
really

31

3 Nonlocal Exit

Quiz Program Revisited

catch throw
stop

ask.once
true false

ask.thrice

to ask.thrice :question :answer
repeat 3 [if ask.once :question :answer [stop]]
print sentence [The answer is] :answer
end

to ask.once :question :answer
print :question
if equalp readlist :answer [print [Right!] output "true]
print [Sorry, that’s wrong.]
output "false
end

This chapter is about the commands and . These commands work together
as a kind of super- command, which you can use to stop several levels of procedure
invocation at once.

In Chapter 4 of the first volume, which was about predicates, I posed the problem of a
quiz program that would allow three tries to answer each question. Here is the method I
used then:

I remarked that acts like a command, in that it has an effect (printing
stuff), but it’s also an operation, which outputs or . What it wants to
do is not output a value but instead be able to stop not only itself but also its calling
procedure . Here is another version that allows just that:

32 Chapter 3 Nonlocal Exit

ask.thrice
ask.once ask.thrice

repeat ask.thrice

Ask.once

Throw
throw stop

catch
throw

catch
catch

Catch
catch

run Catch
throw

qa catch catch ask.thrice
repeat ask.once throw

ask.once

to qa :question :answer
catch "correct [ask.thrice :question :answer]
end

to ask.thrice :question :answer
repeat 3 [ask.once :question :answer]
print sentence [The answer is] :answer
end

to ask.once :question :answer
print :question
if equalp readlist :answer [print [Right!] throw "correct]
print [Sorry, that’s wrong.]
end

throw "correct

throw "correct

To understand this group of procedures, start with and suppose the player
keeps getting the wrong answer. Both and are straightforward
commands; the instruction in is simpler than it was in the other
version.

Now what if the person answers correctly? then evaluates the instruction

is a command that requires one input, which must be a word, called a “tag.”
The effect of is to stop the current procedure, like , and to keep stopping
higher-level procedures until it reaches an active whose first input is the same as
the input to .

If that sounds confusing, don’t give up; it’s because I haven’t explained and
you have to understand them together. The description of is deceptively simple:

is a command that requires two inputs. The first must be a word (called the “catch
tag”), the second a list of Logo instructions. The effect of is the same as that of

—it evaluates the instructions in the list. pays no attention to its first input.
That input is there only for the benefit of .

In this example program invokes ; invokes , which
invokes , which invokes . To understand how works, you have
to remember that primitive procedures are just as much procedures as user-defined ones.
That’s something we’re sometimes lax about. A couple of paragraphs ago, I said that

evaluates the instruction

Nonlocal Exit and Modularity

Nonlocal Exit and Modularity 33

ask.once

if if
throw if

catch qa
catch ask.thrice throw

stop
stop if

stop repeat

throw if repeat catch
throw equalp

Throw

make

Throw ask.once

if equalp readlist :answer [print [Right!] throw "correct]

repeat 100 [print "hello if equalp random 5 0 [stop]]

catch "done [repeat 100 [print "hello
if equalp random 5 0 [throw "done]]]

if the player answers correctly. That wasn’t really true. The truth is that
evaluates the instruction

by invoking . It is the procedure that actually evaluates the instruction that invokes
. I made a bit of a fuss about this fine point when we first met , but I’ve been

looser about it since then. Now, though, we need to go back to thinking precisely. The
point is that there is a procedure in the collection of active procedures (,

, , and so on) at the time is invoked.

(In Chapter 9 of the first volume, I made the point that primitives count as active
procedures and that stops the lowest-level invocation of a user-defined procedure.
I said that it would be silly for to stop only the that invoked it, but that you could
imagine stopping a . I gave

as an example of something that doesn’t work. But we can make it work this way:

The stops the , the , and the . Here’s a little quiz for you: Why
don’t I say that the stops the ?)

is called a “nonlocal exit” because it stops not only the (user-defined) procedure
in which it is used but also possibly some number of superprocedures of that one.
Therefore, it has an effect on the program as a whole that’s analogous to the effect of
changing the value of a variable that is not local to the procedure doing the changing. If
you see a command used in some procedure, and the variable whose name is the
first input isn’t local to the same procedure, it becomes much harder to understand what
that procedure is really doing. You can’t just read that procedure in isolation; you have
to think about all its superprocedures too. That’s why I’ve been discouraging you from
using global variables.

is an offense against modularity in the same way. If I gave you to
read, without having shown you the rest of the program, you’d have trouble understanding

Nonlocal Output

34 Chapter 3 Nonlocal Exit

catch throw
ask.thrice ask.once qa1 qa2

qa
quiz

to multiply :list
if emptyp :list [output 1]
output (first :list) * (multiply butfirst :list)
end

to multiply :list
if emptyp :list [output 1]
if equalp first :list 0 [output 0]
output (first :list) * (multiply butfirst :list)
end

it. The point may not seem so important when you’re reading the small example programs
in this book, but when you are working on large projects, with 30 or 300 procedures in
them, it becomes much more important.

