
name
value:

137

8 Property Lists

print thing "book

french

Butfirst

thing

[[book livre] [computer ordinateur] [window fenetre]]

make "paper "papier
make "chair "chaise
make "computer "ordinateur
make "book "livre
make "window "fenetre

?
livre

In the first volume of this series, I wrote a procedure named that translates words
from English to French using a dictionary list like this:

This technique works fine with a short word list. But suppose we wanted to undertake a
serious translation project, and suppose we wanted to be able to translate English words
into several foreign languages. (You can buy hand-held machines these days with little
keyboards and display panels that do exactly that.) ing through a list of tens of
thousands of words would be pretty slow, and setting up the lists in the first place would
be very difficult and error-prone.

If we were just dealing with English and French, one solution would be to set up
many variables, with each an English word as its and the corresponding French
word as its

Once we’ve done this, the procedure to translate from English to French is just :



Naming Properties

property list.
names, values.

138 Chapter 8 Property Lists

make "book.french "livre
make "book.spanish "libro

to spanish :word
output thing word :word ".spanish
end

make "book [livre libro buch libro liber]

to spanish :word
output item 2 thing :word
end

[French livre Spanish libro German buch Italian libro Latin liber]

The advantage of this technique is that it’s easy to correct a mistake in the translation;
you just have to assign a new value to the variable for the one word that is in error, instead
of trying to edit a huge list.

But we can’t quite use this technique for more than one language. We could create
variables whose names contained both the English word and the target language:

This is a perfectly workable technique but a little messy. Many variables will be needed.
A compromise might be to collect all the translations for a single English word into one
list:

The only thing wrong with this technique is that we have to remember the correct order
of the foreign languages. This can be particularly tricky because some of the words are
the same, or almost the same, from one language to another. And if we happen not to
know the translation of a particular word in a particular language, we have to take some
pains to leave a gap in the list. Instead we could use a list that tells us the languages as
well as the translated words:

A list in this form is called a The odd-numbered members of the list are
property and the even-numbered members are the corresponding property

You can see that this solution is a very flexible one. We can add a new language to
the list later, without confusing old procedures that expect a particular length of list. If
we don’t know the translation for a particular word in a particular language, we can just
leave it out. The order of the properties in the list doesn’t matter, so we don’t have to



print gprop "book "German

Writing Property List Procedures in Logo

Writing Property List Procedures in Logo 139

book part.of.speech
noun

pprop

pprop

remprop

remprop
gprop

gprop
gprop

?
buch

to pprop :list :name :value
if not namep :list [make :list []]
make :list pprop1 :name :value thing :list
end

to pprop1 :name :value :oldlist
if emptyp :oldlist [output list :name :value]
if equalp :name first :oldlist ~

[output fput :name (fput :value (butfirst butfirst :oldlist))]
output fput (first :oldlist) ~

(fput (first butfirst :oldlist)
(pprop1 :name :value (butfirst butfirst :oldlist)))

end

remember it. The properties need not all be uniform in their significance; we could,
for example, give a property whose name is and whose value is

.

To make this work, Berkeley Logo (along with several other dialects) has procedures
to create, remove, and examine properties. The command (Put PROPerty) takes
three inputs; the first two must be words, and the third can be any datum. The first input
is the name of a property list; the second is the name of a property; the third is the value
of that property. The effect of is to add the new property to the named list. (If
there was already a property with the given name, its old value is replaced by the new
value.) The command (REMove PROPerty) takes two inputs, which must be
words: the name of a property list and the name of a property in the list. The effect
of is to remove the property (name and value) from the list. The operation

(Get PROPerty) also takes two words as inputs, the name of a property list and
the name of a property in the list. The output from is the value of the named
property. (If there is no such property in the list, outputs the empty list.)

It would be possible to write Logo procedures that would use ordinary variables to hold
property lists, which would work just like the ones I’ve described. Since Berkeley Logo
provides property lists as a primitive capability, you won’t need to load these into your
computer, but later parts of the discussion will make more sense if you understand how
they work. Here they are:



list

thing

thing book

Property Lists Aren’t Variables

name

not

third

140 Chapter 8 Property Lists

Note that the input called in each of these procedures is not a property list itself
but the of a property list. That’s why each of the superprocedures evaluates

to pass down as an input to its subprocedure.

The primitive procedures that support property lists in Berkeley Logo, however, do
use to find the property list. Just as the same word can independently name a
procedure and a variable, a property list is a kind of named entity, which is separate
from the with the same name. For example, if we gave the property list
shown with a series of instructions like

to remprop :list :name
if not namep :list [make :list []]
make :list remprop1 :name thing :list
end

to remprop1 :name :oldlist
if emptyp :oldlist [output []]
if equalp :name first :oldlist [output butfirst butfirst :oldlist]
output fput (first :oldlist) ~

(fput (first butfirst :oldlist)
(remprop1 :name (butfirst butfirst :oldlist)))

end

to gprop :list :name
if not namep :list [output []]
output gprop1 :name thing :list
end

to gprop1 :name :props
if emptyp :props [output []]
if equalp :name first :props [output first butfirst :props]
output gprop1 :name (butfirst butfirst :props)
end

thing :list

pprop "book "French "livre
pprop "book "Spanish "libro



print :book

How Language Designers Earn Their Pay

book

book make

plist Plist

plist

map map

memberp

variable

a property.

pairs

nodes.

