CS281B/Stat241B (Spring 2008) Statistical Learning Theory

Lecture: 5

Constrained Optimization

Lecturer: Peter Bartlett Scribe: Nimar S. Arora

The reference for this lecture is Chapter 5 of Boyd and Vanderberghe's Convex Optimization.

1 Primal

Consider the optimization problem (primal problem):

$$p^* = \min_{x \in \mathbb{R}^n} f_0(x)$$

s.t. $f_i(x) \le 0, \qquad i = 1, \dots, m$

The optimal value is

$$p^* = f_0(x^*)$$

Define the Lagrangian:

$$L : \mathbb{R}^{n+m} \to \mathbb{R}$$
$$L(x,\lambda) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x)$$

The λ_i s are called dual variables or Lagrange multipliers with $\lambda_i \geq 0$

2 Saddle Point

See Figure 1 for an example of a saddle point.

In a minimax problem, if the min player gets to play second he can achieve a lower value. Thus,

$$d^* = \sup_{\lambda \geq 0} \ \inf_x L(x,\lambda) \ \leq \ \inf_x \ \sup_{\lambda \geq 0} \ L(x,\lambda)$$

Suppose there are x^* and λ^* s.t.,

$$L(x^*, \lambda) \le L(x^*, \lambda^*) \le L(x, \lambda^*)$$

Figure 1: Saddle Point

for all feasible x and $\lambda \geq 0$. Then,

$$\inf_{x} \sup_{\lambda \geq 0} L(x,\lambda) \leq \sup_{\lambda \geq 0} L(x^*,\lambda) \qquad (\text{fix } x = x^*)$$

$$= L(x^*,\lambda^*)$$

$$= \inf_{x} L(x,\lambda^*)$$

$$\leq \sup_{\lambda \geq 0} \inf_{x} L(x,\lambda) \qquad (\text{fixing } \lambda = \lambda^* \text{ we get previous})$$
So,
$$\inf_{x} \sup_{\lambda \geq 0} L(x,\lambda) = \sup_{\lambda \geq 0} \inf_{x} L(x,\lambda)$$

3 Lagrange Dual Function

Define the Lagrange dual function:

$$g(\lambda) = \inf_{x} L(x, \lambda)$$
$$= \inf_{x} (f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x))$$

Note,

- 1. $g(\lambda)$ is concave (point-wise minima of concave functions)
- 2. If $\lambda_i \geq 0$ and x is primal feasible (i.e. $f_i(x) \leq 0$) then,

$$g(\lambda) \leq f_0(x)$$

Figure 2: Geometric Interpretation of Duality

3. In particular, $\forall \lambda \geq 0, g(\lambda) \leq p^*$

4 Dual

Dual: $\max g(\lambda)$

s.t. $\lambda \geq 0$

Optimal Value: $g(\lambda^*) = d^*$

Note,

- 1. The dual is always a maximization of a concave function with convex constraints
- 2. Weak duality implies that $d^* \leq p^*$
- 3. The optimal duality gap is $p^* d^*$

5 Geometric Interpretation

Define,

$$G = \{(u, t): \exists x \ f_i(x) = u_i; \ f_0(x) = t\}$$

$$g(\lambda) = \inf_{x} \left\{ f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \right\}$$
$$= \inf_{(u,t) \in \mathcal{G}} \left(t + \sum_{i=1}^{m} \lambda_i u_i \right)$$
$$= \left[\lambda^T \ 1 \right]^T \left[\begin{array}{c} u \\ t \end{array} \right]$$

For m=1, the set

$$\{(u,t): (\lambda \ 1)^T \left(\begin{array}{c} u \\ t \end{array}\right) = c\}$$

is a line with slope λ and intercept $t=c=g(\lambda)$. See Figure 2 for an illustration of the set G and the Lagrange Dual.

6 Strong Duality

Weak duality states that $d^* \leq p^*$. Strong duality states $d^* = p^*$. Strong duality holds if f_0 and f_i are convex and there is a suitable qualification on the constraint. For example, Slater's condition requires that the primal is strictly feasible:

$$\exists x \qquad f_i(x) < 0 \qquad i = 1 \dots m$$

 $f_0(x^*) = g(\lambda^*)$

7 Complementary Slackness

If there is zero duality gap,

$$=\inf_{x}\left(f_{0}(x)+\sum_{i=1}^{m}\lambda_{i}^{*}f_{i}(x)\right)$$

$$\leq f_{0}(x^{*})+\sum_{i=1}^{m}\lambda_{i}^{*}f_{i}(x^{*}) \quad \text{(fixing } x=x^{*})$$
 Hence,
$$\sum_{i=1}^{m}\lambda_{i}^{*}f_{i}(x^{*})\geq 0$$
 But,
$$f_{i}(x^{*})\leq 0$$
 and
$$\lambda_{i}^{*}\geq 0$$
 So,
$$\sum_{i=1}^{m}\lambda_{i}^{*}f_{i}(x^{*})=0$$
 and hence
$$\lambda_{i}^{*}f_{i}(x^{*})=0$$

If constraint i is inactive at x^* (i.e. $f_i(x^*) < 0$) then $\lambda_i^* = 0$.

8 KKT Optimality Conditions

If f_0 and f_i are differentiable, $\exists x^*, \lambda^*$ which are optimal, and the duality gap is zero

$$\Rightarrow KKT(x^*, \lambda^*) = \begin{cases} f_i(x^*) \leq 0 & i = 1 \dots m \\ \lambda_i^* \geq 0 & i = 1 \dots m \\ \lambda_i^* f_i(x^*) = 0 & i = 1 \dots m \end{cases}$$

$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) = 0$$

Also, $KKT(x, \lambda)$ and f_0 , f_i convex $\Rightarrow x$, λ are optimal and the duality gap is zero.

If f_0 , f_i are convex, differentiable, and the duality gap is zero then $KKT(x,\lambda) \Leftrightarrow (x,\lambda)$ optimal.

9 SVM

Strong duality (if feasible).

Complementary Slackness:

$$y_i {w^*}' x_i > 1 \ \Rightarrow \ \alpha_i^* = 0$$
 for i s.t.
$$\alpha_i^* > 0 \qquad x_i \text{ is a support vector}$$