If I were going to use and in this quiz project, one thing I might
do is rename and as and . These names would make
it clear that the three procedures are meant to work together and indicate which is
a subprocedure of which. That name change would help a reader of the program.
(Remember that and its friends are not the whole project; they’re all subprocedures
of a higher-level procedure. So grouping them with similar names really does
distinguish them from something else.)

Consider this procedure that takes a list of numbers as its input and computes the product
of all the numbers:

Suppose that we intend to use this procedure with very large lists of numbers, and we
have reason to believe that many of the lists will include a zero element. If any number
in the list is zero, then the product of the entire list must be zero; we can save time by
giving an output of zero as soon as we discover this:

This is an improvement, but not enough of one. To see why, look at this trace of a
typical invocation:

Nonlocal Output 35

trace "multiply
print multiply [4 5 6 0 1 2 3]

trace [multiply mul1]
print multiply [4 5 6 0 1 2 3]

multiply

mul1
multiply mul1

mul1 throw
throw

throw output stop
throw catch

catch throw
zero 0

?
?

0

to multiply :list
output catch "zero [mul1 :list]
end

to mul1 :list
if emptyp :list [output 1]
if equalp first :list 0 [(throw "zero 0)]
output (first :list) * (mul1 butfirst :list)
end

?
?

0

(multiply [4 5 6 0 1 2 3])
(multiply [5 6 0 1 2 3])
(multiply [6 0 1 2 3])
(multiply [0 1 2 3])
multiply outputs 0

multiply outputs 0
multiply outputs 0
multiply outputs 0

(multiply [4 5 6 0 1 2 3])
(mul1 [4 5 6 0 1 2 3])
(mul1 [5 6 0 1 2 3])
(mul1 [6 0 1 2 3])
(mul1 [0 1 2 3])

multiply outputs 0

Each of the last three lines indicates an invocation of in which the zero output
by a lower level is multiplied by a number seen earlier in the list: first 6, then 5, then 4. It
would be even better to avoid those extra multiplications:

This time, as soon as sees a zero in the list, it arranges for an immediate return to
, without completing the other three pending invocations of .

In the definition of , the parentheses around the invocation of are
required, because in this situation we are giving an optional second input. When
given a second input, acts as a super- instead of as a super- . That
is, finds the nearest enclosing matching , as usual, but arranges that that
matching outputs a value, namely the second input to . In this example,
the word is the catch tag, and the number is the output value.

zero

Catching Errors

36 Chapter 3 Nonlocal Exit

print multiply [781 105 87 foo 24 13 6]

to multiply :list
output catch "early [mul1 :list]
end

to mul1 :list
if emptyp :list [output 1]
if not numberp first :list [(throw "early "non-number)]
if equalp first :list 0 [(throw "early 0)]
output (first :list) * (mul1 butfirst :list)
end

?
non-number

to multiply :list
catch "error [output mul1 :list]
output "non-number
end

to mul1 :list
if emptyp :list [output 1]
output (first :list) * (mul1 butfirst :list)
end

The same trick that I’ve used here for efficiency reasons can also be used to
protect against the possibility of invalid input data. This time, suppose that we want
to multiply a list of numbers, but we suspect that occasionally the user of the program
might accidentally supply an input list that includes a non-numeric member. A small
modification will prevent a Logo error message:

I’ve changed the catch tag, even though Logo wouldn’t care, because using the word
as the tag is misleading now that it also serves the purpose of catching non-numeric

data.

On the other hand, if we don’t expect to see invalid data very often, then checking
every list member to make sure it’s a number is needlessly time-consuming; also, this
“defensive” test makes the program structure more complicated and therefore harder for
people to read. Instead, I’d like to be able to multiply the list members, and let Logo
worry about possible non-numeric input. Here’s how:

Catching Errors 37

print multiply [3 4 5]

print multiply [3 four 5]

*

throw
catch

pause.loop
throw

catch
pause.loop

item
item

?
60
?
non-number

throw "error

to safe.item1 :number :list
if :number < (1+count :list) [output item :number :list]
output []
end

To understand how this works, you must know what Logo does when some primitive
procedure (such as in this example) complains about an error. The Logo error handler
automatically carries out the instruction

If this “unwinds” the active procedures all the way to top level without finding a
corresponding , then Logo prints the error message. If you do catch the error, no
message is printed.

