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Abstract. H. Simon and B. Szörényi have found an error in the proof of Theorem 52 of �Shifting: One-
Inclusion Mistake Bounds and Sample Compression� [3]. In this note we provide a corrected proof of a
slightly weakened version of this theorem. Our new bound on the density of one-inclusion hypergraphs is
again in terms of the capacity of the multilabel concept class. Simon and Szörényi have recently proved an
alternate result in [4].

1. Multiclass Hypergraph Density Bound & Mistake Bound

This note is devoted to proving an upper-bound on one-inclusion hypergraph density, correcting a result
stated in [3, Theorem 52]. We refer the reader to [3] for de�nitions related to one-inclusion hypergraphs and
mistake bounds. The following de�nition, due to Ben-David et al. [1], did not appear in [3].

De�nition 1. Let n > 0 and q > 1 be integers, and let set X be an instance domain. Following the notation

of [3, De�nition 5], let ΨB = {0, 1, ?}{0,...,q−1} be a family of translation mappings from {0, . . . , q − 1} to

{0, 1, ?}. Then for any concept class C ⊆ {0, . . . , q − 1}X , the dimension

ΨB-dim(C) = sup {n | ∃x ∈ Xn, ψ ∈ Ψn
B s.t. {0, 1}n ⊆ ψ(Πx(C)} ,

is the largest number of points whose images under a vector of translation mappings are shattered.

The ΨB-dim is one out of many possible measures of multiclass capacity explored in [1]. The result
stated in [3, Theorem 52] claimed to upper-bound one-inclusion hypergraph density by the Pollard pseudo-
dimension ΨP -dim(C), which lower-bounds ΨB-dim(C). The following theorem is the main result of this
note.

Theorem 2. For any C ⊆ {0, . . . , q − 1}n the density of the one-inclusion hypergraph induced by C is

upper-bounded by
(
2k − 1

)
ΨB-dim(C) where k = dlog2 qe. In particular the density is always bounded by

(2q − 3)ΨB-dim(C).

The recent result due to Simon and Szörényi upper-bounds one-inclusion hypergraph density by
ΨGP -dim′(C) which lower-bounds the pseudo-dimension and is thus stronger than Theorem 2 (see [4] for
details). The proof of Theorem 2 is a careful reduction to the binary one-inclusion graph case. To simplify
notation we initially assume that q = 2k for some k ∈ N. The reduction proceeds by encoding the multiclass
label set {0, . . . , q − 1} as bit strings in {0, 1}k. We will construct this bijection φ : {0, . . . , q − 1} → {0, 1}k
and then apply it coordinate-wise to the class C ⊆ {0, . . . , q − 1}n to get binary class φ(C) ⊆ {0, 1}nk
(abusing notation slightly). We will �nd it useful to introduce notation for the multiclass coordinate that a
binary coordinate is mapped from: part(i) = (i− 1 mod(k)) + 1, which maps elements from [nk] to [n]. An
immediate consequence of Theorem 2 is the corresponding mistake bound for multiclass classi�cation.

Corollary 3. Consider any integer q > 1, set X and family of multiclass classi�ers F ⊆ {0, . . . , q − 1}X
on domain X with ΨB-dim(F) < ∞. The multiclass one-inclusion prediction strategy [3, Algorithm 1] has

worst-case expected risk bounded by M̂QG,F ,F (n) ≤ (2k − 1)ΨB-dim(F)/n for all sample sizes n ∈ N, where
k = dlog2 qe.
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1.1. Proof of Density Bound. We will now establish that the one-inclusion hypergraph density of C is
bounded by the graph density of φ(C) (Lemma 4) which in turn (by the classic shifting proof) is bounded
by V C(C) (Lemma 5) which we will show is bounded by ΨB-dim(C) (Lemma 6).

Lemma 4. Consider any k ∈ N and q = 2k. For any class C ⊆ {0, . . . , q − 1}n there exists a bijective

binary encoding φ : {0, . . . , q − 1} → {0, 1}k such that the one-inclusion hypergraph density of C is bounded

by the one-inclusion graph density of φ applied coordinate-wise to C: dens(C) ≤ 2k−1
k dens(φ(C)).

