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1 Reproducing Kernel Hilbert Spaces

1.1 Hilbert Space and Kernel

An inner product (u,v) can be

1. a usual dot product: (u,v) =v'w =7, v;w;

2. a kernel product: (u,v) = k(v,w) = 9 (v)'¥(w) (where ¥(u) may have infinite dimensions)
However, an inner product (-, -) must satisfy the following conditions:

1. Symmetry
(u,v) = (v,u) Yu,v € X

2. Bilinearity
(au + fv,w) = a{u,w) + B{v,w) Yu,v,w € X, Vo, € R

3. Positive definiteness
(u,u) >0, Vu € X

(u,u) =0 <= u=0

Now we can define the notion of a Hilbert space.

Definition. A Hilbert Space is an inner product space that is complete and separable with respect to the
norm defined by the inner product.

Examples of Hilbert spaces include:

1. The vector space R™ with (a,b) = a’b, the vector dot product of a and b.
2. The space lo of square summable sequences, with inner product (z,y) = Y o, z;y;

3. The space Lo of square integrable functions (i.e., fs f(x)?dx < oo), with inner product (f,g) =
[, f(@)g(x)dz

Definition. k(-,-) is a reproducing kernel of a Hilbert space H if Vf € H, f(z) = (k(x,), f()).
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A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert space H with a reproducing kernel whose span
is dense in H. We could equivalently define an RKHS as a Hilbert space of functions with all evaluation
functionals bounded and linear.

For instance, the Lo space is a Hilbert space, but not an RKHS because the delta function which has the
reproducing property

f(z) :/5(x—u)f(u)du

does not satisfy the square integrable condition, that is,

/5(u)2du £ 00,

thus the delta function is not in L.

Now let us define a kernel.

Definition. k: X x X — R is a kernel if

1. k is symmetric: k(z,y) = k(y, z).

2. k is positive semi-definite, i.e., V1, 22, ..., 2, € X, the ”Gram Matrix” K defined by K;; = k(z;, ;) is
positive semi-definite. (A matrix M € R™*™ is positive semi-definite if Va € R™, 'Ma > 0.)

Here are some properties of a kernel that are worth noting;:

1. k(x,2) > 0. (Think about the Gram matrix of n = 1)
2. k(u,v) < v/k(u,u)k(v,v). (This is the Cauchy-Schwarz inequality.)

To see why the second property holds, we consider the case when n = 2:

k(v,v) kE(u,u) k(u,v)

Let a = { k(u, 0) k(v,u) E(v,v)

}TheGrammatrixK( >§O +— dKa>0

< [k(v,v)k(u,u) — k(u,v)?]k(v,v) > 0.

By the first property we know k(v,v) > 0, so k(v,v)k(u,u) > k(u,v)?.

1.2 Build an Reproducing Kernel Hilbert Space (RKHS)

Given a kernel k, define the "reproducing kernel feature map” ® : X — R? as:
®(z) = k(- 2)

Consider the vector space:
span({®(z) : x € X}) = {f(-) = Zaik(-,xi) :neNz € X, a5 € R}
i=1

For f =3, aik(-,u;) and g =3, Bik(-, vi), define (f, 9) = 32; ; aiBik(us, v;)-

Note that:
(f k(,2)) = Zaik’(x, u;) = f(x), i.e., k has the reproducing property.
i

We show that (f, g) is an inner product by checking the following conditions:



Reproducing Kernel Hilbert Spaces 3

L. Symmetry: (f,g) =3_, ; iBik(us,v5) = 3, ; Bjaik(vj, ui) = (g, f)
2. Bilinearity: (f,g) = >_; cug(wi) = 32, B f(v))

3. Positive definiteness: (f, f) = o’ Ka > 0 with equality iff f = 0.
From 3 we can also derive:

L (f.9)*> < {f, )9, 9)

PROOF. Va € R,{(af + g,af +g) = a®{f, f) + 2a{f,g) + {g,g) > 0. This implies that the quadratic
expression has a non-positive discriminant. Therefore, (f, ¢)? — (f, f){g,9) <0 O

2. |f(2)]? = (k(, x), f)? < k(x,2)(f, f), which implies that if (f, f) = 0 then f is identically zero.

Now we have defined an inner product space (-,-). Complete it to give the Hilbert space.

Definition. For a (compact) X C R? and a Hilbert space H of functions f : X — R, we say H is a
Reproducing Kernel Hilbert Space if 3k : X — R, s.t.

1. k has the reproducing property, i.e., f(z) = (f(:), k(-, z))

2. k spans H = span{k(-,z) : z € X}

1.3 Mercer’s Theorem

Another way to characterize a symmetric positive semi-definite kernel k is via the Mercer’s Theorem.

Theorem 1.1 (Mercer’s). Suppose k is a continuous positive semi-definite kernel on a compact set X', and
the integral operator Ty : La(X) — Lo(X) defined by

(Thf)() = / k(- 2)f(z)dx

X

is positive semi-definite, that is, Vf € La(X),

/X E(u,v)f(u)f(v)dudv >0

Then there is an orthonormal basis {¢;} of Lo(X) consisting of eigenfunctions of T}, such that the correspond-
ing sequence of eigenvalues {\;} are non-negative. The eigenfunctions corresponding to non-zero eigenvalues
are continuous on X’ and k(u,v) has the representation

F(u,v) =Y Aithi ()i (v)
i=1
where the convergence is absolute and uniform, that is,

lim sup |k(u,v) — Z Aii(u)i(v)] =0
i=1

n—00 y 4
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To take an analogue in the finite case, that is, X = {z1,...,2,}. Let K;; = k(z;,2;), and f : X — R™ with
fi = f(a:z) Then,

Tif =Y k(@) f;
i=1

Hence,

k(i) = Kij = (VAV )i = > Mevkivig = Y Mg () von(25) = Ve () = (vr)s

k=1 k=1

We summarize several equivalent conditions on continuous, symmetric k defined on compact X:

1. Every Gram matrix is positive semi-definite.
2. Ty is positive semi-definite.
3. k can be expressed as k(u,v) = >, Aithi(u);(v).

4. k is the reproducing kernel of an RKHS of functions on X'.