How Language Designers Earn Their Pay 141

?
book has no value

[[French livre] [Spanish libro] [German buch]
[Italian libro] [Latin liber]]

and so on, we would not be creating a named .

(Of course, we could give a value with a instruction, but that value would
have nothing to do with the property list.) Instead there is a fourth primitive procedure
called that can be used to examine a property list. takes one input, a
word. It outputs the property list associated with that word. If there is no such property
list, outputs the empty list.

If you’re like me, you may have some questions about why this Logo feature works the
way it does. The form of a property list, for example, may seem arbitrary to you. Why
should it be a flat list, with names as the odd-numbered members and values as the
even-numbered ones? Wouldn’t it be more sensible to structure the list this way:

In this scheme each member of a property list is A property has two parts,
a name and a value. A list structured in this way would be easier to use with iterative
tools like . (Try to figure out a way to redefine so that it could map a function
over of members of its input list. Your goal is to find a way that isn’t a kludge.) You
wouldn’t have to think “What if the list has an odd number of members” when writing
procedures to manipulate property lists.

So why does Logo use the notation it does? I’m afraid the real answer is “It’s
traditional.” Logo property lists are the way they are because that’s what property lists
look like in Lisp, the language from which Logo is descended. Now, why was that decision
made in the design of Lisp? I’m not sure of the answer, but one possible reason is that
the flat property lists take up less room in the computer’s memory than the list-of-lists
that I’d find more logical. (Logo measures its available memory in It takes two
overhead nodes per property, not including the ones that actually contain the name and
the value, for the flat property list; it would take three overhead nodes per property for
the list-of-lists.)

Another minor advantage is that if you want to live dangerously, you can use
to see if a particular property name exists in a property list. It’s living dangerously because



Fast Replacement

Defaults

make "myprops plist "myself

value

copy

142 Chapter 8 Property Lists

memberp

pprop1 fput
pprop

pprop remprop myself
myprops plist

plist
myprops

gprop

the property name might, by coincidence, be the of some other property. (In
the dictionary example, this would be the situation if the German word for “book” were
“Greek”!) The advantage is that is a primitive procedure, so it’s faster than
one you could write yourself that would check just the odd-numbered members of the
property list.

Another question you might ask is this one: Why have property list primitives at all? The
list is a very general data structure, which can be organized in many ways. Why single out
this particular way of using lists as the one to support with special primitive procedures?
After all, it’s easy enough to implement property lists in Logo, as I’ve done in this chapter.

One answer is that the primitives can be much faster than the versions I’ve written in
Logo because they can replace a value inside a property list without recopying the rest of
the list. My procedure , for example, has to do two s for each property in
the list every time you want to change a single property. The primitive version of
doesn’t reconstruct the entire list; it just rips out the old value from inside the list and
sticks in a new value.

Aside from the question of speed, the difference between changing something inside
a list and making a modified copy of the list may not seem like a big deal. But it does
raise a subtle question. If you say

and then, later, use or to change some of the properties of ,
does the value of the variable change? The answer is no; really outputs a

of the property list as it exists at the moment you invoke . That copy becomes
the value of , and it doesn’t change if the property list itself is changed later.
(Berkeley Logo, like Lisp, does have primitives that allow you to change things inside
lists in general, and this possibility of a variable magically changing in value because you
change something else really does arise!)

Another language design question you might be wondering about is why outputs
the empty list if you ask for a property that doesn’t exist. How do you say “book” in Urdu?



show gprop "book "urdu?
[]

book has no urdu property

thing

if not namep

thing

first first

variable

default.

origin

teachers
implementors

Defaults 143

If you ask for a that doesn’t exist, you get an error message. Why doesn’t Logo
print something like

in this situation?

The name for “what you get when you haven’t provided an answer” is a There
aren’t very many situations in which Logo provides defaults. One obscure example in
Berkeley Logo is the of an array—the number used to select its first member. By
default the first member is number one, but it’s possible to set up an array that begins
with some other number (most commonly zero).

The question of what should be considered an error is always a hot one among
language designers. The issue is one of programming convenience versus ease of
debugging. Suppose output the empty list if asked for a nonexistent variable. It
would have been easier for me to write the property list procedures in this chapter; I
could have left out the instructions. This is a situation in which I might
ask for a variable that hasn’t been given a value “on purpose,” with a perfectly clear idea
of what result I want. On the other hand, if were permissive in this way, what
would happen if I gave it an input that wasn’t a variable name because I made a spelling
error? Instead of getting an error message right away, my program would muddle on with
an empty list instead of whatever value was really needed. Eventually I’d get a different
error message or an incorrect result, and it would be much harder to find the point in
the program that caused the problem.

