t-1}\right)\right]$. Then:

$$
\mathbb{E}_{t}\left[V_{t-1}\right]=R\left(f_{t-1}\right)-\mathbb{E}_{t}\left[\ell\left(f_{t-1}\left(X_{t-1}\right), Y_{t}\right)\right]=0
$$

by definition of $R\left(f_{t-1}\right)$. Therefore, V_{t} forms Martingale sequence. Since $-1 \leq \frac{1}{T} \sum_{t=1}^{T} V_{t-1} \leq 1$, we can apply Azuma-Hoeffding:

$$
P\left(\frac{1}{T} \sum_{t=1}^{T} V_{t-1}-\mathbb{E}_{t}\left[\frac{1}{T} \sum_{t=1}^{T} V_{t-1}\right]>\epsilon\right)=P\left(\frac{1}{T} \sum_{t=1}^{T} V_{t-1}-0>\epsilon\right) \leq \exp \left(\frac{-\epsilon^{2} T}{2}\right)
$$

Note that more details can be found in in the proof McDiarmid Inequality from Lecture 13, where a similar Martingale sequence was constructed.

The above analysis assumes $\ell(\cdot, y)$ is convex in the first argument. If not, then we can instead use the following "cross-validation" scheme:

$$
\begin{aligned}
\text { Define } R\left(f_{t}, t+1\right) & :=\frac{1}{T-t} \sum_{s=t+1}^{T} \ell\left(f_{t}\left(x_{s}\right), y_{s}\right) \\
\text { Set } c_{\delta}(t) & :=\sqrt{\frac{1}{2 t} \log \frac{2 T(T+1)}{\delta}} \\
\text { Let } \hat{f} & :=\arg \min _{0 \leq t \leq T}\left[\hat{R}\left(f_{t}, t+1\right)+c_{\delta}(T-t)\right]
\end{aligned}
$$

Theorem 1.2. Under some additional assumptions, it can be shown that

$$
P\left(R(\hat{f}) \geq M_{T}+\delta \sqrt{\frac{1}{T} \log \frac{2(T+1)}{\delta}}\right) \leq \delta
$$

1.1 Example: Kernel Perceptron Classification

Suppose we have a RKHS \mathcal{H}_{K} with kernel K, and have the $0 / 1$ loss function as our criterion. Then:

$$
\Vdash_{\operatorname{sign}(\hat{y})=y} \leq \ell_{\gamma}(\hat{y}, y):=\max \left\{0,1-\frac{y \hat{y}}{\gamma}\right\} .
$$

Here ℓ_{γ} is the hinge-loss with x-intercept γ.
Kernel Perceptron gives: $f_{t}=\operatorname{sign}\left(\sum_{s \in \mu_{t}} y_{s} K\left(x_{s}, \cdot\right)\right)$, where μ_{t} is set of indices of mistakes up to t.
Theorem 1.3. Let f_{0}, \ldots, f_{T-1} be generated by kernel perceptron on Z_{1}^{T} and \hat{f} as designed before. Then

$$
R(\operatorname{sign}(\hat{f})) \leq \inf _{f \in \mathcal{H}_{k},\|f\|_{*}<1, \delta>0}\left\{\frac{1}{T} \sum_{t=1}^{T} \ell_{\gamma}\left(f\left(x_{t-1}\right), y_{t}\right)+\frac{1}{\gamma T} \sqrt{\sum_{t \in \mu_{T}} K\left(x_{t}, x_{t}\right)}+\delta \sqrt{\frac{1}{T} \log \frac{2(T+1)}{\delta}}\right\}
$$

with probability exceeding $1-\delta$.
Now, we will compare the above to a similar result obtained in [1]. First we make the following definitions:

$$
\begin{array}{r}
\tilde{\ell}_{\gamma}(\hat{y}, y):=\min \left\{1, \ell_{\gamma}(\hat{y}, y)\right\} \\
\tilde{D}_{\gamma, T}\left(f, Z_{1}^{T}\right):=\frac{1}{T} \sum_{t=1}^{T} \tilde{\ell}_{\gamma}\left(f\left(x_{t-1}\right), y_{t}\right)
\end{array}
$$

The following result is proved [1]:
Lemma 1.4. With probability at least $1-\delta$:

$$
R(\operatorname{sign}(F)) \leq \tilde{D}_{\gamma, T}\left(F, Z_{1}^{T}\right)+\frac{4 B}{\gamma T} \sqrt{\sum K\left(x_{t}, x_{t}\right)}+\left(\frac{8}{\gamma}+1\right) \sqrt{\frac{1}{T} \log \left(\frac{2(T+1)}{\delta}\right.}
$$

Simultaneously for all F of the form $F(\cdot)=\sum_{t=1}^{T} \alpha_{t} K\left(x_{t}, \cdot\right)$ and coefficients $\alpha_{1}, \alpha_{2}, \ldots, \in \mathbb{R}$ such that $\sum_{i, j} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{i}\right) \leq B^{2}$.

The two results are arguably similar, yet the former requires much less machinery and arises from analyzing regret, i.e. when we are learning against an adversary.

References

[1] P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3:463-482, 2002. http://www.jmlr.org/papers/volume3/bartlett02a/bartlett02a.pdf.
[2] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning algorithms. Information Theory, IEEE Transactions on, 50(9):2050-2057, Sept. 2004.

