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1 Reproducing Kernel Hilbert Spaces

1.1 Hilbert Space and Kernel

An inner product 〈u, v〉 can be

1. a usual dot product: 〈u, v〉 = v′w =
∑

i viwi

2. a kernel product: 〈u, v〉 = k(v, w) = ψ(v)′ψ(w) (where ψ(u) may have infinite dimensions)

However, an inner product 〈·, ·〉 must satisfy the following conditions:

1. Symmetry
〈u, v〉 = 〈v, u〉 ∀u, v ∈ X

2. Bilinearity
〈αu+ βv,w〉 = α〈u,w〉+ β〈v, w〉 ∀u, v, w ∈ X ,∀α, β ∈ R

3. Positive definiteness
〈u, u〉 ≥ 0, ∀u ∈ X

〈u, u〉 = 0 ⇐⇒ u = 0

Now we can define the notion of a Hilbert space.

Definition. A Hilbert Space is an inner product space that is complete and separable with respect to the
norm defined by the inner product.

Examples of Hilbert spaces include:

1. The vector space Rn with 〈a, b〉 = a′b, the vector dot product of a and b.

2. The space l2 of square summable sequences, with inner product 〈x, y〉 =
∑∞

i=1 xiyi

3. The space L2 of square integrable functions (i.e.,
∫

s
f(x)2dx < ∞), with inner product 〈f, g〉 =∫

s
f(x)g(x)dx

Definition. k(·, ·) is a reproducing kernel of a Hilbert space H if ∀f ∈ H, f(x) = 〈k(x, ·), f(·)〉.
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2 Reproducing Kernel Hilbert Spaces

A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert space H with a reproducing kernel whose span
is dense in H. We could equivalently define an RKHS as a Hilbert space of functions with all evaluation
functionals bounded and linear.

For instance, the L2 space is a Hilbert space, but not an RKHS because the delta function which has the
reproducing property

f(x) =
∫

s

δ(x− u)f(u)du

does not satisfy the square integrable condition, that is,∫
s

δ(u)2du 6<∞,

thus the delta function is not in L2.

Now let us define a kernel.

Definition. k : X × X → R is a kernel if

1. k is symmetric: k(x, y) = k(y, x).

2. k is positive semi-definite, i.e., ∀x1, x2, ..., xn ∈ X , the ”Gram Matrix” K defined by Kij = k(xi, xj) is
positive semi-definite. (A matrix M ∈ Rn×n is positive semi-definite if ∀a ∈ Rn, a′Ma ≥ 0.)

Here are some properties of a kernel that are worth noting:

1. k(x, x) ≥ 0. (Think about the Gram matrix of n = 1)

2. k(u, v) ≤
√
k(u, u)k(v, v). (This is the Cauchy-Schwarz inequality.)

To see why the second property holds, we consider the case when n = 2:

Let a =
[

k(v, v)
−k(u, v)

]
. The Gram matrix K =

(
k(u, u) k(u, v)
k(v, u) k(v, v)

)
� 0 ⇐⇒ a′Ka ≥ 0

⇐⇒ [k(v, v)k(u, u)− k(u, v)2]k(v, v) ≥ 0.

By the first property we know k(v, v) ≥ 0, so k(v, v)k(u, u) ≥ k(u, v)2.

1.2 Build an Reproducing Kernel Hilbert Space (RKHS)

Given a kernel k, define the ”reproducing kernel feature map” Φ : X → RX as:

Φ(x) = k(·, x)

Consider the vector space:

span({Φ(x) : x ∈ X}) = {f(·) =
n∑

i=1

αik(·, xi) : n ∈ N, xi ∈ X , αi ∈ R}

For f =
∑

i αik(·, ui) and g =
∑

i βik(·, vi), define 〈f, g〉 =
∑

i,j αiβjk(ui, vj).

Note that:
〈f, k(·, x)〉 =

∑
i

αik(x, ui) = f(x), i.e., k has the reproducing property.

We show that 〈f, g〉 is an inner product by checking the following conditions:
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1. Symmetry: 〈f, g〉 =
∑

i,j αiβjk(ui, vj) =
∑

i,j βjαik(vj , ui) = 〈g, f〉

2. Bilinearity: 〈f, g〉 =
∑

i αig(ui) =
∑

j βjf(vj)

3. Positive definiteness: 〈f, f〉 = α′Kα ≥ 0 with equality iff f = 0.

From 3 we can also derive:

1. 〈f, g〉2 ≤ 〈f, f〉〈g, g〉
Proof. ∀a ∈ R, 〈af + g, af + g〉 = a2〈f, f〉 + 2a〈f, g〉 + 〈g, g〉 ≥ 0. This implies that the quadratic
expression has a non-positive discriminant. Therefore, 〈f, g〉2 − 〈f, f〉〈g, g〉 ≤ 0

2. |f(x)|2 = 〈k(·, x), f〉2 ≤ k(x, x)〈f, f〉, which implies that if 〈f, f〉 = 0 then f is identically zero.

Now we have defined an inner product space 〈·, ·〉. Complete it to give the Hilbert space.

Definition. For a (compact) X ⊆ Rd, and a Hilbert space H of functions f : X → R, we say H is a
Reproducing Kernel Hilbert Space if ∃k : X → R, s.t.

1. k has the reproducing property, i.e., f(x) = 〈f(·), k(·, x)〉

2. k spans H = span{k(·, x) : x ∈ X}

1.3 Mercer’s Theorem

Another way to characterize a symmetric positive semi-definite kernel k is via the Mercer’s Theorem.

Theorem 1.1 (Mercer’s). Suppose k is a continuous positive semi-definite kernel on a compact set X , and
the integral operator Tk : L2(X ) → L2(X ) defined by

(Tkf)(·) =
∫
X
k(·, x)f(x)dx

is positive semi-definite, that is, ∀f ∈ L2(X ),∫
X
k(u, v)f(u)f(v)dudv ≥ 0

Then there is an orthonormal basis {ψi} of L2(X ) consisting of eigenfunctions of Tk such that the correspond-
ing sequence of eigenvalues {λi} are non-negative. The eigenfunctions corresponding to non-zero eigenvalues
are continuous on X and k(u, v) has the representation

k(u, v) =
∞∑

i=1

λiψi(u)ψi(v)

where the convergence is absolute and uniform, that is,

lim
n→∞

sup
u,v

|k(u, v)−
n∑

i=1

λiψi(u)ψi(v)| = 0



4 Reproducing Kernel Hilbert Spaces

To take an analogue in the finite case, that is, X = {x1, . . . , xn}. Let Kij = k(xi, xj), and f : X → Rn with
fi = f(xi). Then,

Tkf =
n∑

i=1

k(·, xi)fi

∀f, f ′Kf ≥ 0 ⇒ K � 0 ⇒ K =
∑

λiviv
′
i

Hence,

k(xi, xj) = Kij = (V ΛV ′)ij =
n∑

k=1

λkvkivkj =
n∑

k=1

λkψk(xi)ψk(xj) ⇒ ψk(xi) = (vk)i

We summarize several equivalent conditions on continuous, symmetric k defined on compact X :

1. Every Gram matrix is positive semi-definite.

2. Tk is positive semi-definite.

3. k can be expressed as k(u, v) =
∑

i λiψi(u)ψi(v).

4. k is the reproducing kernel of an RKHS of functions on X .


