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1 The Perceptron Algorithm

Recall the following upper bound on the expected risk of a randomized version of the perceptron algorithm.

Theorem. Suppose that, for some r, δ > 0 and θ ∈ R, we have a.s. ‖ X ‖< r and Y θ′X
‖θ‖ ≥ δ. Then, the

following randomized variant of the perceptron algorithm returns fn with

ER (fn) ≤ r2

nδ2

Figure 1. Choose the decision rule that yields the maximum margin.

The following is a converse result: a lower bound on the expected risk of any algorithm.

Theorem. For any decision rule fn, there is a P on Rd × {±1} s.t. for some θ ∈ Rd, a.s.

θ′XY

‖ θ ‖
≥ δ

‖ X ‖≤ r

but

ER (fn) ≥
min

(
d, n, r2/δ2

)
− 1

2n

(
1− 1

n

)n

.

The proof idea is as follows:

We have support of Px on the scaled basis vectors,{
rei : 1 ≤ i ≤

⌊
r2

δ2

⌋}
,where

⌊
r2

δ2

⌋
= k

1
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θ =
1√
k

k∑
i=1

biei

Then,
Yiθ

′Xi =
r√
k
∼ δ (modulo some factor).

This concludes our discussion of the perceptron algorithm. We now continue to kernel methods.

2 Kernel Methods for Pattern Classification

We have seen that, when there is a large margin linear threshold function, the perceptron algorithm will
quickly find a linear threshold function that classifies the data, stopping when it achieves classification of
the training examples. Note that it does not choose a large margin linear threshold function.

It is interesting to consider the performance of a method that does maximize the margin, given by δ = Y θ′X
‖θ‖ .

An example of such a method is the Support Vector Machine (SVM).

Consider the following optimization problem.

maxγ,w γ s.t. yiw
′xi

‖w‖ ≥ γ i = 1, . . . , n

We could add the constraints ‖ w ‖≤ 1 or ‖ w ‖= 1
γ to lower the number of variables, because we only really

care about the direction of w.

Figure 2. SVM optimizes γ.

We may thus express the optimization problem given as the equivalent optimization problem,

minw∈Rd ‖ w ‖2 s.t. yiw
′xi ≥ 1 i = 1, . . . , n

We call this the Hard-Margin SVM. This optimization problem is the primal problem. Note that we are
maximizing a quadratic criterion subject to linear constraints; thus, we have a Quadratic Program (QP).

Recall that for constrained optimization, we use Lagrange Multipliers.

We introduce Lagrange Multipliers αi ≥ 0. We have one for each i = 1, . . . , n.
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Lagrangian:

L (w,α) :=
1
2
‖ w ‖2 −

n∑
i=1

αi (yiw
′xi − 1)

(We have added the scaling factor of 1
2 for convenience—it tidies the constants in what follows.)

We wish to minimize L (w,α) wrt w, the primal variables, and maximize it wrt α, the dual variables. That
is, we wish to find the saddle point of L (w,α).

Suppose we’re at a saddle point.

• If yiw
′xi < 1, we could increase αi to increase L. So at the saddle point, we must have the constraints

satisfied.

• If yiw
′xi > 1, then αi = 0.

• In any case, αi (yiw
′xi − 1) = 0∀i

=⇒ At the saddle point (w,α), w is primal feasible. =⇒ At the saddle point, L (w,α) = 1
2 ‖ w ‖2.

At the saddle point,

∂

∂w
L (w,α) = 0 =⇒ w∗ =

n∑
i=1

αiyixi

Consider especially points for which αi > 0 =⇒ yiw
′xi = 1. Such points are referred to as support vectors.

Only the support vectors enter into the constraint to determine the solution to the optimization problem.

Figure 3. Support vectors enter into constraint.

Let us also consider the dual optimization problem:

Substituting w∗ into L (w,α):

g (α) := L (w∗, α)

=
1
2

∑
i,j

αiyix
′
ixjyjαj −

∑
i,j

αiyix
′
ixjyjαj +

∑
i

αi

=
∑

i

αi −
1
2

∑
i,j

αiyix
′
ixjyjαj
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Dual:

maxα∈Rd

∑n
i=1 αi − 1

2

∑
i,j αiαjyiyjx

′
ixj s.t. αi ≥ 0 i = 1, . . . , n

Notice that the xis only enter the optimization problem via the inner products.

As with the perceptron algorithm, we can express the solution in terms of a mapping to an inner product
space:

fn (x) = sign (〈w,Φ (x)〉)

= sign

(
n∑

i=1

αiyi〈Φ (xi) ,Φ (x)〉

)

= sign

(
n∑

i=1

αiyik (xi, x)

)

where k (xi, x) is the kernel and α is a solution to

maxα∈Rd

∑n
i=1 αi − 1

2

∑
i,j αiαjyiyjk (xi, xj) s.t. αi ≥ 0 i = 1, . . . , n

To recap, note the two key ideas of SVMs:

• Maximized margin

• Arbitrary inner product

Let us now consider some examples of kernels.

• Polynomial

k2 (u, v) = (u′v)2

k2 (u, v) =

(
d∑

i=1

uivi

)2

=
(
u2

1,
√

2u1u2, u
2
2

) v2
1√

2v1v2
v2
2


= Φ2 (u)′ Φ2 (v) with Φ2 : R2 7→ R3

Note. The feature space might not be unique; eg,

ψ2 (u) =
(
u2

1, u1u2, u2u1, u
2
2

)
k2 (u, v) = ψ2 (u)′ ψ2 (v)

• Gaussian

kG (u, v) = exp
(
− ‖ u− v ‖2

2σ2

)
= 〈φG (u) , φG (v)〉

Here, u and v are infinite-dimensional vectors.
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Above, the kernels are defined on Rd; however, we may talk about any space (e.g., documents) on which we
can define an inner product.


