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CHAPTER 1 INTRODUCTION 

A decade and half after Weiser‘s call to integrate computation into the fabric of our lives 

[248], the design and evaluation of ubiquitous computing systems remains challenging. 

Difficulties arise partially because of a lack of appropriate design tools: the progress of any 

creative discipline changes significantly with the quality of the tools available 

[51,167,228,229]. As the creation of ubiquitous computing devices moves from research labs 

into design consultancies and product teams, better tools that support user experience 

professionals are needed. My fieldwork at professional design companies showed that design 

generalists currently lack the tools to fluently experiment with interactions for sensor-based 

interfaces and information appliances. 

Prototyping is the pivotal activity that structures innovation, collaboration, and 

creativity in professional design. Design studios pride themselves on their prototype-driven 

culture; it is through the creation of prototypes that designers learn about the problem they 

are trying to solve. Effective prototyping tools aid and improve design space exploration, 

design team communication, and ultimately, lead to better products. The goal of this 

dissertation is to develop principles and authoring methods that guide the creation of more 

appropriate prototyping tools for interaction design. This dissertation contributes to the 

advancement of prototyping tools by considering two different research questions: 

 

1) How can design tools enable a wider range of designers to create functional prototypes 

of ubiquitous computing user interfaces?  

2) How can design tools support the larger process of learning from these prototypes? 

 

Our exploration of the first question is concerned with improving prototyping methods—

finding new ways to model and structure the authoring task. Two complementary methods 

for authoring sensor-based interactions are introduced: a control-flow-based visual authoring 

environment for interaction logic that is based on existing storyboard practices; and a 

programming-by-demonstration environment that helps designers extract useful high-level 

interaction events from continuous sensor data. These methods lower the expertise threshold 

required to author sensor-based interfaces. The tools enable more designers to author a wider 

range of interfaces, faster.  
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The second question concerns the function a prototype plays in the larger design 

process. Prototyping is not primarily about the artifacts that get built: it is about eliciting 

feedback (from the situation, from users, team members & clients). Prototypes embody 

design hypotheses and enable designers to test these hypotheses. Prototyping tools can thus 

become more valuable to designers when they explicitly offer support for eliciting and 

managing feedback. Today, software prototyping tools are mostly agnostic to this role. This 

dissertation contributes techniques for creating and managing multiple alternative design 

solutions, and for managing feedback from both external testers and design team members. A 

brief overview of the contributions and the contents of this dissertation follows. 

1.1 THESIS CONTRIBUTIONS 

This dissertation contributes principles and systems for prototyping user interfaces that span 

physical and digital interactions. The technical contributions are based on evidence collected 

through interviews with designers and online surveys. This evidence suggests that interaction 

designers lack tools to create interfaces that leverage sensor input; to explore alternative 

interface behaviors; to efficiently review interface test videos; and to effectively communicate 

interface revisions. 

The dissertation makes the following technical contributions in three areas: 

1) Techniques for authoring user interfaces with non-traditional input/output 

configurations.  

a. Rapid authoring of interaction logic through a novel combination of storyboard 

diagrams for information architecture with procedural programming for interactive 

behaviors.  

b. Demonstration-based definition of discrete input events from continuous sensor data streams 

enabled by a combination of pattern recognition with a direct manipulation 

interface for the generalization criteria of the recognition algorithms.  

c. Management of input/output component configurations for interface prototypes through an 

editable virtual representation of the physical device being built. This 

representation reduces cognitive friction by collapsing levels of abstraction; it is 

enabled by a custom hardware interface with a plug-and-play component 

architecture. 
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2) Principles and techniques for exploring multiple user interface alternatives.  

a. Techniques for efficiently defining and managing multiple alternatives of user interfaces in 

procedural source code and visual control flow diagrams. 

b. User-directed generation of control interfaces to modify relevant variables of user 

interfaces at runtime. 

c. Support for sequential and parallel comparison of user interface alternatives through parallel 

execution, selectively parallel user input, and management of parameter 

configurations across executions. 

d. Implementations of the runtime techniques for three different platforms: desktop PCs, mobile 

phones, and microcontrollers.  

3) Techniques for capturing feedback from users and design team members on user 

interface prototypes, and for integrating that feedback into the design environment.  

a. Timestamp correlation between live video, software states, and input events generated during 

a usability test of a prototype to enable rapid semantic access of that video during 

later analysis. 

b. Novel query techniques to access such video recordings: query by state selection where 

users access video segments by selecting states in a visual storyboard; and query by 

input demonstration where sections of usability video are retrieved through 

demonstrating, on a physical device prototype, the kind of input that should 

occur in the video. 

c. A visual notation and a stylus-controlled gestural command set for revising user interfaces 

expressed as control flow diagrams. 

