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The reference for this lecture is Chapter 5 of Boyd and Vanderberghe’s Convex Optimization.

1 Primal

Consider the optimization problem (primal problem):

.
p"=min fo(z)

s.t. fi(z) <0, i

The optimal value is
p* =fo(z")
Define the Lagrangian:
L :R™™ - R

L(z, \) =folz) + ZAifi(a:)

The \;s are called dual variables or Lagrange multipliers with A; > 0

2 Saddle Point

See Figure 1 for an example of a saddle point.

1,...

In a minimax problem, if the min player gets to play second he can achieve a lower value. Thus,

d* =sup inf L(z,\) < inf sup L(z, \)

A>0 T T A>0

Suppose there are z* and \* s.t.,
L(z*,A) < L(z*,\") < Lz, \¥)




Figure 1: Saddle Point

for all feasible x and A > 0. Then,

inf sup L(z,\) < sup L(z*,\) (ix x = x*)
T A>0 A>0

= L(z*,\*)

= inf L(z, \")

< sup inf L(z, \) (fixing A = A* we get previous)

A>0 ¢
So, inf sup L(z,\) = sup inf L(z, \)
T A>0 AS0 @

3 Lagrange Dual Function

Define the Lagrange dual function:

g\ = igf Lz, \)

igf (folz) + Z Aifi(x))

Note,

1. g()) is concave (point-wise minima of concave functions)

2. If A; > 0 and z is primal feasible (i.e. f;(z) < 0) then,

g(A) < folz)



Figure 2: Geometric Interpretation of Duality

3. In particular, VA > 0, g(\) < p*

4 Dual
Dual: max g(\)
st.A>0
Optimal Value: g(\*) =d*
Note,

1. The dual is always a maximization of a concave function with convex constraints
2. Weak duality implies that d* < p*

3. The optimal duality gap is p* — d*

5 Geometric Interpretation

Define,
G =A{(u,t): Jz fi(x) =u;; folx) =1t}



g(A) ZiYmIf {fo(z) + Z Aifi(z)}

(u,t)egG

:[ATl}TH]

=1

For m=1, the set
(woso (4 )=a

is a line with slope A and intercept t = ¢ = g(\). See Figure 2 for an illustration of the set G and the
Lagrange Dual.

6 Strong Duality

Weak duality states that d* < p*. Strong duality states d* = p*. Strong duality holds if fy and f; are
convex and there is a suitable qualification on the constraint. For example, Slater’s condition requires that
the primal is strictly feasible:

dx fi(z) <0 i=1...m

7 Complementary Slackness

If there is zero duality gap,
fo(@™) = g(X")
= inf <f0(ff) + Zﬁfi(@)
i=1

< fo(z®) + Z Af fi(z™) (fixing z = z¥)
i=1

Hence, Z)\Z*ﬂ(a:*) >0
i=1

But,  fi(s") <0
and A >0

So, D _Afi(z") =0
i=1
and hence Af fi(x™) =0 Vi

If constraint 4 is inactive at «* (i.e. fi(z*) < 0) then A} =0.



8 KKT Optimality Conditions

If fo and f; are differentiable, 3 x*, A* which are optimal, and the duality gap is zero

fi(z*) < 0 t1=1...m

e A >0 t=1...m

= KKT(z",\*) = Nefi(xz*) = 0 i=1...m
Vh(*) + XL AN v filz*) = 0

Also, KKT(z,\) and fo, f; convex = x, A are optimal and the duality gap is zero.

If fo, fi are convex, differentiable, and the duality gap is zero then K KT (xz,\) < (x,A) optimal.

9 SVM

min 1 ||lwl|? |

Primal
st ywz > 1 i:...m|
L _1 2 - (1 — yw'z
(w.0) = 2l + D oud — yara)
i=1

n
substituting w* = Z QY%
i=1

n
1
g(a) = Zai - 52041‘01;‘%3/;‘15;:%
i=1

.7

Strong duality (if feasible).

Complementary Slackness:

/
yw 'z, >1 = of =0

for i s.t. af >0 x; is a support vector



