
CS281B/Stat241B (Spring 2008) Statistical Learning Theory Lecture: 28

Online-to-batch conversions

Lecturer: Sasha Rakhlin Scribe: Dapo Omidiran, Adam Pauls, Jacob Abernethy

1 Intro

Much of today’s lecture comes from the paper [2].

Recap: We’ve shown that low regret algorithms, where regret RT is defined as

RT :=
T∑
t=1

`t(xt)−min
x∈K

T∑
t=1

`t(x)

can be obtained by, for each t, finding

xt+1 = arg min
x∈K

R(x) + η

t∑
s=1

`s(x)

where R(x) is some reguarlizing function (not to be confused with regret R or risk R(f)).

Suppose {(x1, y1), . . . , (xT , yT )} = zT1 iid, and we wish to find a function f that predicts y given x (the
standard classification setting). In terms of our low regret algorithms, we can think of x as a hypothesis f
and `t(x) as `(f(xt), yt). Then, a plausible training procedure is to run an online algorithm on this sequence,
obtaining f1, . . . , fT . Let’s look at the regret:

1
T
RT =

1
T

T∑
t=1

`(ft−1(xt), yt)−min
f∈K

1
T

T∑
t=1

`(f(xt), yt)

We have shown that this regret is “small” (O( 1√
T

)). However, in the classification setting, we would like to
find small expected risk R(f) among f1, f2, . . . , fT .

Define:

R(f) := E[`(f(X), Y )]

R̂(f) :=
1
T

T∑
i=1

`(f(Xi), Yi)

f̄ :=
1
T

T∑
t=1

ft

f∗ := arg min
f∈K

R(f)
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If `(ŷ, y) is convex in ŷ, and 0 ≤ `(·, ·) ≤ 1, then:

R(f̄) ≤ 1
T

T∑
t=1

R(ft) (by convexity)

≤ 1
T

∑
`(ft(xt), yt) +

√
2
T

log(
1
δ

) (w.h.p. - see next lemma)

≤ min
f∈K

1
T

T∑
t=1

`(f(xt), yt) +
RT
T

+

√
2
T

log(
1
δ

) (due to regret bound)

≤ 1
T

T∑
t=1

`(f∗(xt), yt) +
RT
T

+

√
2
T

log(1/δ) (assuming f∗ is optimal)

≤ R(f∗) +
RT
T

+ 2

√
2
T

log(1/δ) (by def’n of risk)

The second inequality is true by the following Lemma:

Lemma 1.1. Define MT = 1
T

∑T
t=1 `(ft−1(xt), yt). Then

P

[
1
T

T∑
t=1

R(ft−1) ≤MT +

√
2
T

log (1/γ)

]
≥ 1− δ (1)

Proof. (Using Martingale’s) Define

Vt−1 := R(ft−1)− `(ft−1(xt), yt)

Then

1
T

T∑
t=1

Vt−1 =
1
T

∑
R(ft−1)−MT

and −1 ≤ Vt−1 ≤ 1.

If Et[·] = E[ · |(X1 = x1, Y1 = y1), . . . , (Xt−1 = xt−1, Yt−1 = yt−1)]. Then:

Et[Vt−1] = R(ft−1)− Et[`(ft−1(Xt−1), Yt)] = 0

by definition of R(ft−1). Therefore, Vt forms Martingale sequence. Since −1 ≤ 1
T

∑T
t=1 Vt−1 ≤ 1, we can

apply Azuma-Hoeffding:

P

(
1
T

T∑
t=1

Vt−1 − Et

[
1
T

T∑
t=1

Vt−1

]
> ε

)
= P

(
1
T

T∑
t=1

Vt−1 − 0 > ε

)
≤ exp

(
−ε2T

2

)
Note that more details can be found in in the proof McDiarmid Inequality from Lecture 13, where a similar
Martingale sequence was constructed.
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The above analysis assumes `(·, y) is convex in the first argument. If not, then we can instead use the
following “cross-validation” scheme:

Define R(ft, t+ 1) :=
1

T − t

T∑
s=t+1

`(ft(xs), ys).

Set cδ(t) :=

√
1
2t

log
2T (T + 1)

δ
.

Let f̂ := arg min
0≤t≤T

[R̂(ft, t+ 1) + cδ(T − t)]

Theorem 1.2. Under some additional assumptions, it can be shown that

P

(
R(f̂) ≥MT + δ

√
1
T

log
2(T + 1)

δ

)
≤ δ

1.1 Example: Kernel Perceptron Classification

Suppose we have a RKHS HK with kernel K, and have the 0/1 loss function as our criterion. Then:

1sign(ŷ)=y ≤ `γ(ŷ, y) := max {0, 1− yŷ

γ
}.

Here `γ is the hinge-loss with x-intercept γ.

Kernel Perceptron gives: ft = sign(
∑
s∈µt

ysK(xs, ·)), where µt is set of indices of mistakes up to t.

Theorem 1.3. Let f0, . . . , fT−1 be generated by kernel perceptron on ZT1 and f̂ as designed before. Then

R(sign(f̂)) ≤ inf
f∈Hk,||f ||∗<1,δ>0

 1
T

T∑
t=1

`γ(f(xt−1), yt) +
1
γT

√∑
t∈µT

K(xt, xt) + δ

√
1
T

log
2(T + 1)

δ


with probability exceeding 1− δ.

Now, we will compare the above to a similar result obtained in [1]. First we make the following definitions:

˜̀
γ(ŷ, y) := min{1, `γ(ŷ, y)}

D̃γ,T (f, ZT1 ) :=
1
T

T∑
t=1

˜̀
γ(f(xt−1), yt)

The following result is proved [1]:

Lemma 1.4. With probability at least 1− δ:

R(sign(F )) ≤ D̃γ,T (F,ZT1 ) +
4B
γT

√∑
K(xt, xt) +

(
8
γ

+ 1
)√

1
T

log(
2(T + 1)

δ

Simultaneously for all F of the form F (·) =
∑T
t=1 αtK(xt, ·) and coefficients α1, α2, . . . ,∈ R such that∑

i,j αiαjK(xi, xi) ≤ B2.

The two results are arguably similar, yet the former requires much less machinery and arises from analyzing
regret, i.e. when we are learning against an adversary.
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