 

This dissertation also provides evidence, through laboratory studies and class deployments, 

that the introduced techniques are successful. In particular, the dissertation contributes: 

1) Evidence that the introduced authoring methods for sensor-based interaction are 

accessible and expressive through two laboratory evaluations and two class deployments. 

2) Evidence from a laboratory study that the techniques for managing interface alternatives 

enable designers to explore a wider range of design options, faster. 

3) Evidence from two laboratory studies that an interactive revision notation for interfaces 

leads to more concrete and actionable revisions. 
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1.2 DISSERTATION ROADMAP 

This section presents a brief overview of the structure of this dissertation by chapters. 

1.2.1 BACKGROUND: PROTOTYPES IN THE DESIGN PROCESS (CHAPTER 2) 

The terms design, prototyping, and sketching have many meanings for different audiences. 

Drawing on literature in design research, this chapter stakes out a perspective on design 

practice and how prototyping activities occur throughout the design process.  We briefly 

discuss the history of industrial design as a discipline grounded in the development of 

material goods and the later transfer of principles from industrial design to software [251]. 

While there are many different conceptions of the design process, models tend to agree 

on two core characteristics. First, design is exploratory and emergent — the structure of the 

design problem itself has to be uncovered and this uncovering happens through generating 

concrete design proposals and evaluating them. Designers think with, and communicate 

through artifacts and models [66]. These artifacts are prototypes. Second, generation and 

evaluation of solution proposals exemplifies a recurrent, fundamental interplay between 

divergent and convergent stages in design: first a range of different potential solutions is 

generated, then desirable solutions are selected from that set of alternatives. This cycle 

repeats as the focus shifts from design concepts to implementation strategies. 

The chapter concludes with a survey of literature about the role that prototypes play in 

design and software engineering. This survey leads to a classification of prototypes according 

to three questions: What purpose do prototypes serve? What aspects of a design do they 

address? And what level of functionality should they offer?  

1.2.2 RELATED WORK (CHAPTER 3) 

How are existing tools supporting prototyping activity? What needs are still unmet?  We 

describe the state of the art in professional practice and present an overview of research in 

prototyping tools. Our discussion of related research addresses the following concerns in 

separate sections: 

USER INTERFACE PROTOTYPING TOOLS  

Prior research has introduced environments for graphical user interfaces [155], web site 

information architecture design [171], and context-aware applications [219], among others. 

We review tools that focus on storyboard-based authoring, direct manipulation UI layout, 

and Wizard of Oz simulation [140] of interface functionality.  
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TOOLS SUPPORT FOR PHYSICAL COMPUTING  

Physical computing combines physical and digital interactions. Consequently, tools in this 

area often focus on the interdependence of hardware and software. We review research into 

hardware toolkits and programming models for working with sensors and actuators 

[93,178,185].  

VISUAL AUTHORING 

 Visual authoring or visual programming is thought to offer a lower threshold than textual 

programming. The reality is more nuanced. We provide an overview of visual formalisms and 

visual programming languages. We distinguish between control flow environments [87], data 

flow environments [209], augmented source editors [238], and hybrid environments [1].  

PROGRAMMING BY DEMONSTRATION 

Programming by demonstration promises to lower the barrier of specifying complex logic or 

behavior by demonstrating that behavior to a computer. The crucial step in the success of 

failure of programming by demonstration lies in the generalization step that transforms 

observed examples to general rules. We discuss how previous systems have addressed this 

challenge for programming [67] and computer vision applications [75].  

DESIGNING MULTIPLES 

 If design indeed oscillates between generating multiple alternatives and then selecting 

between these alternatives, design tools should explicitly support working with sets of 

potential designs. We survey existing work in image processing [161,239], rendering [181] and 

information querying [177] that address this challenge.  

CAPTURING & MANAGING FEEDBACK 

How can design tools capture user test data or team feedback on prototypes? We review 

work in document annotation [198] and usability video structuring through event logs 

[39,179]. 