If you are paused (see Chapter 15 of the first volume), the situation is a little more
complicated. Imagine that there is a procedure called that reads and
evaluates the instructions you type while paused. The implicit on an error can be
caught by a that is invoked “below” that interactive level. That is, during the pause
you can invoke a procedure that catches errors. But if you don’t do that,
will catch the error and print the appropriate message. (You understand, I hope, that
this is an imaginary procedure. I’ve just given it a name to make the point that the
interactive instruction evaluator that is operating during a pause is midway through the
collection of active procedures starting with the top-level one and ending with the one
that caused the error.) What all this means, more loosely, is that an error during a pause
can’t get you all the way back to top level, but only to where you were paused.

You should beware of the fact that stopping a program by typing control-C or
command-period, depending on the type of computer you’re using, is handled as if it
were an error. That is, it can be caught. So if you write a program that catches errors
and never stops, you’re in trouble. You may have to turn the computer off and start over
again to escape!

If you use the primitive to ask for more items than are in the list, it’s an error.
Here are two versions of that output the empty list instead:

sample

any

38 Chapter 3 Nonlocal Exit

item
item

output

item

output stop

error

to safe.item2 :number :list
catch "error [output item :number :list]
output []
end

catch "error [make "variable item 7 :list]

to sample
catch "error [print :nonexistent]
show error
end

?
[11 [nonexistent has no value] sample

[catch "error [print :nonexistent]]]

catch "error [make "variable item 7 :list]
if not emptyp error [make "variable []]

The first version explicitly checks, before invoking , to make sure the item number
is small enough. The second version goes ahead and invokes without checking,
but it arranges to catch any error that happens. If there is no error, the ends
the running of the procedure. If we get to the next instruction line, we know there must
have been an error. The second version of the procedure is a bit faster because it doesn’t
have to do all that arithmetic before trying . Also, the first version only tests for one
possible error; it will still bomb out, for example, if given a negative item number. The
second version is safe against bad input.

This technique works well if the instruction list s or s. But what if we
want to do something like

and we want to put something special in the variable if there is an error? In this example,
the procedure will continue to its next instruction whether or not an error was caught.
We need a way to ask Logo about any error that might have happened. For this purpose
we use the operation . This operation takes no inputs. It outputs a list with
information about the most recently caught error. If no error has been caught, it outputs
the empty list. Otherwise it outputs a list of four members: a numeric error code, the text
of the error message that would otherwise have been printed, the name of the procedure
in which the error happened, and the instruction line that was being evaluated.

But for now all that matters is that the output will be nonempty if an error was caught.
So I can say

Ending It All

really

Ending It All 39

error error

error

error

error
Ignore

error

throw

zap.player

ignore error

throw "toplevel

to zap.player
print [You’re dead!]
throw "toplevel
end

This will put an empty list into the variable if there is an error in the first line.

You can only invoke once for each caught error. If you invoke a
second time, it will output the empty list. That’s so that you don’t get confused by trying
to catch an error twice and having an error actually happen the first time but not the
second time. If you’ll need to refer to the contents of the list more than once,
put it in a variable.

Just in case you’ve previously caught an error without invoking , it’s a good
idea to use the instruction

before catching an error and invoking to test whether or not the error occurred.
is a Berkeley Logo primitive that takes one input and does nothing with it; the

sole purpose of the instruction is to “use up” any earlier caught error so that the next
invocation of will return an empty list if no error is caught this time.

You can stop all active procedures and return to top level by evaluating the instruction

This is a special kind of that can’t be caught.

You’ve seen this instruction before, in the first volume, where I mentioned it as a
way to get out of a pause. That’s where it’s most useful. Before you use it in a procedure,
though, you should be sure that you want to stop everything. For example, suppose
you’re writing a game program. If the player gets zapped by an evil Whatzit, he’s dead
and the game is over. So you write

because might be invoked several levels deep, but you want to stop
everything. But one day you decide to take three different games you’ve written and
combine them into a single program:

play

40 Chapter 3 Nonlocal Exit

Now your game is no longer the top-level procedure. wants to keep going after a
game is over. By throwing to toplevel in the game program, you make that impossible.

to play
local "gamename
print [You can play wumpus, dungeon, or rummy.]
print [Which do you want?]
make "gamename first rl
if :gamename = "wumpus [wumpus]
if :gamename = "dungeon [dungeon]
if :gamename = "rummy [rummy]
if not memberp :gamename [wumpus dungeon rummy] [print [No such game!]]
play
end