The same issue arises, by the way, about operations like . What should
do if you give it an empty list as input? Logo considers this an error, as do most versions
of Lisp. Some versions of Lisp, though, output an empty list in this situation.

It’s most common to need “permissive” primitives when working on extensions to
Logo itself, such as property lists, as opposed to specific application programs. An
application programmer has complete control over the inputs that procedures will be
given; an implementor of a programming language (or an extension to it) has to handle
anything that comes up. I think that’s why, traditionally, it’s always been the of
Logo who vote in favor of error messages and the who prefer permissive
primitives.



Abraham Ann Albert Amelia

Bill Betty Bob Barbara Brian Boris

Colin Cathy Chris CecilCharlie Carol

An Example: Family Trees

144 Chapter 8 Property Lists

gprop

mother
father kids sex kids

sex male female

to family :mom :dad :girls :boys
catch "error [pprop :mom "sex "female]
catch "error [pprop :dad "sex "male]
foreach :girls [pprop ? "sex "female]
foreach :boys [pprop ? "sex "male]
localmake "kids sentence :girls :boys
catch "error [pprop :mom "kids :kids]
catch "error [pprop :dad "kids :kids]
foreach :kids [pprop ? "mother :mom pprop ? "father :dad]
end

family "Ann "Abraham [Betty] [Bill Bob]
family "Amelia "Albert [Barbara] [Brian Boris]
family "Betty [] [Cathy] [Colin]
family "Barbara "Bob [Carol] [Charlie]
family [] "Boris [] [Chris Cecil]

So why is permissive when all other Logo primitives are not? Well, the others
were designed early in the history of the language when teachers were in charge at the
design meetings. Property lists were added to Logo more recently; the implementors
showed up one day and said, “Guess what? We’ve put in property lists.” So they did it
their way!

Here is an example program using property lists. My goal is to represent this family tree:

Each person will be represented as a property list, containing the properties ,
, , and . The first two will have words (names) as their values, will

be a list of names, and will be or . Note that this is only a partial family
tree; we don’t know the name of Betty’s husband or Boris’s wife. Here’s how I’ll enter all
this information:



father

An Example: Family Trees 145

The instructions that catch errors do so in case a family has an unknown mother or
father, which is the case for two of the ones in our family tree.

Now the idea is to be able to get information out of the tree. The easy part is to get
out the information that is there explicitly:

Of course several more such procedures can be written along similar lines.

The more interesting challenge is to deduce information that is not explicitly in the
property lists. The following procedures make use of the ones just defined and other
obvious ones like .

to mother :person
output gprop :person "mother
end

to kids :person
output gprop :person "kids
end

to sons :person
output filter [equalp (gprop ? "sex) "male] kids :person
end

to grandfathers :person
output sentence (father father :person) (father mother :person)
end

to grandchildren :person
output map.se [gprop ? "kids] (kids :person)
end

to granddaughters :person
output justgirls grandchildren :person
end

to justgirls :people
output filter [equalp (gprop ? "sex) "female] :people
end

to aunts :person
output justgirls sentence (siblings mother :person) ~

(siblings father :person)
end



or

146 Chapter 8 Property Lists

siblings
aunts cousins siblings

grandfathers

father

sentence grandfathers

cousins
sentence

person26
familyname givenname name

father cousins
person26

realnames

to cousins :person
output map.se [gprop ? "kids] sentence (siblings mother :person) ~

(siblings father :person)
end

to siblings :person
local "parent
if emptyp :person [output []]
make "parent mother :person
if emptyp :parent [make "parent father :person]
output remove :person kids :parent
end

to father :person
if emptyp :person [output []]
output gprop :person "father
end

In writing , I’ve been careful to have it output an empty list if its input is empty.
That’s because and may invoke with an empty input if we’re
looking for the cousins of someone whose father or mother is unknown.

You’ll find, if you try out these procedures, that similar care needs to be exercised
in some of the “easy” procedures previously written. For example, will
give an error message if applied to a person whose mother father is unknown, even if
the other parent is known. One solution would be a more careful version of :

The reason for choosing an empty list as output for a nonexistent person rather than
an empty word is that the former just disappears when combined with other things
using , but an empty word stays in the resulting list. So , for
example, will output a list of length 1 if only one grandfather is known rather than a list
with an empty word in addition to the known grandfather. Procedures like also
rely heavily on the flattening effect of .

This is rather an artificial family tree because I’ve paid no attention to family names,
and all the given names are unique. In practice, you wouldn’t be able to assume that.
Instead, each property list representing a person would have a name like and
would include properties and or perhaps just a property
whose value would be a list. All the procedures like and would
output lists of these funny -type names, and you’d need another procedure

that would extract the real names from the property lists of people in a list.
But I thought it would be clearer to avoid that extra level of naming confusion here.