1.2.3 AUTHORING SENSOR-BASED INTERACTIONS (CHAPTER 4) 

This chapter presents two novel prototyping methods that enable faster creation of functional 

interaction designs for sensor-based user interfaces. Myers et al. introduced the terms 

threshold and ceiling to describe use properties of a tool: the threshold is the difficulty of 

learning and using a system, while the ceiling captures the complexity of what can be built 

using the system [191]. d.tools and Exemplar help designers construct functional prototypes 
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by lowering the threshold of required expertise.  The goal of both systems is to enable users to 

focus on design thinking (how an interaction should work) rather than implementation 

tinkering (how hardware and sensor signal processing work).  

d.tools is a software and hardware toolkit that embodies an iterative-design-centered 

approach to prototyping information appliances. d.tools enables non-programmers to work 

with the bits and the atoms of physical user interfaces in concert. Supporting early-stage 

prototyping through a visual, statechart-based approach, d.tools extends designers‘ existing 

storyboarding practices (Figure 1.1). As designers move from early-stage prototypes to higher 

fidelity prototypes, d.tools augments visual authoring with scripting. A hardware platform 

based on smart components that communicate on a shared bus offers plug-and-play use of 

sensors and actuators (Figure 1.2). The architecture exposes extension points for experts to 

grow the library of supported electronic components.  

d.tools provides software abstractions for hardware and offers rapid authoring of 

interaction logic. An additional barrier for practitioners became apparent when we deployed 

d.tools to an HCI class: students often struggled to transform raw, noisy sensor data into 

useful high-level events for interaction design.  Exemplar, an extension to d.tools, bridges the 

conceptual gap between conceiving of a sensor-based interaction and formally specifying that 

interaction through programming-by-demonstration. With Exemplar, a designer first 

demonstrates a sensor-based interaction to the system (e.g., she shakes an accelerometer — 

Figure 1.3). The system graphically displays the resulting sensor signals. The designer then 

marks up the part of the visualization that corresponds to the action — Exemplar learns 

  

Figure 1.1:  The d.tools visual authoring 

environment enables rapid construction 

of UI logic. 

Figure 1.2:  The d.tools hardware 

interface offers a plug-and-play 

architecture for interface components. 
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appropriate recognizers from these markups. The designer can review the learned actions 

through real-time visual feedback and modify recognition parameters through direct 

manipulation of the visualization. 

Both d.tools and Exemplar have been evaluated through individual laboratory studies 

and deployment to interaction design courses and to industry. In a first-use evaluation of 

Exemplar, participants with little or no prior experience with sensing systems were able to 

design new motion-based controllers for games in less than 30 minutes (Figure 1.4). In our 

collaboration with educational toy company Leapfrog, we provided d.tools hardware 

schematics and software to Leapfrog‘s advanced development group. In return, Leapfrog 

manufactured a complete set of hardware toolkits for us to distribute to a second year of 

Stanford HCI students. In collaboration with Nokia, we also extended d.tools to author 

prototype interfaces for mobile devices. 

1.2.4 CREATING ALTERNATIVE DESIGN SOLUTIONS (CHAPTER 5) 

Creating multiple prototypes facilitates comparative reasoning, grounds team discussion, and 

enables situated exploration. However, current interface design tools focus on creating single 

artifacts. How might interaction design tools explicitly support creation and management of 

multiple user interface alternatives? This chapter discusses two approaches. 

We first investigated how to support exploration in Juxtapose, a source code editor and 

runtime environment for designing multiple alternatives of interaction designs in parallel. 

Juxtapose offers a code editor for user interfaces authored in ActionScript in which 

 

Figure 1.3:  Exemplar combines 

programming-by-demonstration with direct 

manipulation to author sensor-based 

interactions. 

 

Figure 1.4:  This evaluation participant 

used Exemplar to control 2D aiming in a 

game with an accelerometer, and shooting 

with the flick of a bend sensor. 
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interaction designers can define multiple program alternatives through linked editing, a 

technique to selectively modify source files simultaneously. The set of source alternatives are 

then compiled into a set of programs that are executed in parallel (Figure 1.5). Optimizing 

user experience often requires trial-and-error search in the parameter space of application 

variables. To improve this tuning practice, Juxtapose generates a control interface for 

application parameters through source code analysis and language reflection (Figure 1.6). A 

summative study of Juxtapose with 18 participants demonstrated that parallel editing and 

execution are accessible to interaction designers and that designers can leverage these 

techniques to survey more options, faster. To show that general principles of working with 

alternatives carry over into other domains, we also developed Juxtapose runtime 

environments for mobile phones and microcontrollers.  

We then discuss how ideas for exploring alternatives can be transferred from a textual 

programming environment such as Juxtapose to the visual authoring environment of d.tools. 

Visual control flow environments offer the opportunity to present alternative states side-by-

side in the same canvas. They also present some challenges in managing the additional visual 

complexity resulting from capturing multiple behavior options.  

  

  

Figure 1.5:  Side-by-side execution in 

Juxtapose enables rapid comparison of 

alternatives. 