Proof. Trivially the vertex-set cardinality is invariant under a one-to-one encoding. LetW denote the number
of hyperedges induced by C, and let E denote the number of edges induced by φ?(C), where φ? is the selected

encoding. We will show that W ≤ 2k−1
k E for some φ?.

Note that any hyperedge in C must involve vertices with at least two labels in {0, . . . , q − 1}. The set of
such label pairs L is clearly of size q(q − 1)/2. Let H denote the set of hyperedges induced by C. We can
cover H by subsets Hij ⊆ H consisting of all hyperedges containing labels i, j, for 0 ≤ i 6= j ≤ q− 1. Let hij
denote the number of hyperedges in Hij . Under any encoding φ we say that a pair {i, j} ⊂ {0, . . . , q − 1}
is encoding connected if φ(i) and φ(j) are hamming-1 apart. We denote the set of label pairs that are
φ-encoding connected by sample(φ) = {{i, j} ∈ L : ‖φ(i)− φ(j)‖1 = 1}. We claim that

max
φ

∑
i,j∈sample(φ) hij∑

i,j∈L hij
≥ Eφ∼Unif

[∑
i,j∈sample(φ) hij∑

i,j∈L hij

]
=

k

2k − 1
.(1.1)

The �rst inequality is true trivially. The equality follows by computing expectation, using the observa-
tion that the number of ordered sets of 2k binary k-strings with the �rst two strings hamming-1 apart is
k2k

(
2k−2!

)
.

1

2k!

∑
φ

∑
i,j∈sample(φ) hij∑

i,j∈L hij
=

1

2k!

∑
φ

∑
i,j∈L 1 [i, j ∈ sample(φ)]hij∑

i,j∈L hij

=
1

2k!

∑
i,j∈L hij

∑
φ 1 [i, j ∈ sample(φ)]∑
i,j∈L hij

=
1

2k!

∑
i,j∈L hijk2k(2k−2!)∑

i,j∈L hij

=
k

2k − 1
.

In particular we have inequality (1.1) holding for some maximizing encoding φ?. Since hij > 0 for some
i, j ∈ L (for non-empty hyperedge-set; the density bound is trivially true otherwise), we can invert the
obtained inequality to get

W ≤
∑
i,j∈L

hij ≤ 2k − 1

k

∑
i,j∈sample(φ?)

hij ≤
2k − 1

k
E .

�

Lemma 5 (Lemma 2 [2]). For any concept class V ⊆ {0, 1}n, the one-inclusion graph density of V is no

greater than V C(V ).

Lemma 6. Consider any k ∈ N and q = 2k. For any binary encoding φ and class C ⊆ {0, . . . , 2k − 1}n,
V C(φ(C)) ≤ kΨB-dim(C).

Proof. Suppose φ(C) shatters index set I ⊆ [nk]. Let I ′ = {i ∈ I | @j ∈ I, part(j) = part(i), j < i}. Notice
that |I| ≤ k|I ′|. Construct a vector of multilabel to {0, 1, ?} translations for the n coordinates of the
multilabel class C. For each i ∈ [n], de�ne the ith coordinate translation
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ψi(x) =

{
φ(x)j , if ∃j ∈ I ′, i = part(j)

? , otherwise
.

That is, if i = part(j) for some j ∈ I ′ (there can be only one by de�nition of I ′) then we set the ith

coordinate translation to be the jth bit of the encoding: all labels in
{

0, .., 2k − 1
}
that have jth bit as 0

translate to 0 and all labels that have jth bit as 1 translate to 1. If the ith coordinate does not encode to
any coordinates that are shattered, then we arbitrarily translate all multiclass labels to ?.

Under the translations (ψ1, . . . , ψn), C's image shatters {part(j) | j ∈ I ′}. Thus ΨB-dim(C) ≥ |I ′|. �

Proof of Theorem 2. We �rst consider the case of q = 2k. For any C ⊆
{

0, . . . , 2k − 1
}n

, there exists an

encoding φ such that dens(C) ≤ 2k−1
k dens(φ(C)) by Lemma 4. Lemma 5 then establishes that dens(φ(C)) ≤

V C(φ(C)) by shifting. Finally Lemma 6 states that V C(φ(C)) ≤ kΨB-dim(C). These inequalities combine

to prove the claim. In the general case where q 6= 2k for all k, it su�ces to embed C in
{

0, . . . , 2dlog2 qe
}n

and apply the previous argument. �
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