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ABsTracT. H. Simon and B. Szérényi have found an error in the proof of Theorem 52 of “Shifting: One-
Inclusion Mistake Bounds and Sample Compression” [3]. In this note we provide a corrected proof of a
slightly weakened version of this theorem. Our new bound on the density of one-inclusion hypergraphs is
again in terms of the capacity of the multilabel concept class. Simon and Szorényi have recently proved an
alternate result in [4].

1. MuLricLASS HYPERGRAPH DENSITY BOUND & MISTAKE BOUND

This note is devoted to proving an upper-bound on one-inclusion hypergraph density, correcting a result
stated in [3, Theorem 52]. We refer the reader to [3] for definitions related to one-inclusion hypergraphs and
mistake bounds. The following definition, due to Ben-David et al. [1], did not appear in [3].

Definition 1. Letn > 0 and g > 1 be integers, and let set X be an instance domain. Following the notation
of |3, Definition 5|, let U = {0,1,%}109=1} be a family of translation mappings from {0,...,q — 1} to
{0,1,x}. Then for any concept class C C {0,...,q — 1}, the dimension

Up-dim(C) = sup{n|3Ixe X" ¢ € U} s.t. {0,1}" Cy(IIx(C)} ,
is the largest number of points whose images under a vector of translation mappings are shattered.

The Up-dim is one out of many possible measures of multiclass capacity explored in [1]. The result
stated in [3, Theorem 52] claimed to upper-bound one-inclusion hypergraph density by the Pollard pseudo-
dimension ¥ p-dim(C), which lower-bounds ¥ p-dim(C). The following theorem is the main result of this
note.

Theorem 2. For any C C {0,...,q — 1}™ the density of the one-inclusion hypergraph induced by C is
upper-bounded by (2% — 1) Wp-dim(C) where k = [log, q]. In particular the density is always bounded by
(2¢ — 3)¥ p-dim(C).

The recent result due to Simon and Szorényi upper-bounds one-inclusion hypergraph density by
U p-dim’(C) which lower-bounds the pseudo-dimension and is thus stronger than Theorem 2 (see [4] for
details). The proof of Theorem 2 is a careful reduction to the binary one-inclusion graph case. To simplify
notation we initially assume that ¢ = 2* for some k € N. The reduction proceeds by encoding the multiclass
label set {0,...,q — 1} as bit strings in {0, 1}*. We will construct this bijection ¢ : {0,...,¢ — 1} — {0, 1}*
and then apply it coordinate-wise to the class C' C {0,...,q — 1} to get binary class ¢(C) C {0,1}"*
(abusing notation slightly). We will find it useful to introduce notation for the multiclass coordinate that a
binary coordinate is mapped from: part(i) = (i — 1 mod(k)) + 1, which maps elements from [nk] to [n]. An
immediate consequence of Theorem 2 is the corresponding mistake bound for multiclass classification.

Corollary 3. Consider any integer ¢ > 1, set X and family of multiclass classifiers F C {0,...,q — 1}*
on domain X with ¥p-dim(F) < co. The multiclass one-inclusion prediction strategy [3, Algorithm 1] has
worst-case expected risk bounded by Mg, . 7(n) < (28 — 1)U g-dim(F)/n for all sample sizes n € N, where
k = [logy q].
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1.1. Proof of Density Bound. We will now establish that the one-inclusion hypergraph density of C is
bounded by the graph density of ¢(C) (Lemma 4) which in turn (by the classic shifting proof) is bounded
by VC(C) (Lemma 5) which we will show is bounded by ¥p-dim(C') (Lemma 6).

Lemma 4. Consider any k € N and q = 2%. For any class C C {0,...,q— 1}" there exists a bijective
binary encoding ¢ : {0,...,q — 1} — {0, 1}k such that the one-inclusion hypergraph density of C is bounded
by the one-inclusion graph density of ¢ applied coordinate-wise to C: dens(C) < Lk_ldensw(C)).

Proof. Trivially the vertex-set cardinality is invariant under a one-to-one encoding. Let W denote the number

of hyperedges induced by C, and let E denote the number of edges induced by ¢*(C), where ¢* is the selected
encoding. We will show that W < 2kT’lE for some ¢*.

Note that any hyperedge in C' must involve vertices with at least two labels in {0,...,¢ — 1}. The set of
such label pairs L is clearly of size q(q — 1)/2. Let H denote the set of hyperedges induced by C. We can
cover H by subsets H;; C H consisting of all hyperedges containing labels ¢, j, for 0 <14 # j < g — 1. Let hy;
denote the number of hyperedges in #;;. Under any encoding ¢ we say that a pair {i,j} C {0,...,¢ — 1}
is encoding connected if ¢(i) and ¢(j) are hamming-1 apart. We denote the set of label pairs that are

¢-encoding connected by sample(¢) = {{i,j} € L : ||¢(i) — ¢(4)|[1 = 1}. We claim that

Zi j€sample hij Zi j€sample hij k
(1.1) max = Esample(9) > Egotnif ,jE€sample(¢) = 5

Zi,jec hij Zz‘,jeﬁ hij k-1

The first inequality is true trivially. The equality follows by computing expectation, using the observa-
tion that the number of ordered sets of 2* binary k-strings with the first two strings hamming-1 apart is

K2k (2F-21),
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In particular we have inequality (1.1) holding for some maximizing encoding ¢*. Since h;; > 0 for some
1,7 € L (for non-empty hyperedge-set; the density bound is trivially true otherwise), we can invert the
obtained inequality to get
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Lemma 5 (Lemma 2 [2]). For any concept class V' C {0,1}", the one-inclusion graph density of V is no
greater than VC(V').

Lemma 6. Consider any k € N and ¢ = 2. For any binary encoding ¢ and class C C {0,...,2%F — 1},
VC(o(C)) < k¥ p-dim(C).

Proof. Suppose ¢(C) shatters index set I C [nk]. Let I' = {i € I | 3j € I, part(j) = part(i), j < i}. Notice
that |I| < k|I’|. Construct a vector of multilabel to {0,1,x} translations for the n coordinates of the
multilabel class C. For each i € [n], define the i*" coordinate translation
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h@) - {a;(:c)j, if 3j € I', i = part(j)

* otherwise

That is, if i = part(j) for some j € I’ (there can be only one by definition of I’) then we set the "
coordinate translation to be the j* bit of the encoding: all labels in {0,..,2¥ — 1} that have ;' bit as 0
translate to 0 and all labels that have j** bit as 1 translate to 1. If the i*" coordinate does not encode to
any coordinates that are shattered, then we arbitrarily translate all multiclass labels to *.

Under the translations (¢1,...,%y), C’s image shatters {part(j) | j € I'}. Thus ¥p-dim(C) > |I'|l. O

Proof of Theorem 2. We first consider the case of ¢ = 2¥. For any C C {0, o2k — 1}”, there exists an

encoding ¢ such that dens(C) < 2’CT_ldens(gZ)(C)) by Lemma 4. Lemma 5 then establishes that dens(¢(C)) <
VC(¢4(C)) by shifting. Finally Lemma 6 states that VC(¢(C)) < kWU p-dim(C'). These inequalities combine
to prove the claim. In the general case where g # 2* for all k, it suffices to embed C in {0,...,2M°s2a11"
and apply the previous argument.
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