Figure 1.6:  Juxtapose automatically 

generates control interfaces for program 

variables. 
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1.2.5 GAINING INSIGHT THROUGH FEEDBACK (CHAPTER 6) 

If prototyping is about eliciting feedback, then tools that manage the feedback process 

explicitly can help designers gain insight, capture that insight, and act on it. We present two 

methods for integrating feedback capture and management directly into design tools.  

Many prototypes go through team discussions and reviews before being tested. In word 

processing, revision management algorithms and interactions techniques effectively enable 

asynchronous collaboration over text documents. But no equivalent functionality exists yet 

for revising interaction designs. d.note introduces a revision notation for expressing tentative 

design proposals within d.tools. The tool comprises commands for insertion, deletion, 

modification and commenting on appearance and behavior of interface prototypes (Figure 

1.7). d.note realizes three benefits: it visually distinguishes tentative changes to retain design 

history, allows for Wizard of Oz simulation of proposed functionality, and manages display of 

alternative design choices to facilitate comparison. In a laboratory evaluation, twelve design 

students critiqued existing d.tools prototypes with and without d.note. Participants reported 

that the ability to express and test functional changes was a clear benefit of d.note. In a 

follow-up study, eight design students interpreted the annotated diagrams produced in the 

first study, showing that d.note diagrams were less ambiguous to interpret, but that they 

lacked high-level justification when compared to free-form annotation. 

When prototypes are tested with team mates or external users, test sessions are often 

recorded on video. Historically, the hours and days of work required for manual video analysis 

has limited the practical value of these recordings. The d.tools video suite provides integrated 

  

Figure 1.7:  d.note introduces stylus-

driven revision of interaction diagrams. 

Figure 1.8:  The d.tools test & analysis 

functions link video clips of test sessions 

to event traces of the tested prototype. 
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support for testing prototypes with users and rapidly analyzing test videos to inform 

subsequent iteration (Figure 1.8). d.tools logs all user interactions with a prototype and 

records an event-synchronized video stream of the user‘s interactions. The video is 

automatically structured through state transitions and input events. After a test, d.tools 

enables designers to view video and storyboard in parallel as a multiple view interface [41] 

into the test data. Two novel query techniques shorten the time to find relevant segments in 

the video recordings: query by state selection, where users access video segments by selecting 

states in the storyboard; and query by input demonstration, where designers demonstrate the 

kind of input that should occur in the video.  

1.2.6 CONCLUSIONS & FUTURE WORK (CHAPTER 7) 

The final chapter provides a review of the contributions, and offers an outlook to future work 

by reconsidering the fundamental assumptions made in this dissertation. The chapter 

discusses opportunities for different types of authoring tools that result if some of these 

assumptions are modified. 

1.2.7 OVERVIEW: RESEARCH CONCERNS & PROJECTS 

This dissertation explores the space of novel prototyping tools through multiple projects. To 

aid the reader, Table 1.1 shows how research concerns map onto the different concrete 

projects discussed in this dissertation.  

 

Table 1.1: An overview how research concerns map onto the concrete systems 

presented in this dissertation. 
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1.3 STATEMENT ON MULTIPLE AUTHORSHIP AND PRIOR 

PUBLICATIONS 

The research presented in this dissertation was not undertaken by me alone. While I initiated 

and led all of the projects described here, the contributions of a talented group of 

collaborators must be acknowledged — without their efforts, the research could not have 

been realized in its current scope. In particular, the d.tools project benefited from UI 

implementation contributions by Michael Bernstein, Leith Abdulla, and Jennifer Gee; and 

video editor programming and integration by Brandon Burr and Avi Robinson-Mosher. In the 

Exemplar project, Manas Mittal contributed to the signal processing routines; Leith Abdulla 

contributed to the Exemplar user interface implementation. Sean Follmer, Timothy Cardenas, 

and Anthony Ricciardi contributed to gesture recognition, revision management, and the 

graphical user interface editor in d.tools and d.note. Meredith Ringel Morris, Sean Follmer, 

Haiyan Zhang, and Jesse Cirimele collaborated on various demonstration applications for 

d.tools and Exemplar. Loren Yu worked with me on the source code editor and runtime user 

interface of Juxtapose; Abel Allison and Yeonsoo Yang helped with the implementation of 

Juxtapose functionality for microcontrollers.  

This dissertation is partially based on papers published in previous ACM conference 

proceedings; I am primary author on all publications. In particular, the d.tools system was 

published at UIST 2006 [109]; Exemplar at CHI 2007 [107]; and Juxtapose at UIST 2008 [114]. 

A paper describing d.mix is still in submission at the time of publication of this dissertation. 


