
120

CHAPTER 5 CREATING ALTERNATIVE DESIGN SOLUTIONS

5.1 ALTERNATIVES IN JUXTAPOSE

Design frequently alternates between divergent stages, where multiple different options are

explored, and convergent stages, where ideas are selected and refined [55,66,135] (Figure 5.1).

When designers create multiple distinct prototypes prior to committing to a final direction,

several important benefits arise. First, alternatives provide designers with a more complete

understanding of a design space [83]. Second, developing different ―what if‖ scenarios enables

more effective, efficient decision making within organizations [222]. Third, discussing

multiple prototypes helps project stakeholders better communicate their requirements [157].

Finally, presenting multiple alternatives in user studies facilitates participants‘ ability to

understand design tradeoffs and offer critical feedback [243].

Placing ―enlightened trial and error‖ at the core of design raises the research question,

how might authoring environments support designers in creating and managing design options?

Traditionally, design tools have focused on creating single artifacts [240]. Research in

subjunctive interfaces [177] pioneered techniques for parallel exploration of multiple

scenarios during information exploration. Set-based interaction techniques have also been

introduced for graphic design [241,242] and 3D rendering [181]. Providing alternative-aware

tools for interaction design adds the challenge of working with two distinct representations:

Figure 5.1: Design alternates between divergent and convergent stages. Diagram due to

Buxton [55], redrawn by the author.

121

source code, where changes are authored; and the running program, where changes are

observed.

This chapter suggests that interaction design tools can successfully scaffold exploration

by managing alternatives across source and execution environments, and introduces

Juxtapose, an authoring tool manifesting this idea (Figure 5.2). Juxtapose makes two

fundamental contributions to design tool research.

First, it introduces a programming environment in which interaction designers create

and run multiple program alternatives in parallel (Figure 5.3 left). Juxtapose extends linked

editing [244], a technique to selectively modify source duplicates simultaneously, by turning

source alternatives into a set of programs that are executed in parallel. The Juxtapose runtime

environment enables interacting with these parallel alternatives.

Figure 5.2: Interaction designers explore options in Juxtapose through a source code

editor that supports alternative code documents (left), a runtime interface that offers

parallel execution and tuning of application parameters (center), and an external

controller for spatially multiplexed input (right).

Figure 5.3: In the Juxtapose source editor (left), users work with code alternatives in

tabs. Users control whether modifications affect all alternatives or just the presently active

alternative through linked editing. In the runtime interface (right), alternatives are

executed in parallel. Designers tune application parameters with automatically generated

control widgets.

122

Second, Juxtapose introduces ―tuning‖ of interface parameters at runtime by

automatically generating a control interface for application parameters through source code

analysis and language reflection (Figure 5.3 right). We hypothesize that runtime controls

encourage real-time improvisation and exploration of the application‘s parameter space.

Designers can save parameter settings in presets that Juxtapose maintains across alternatives

and executions. To facilitate simultaneous control over multiple tuning parameters, a

physical, spatially-multiplexed control surface is supported.

This chapter first introduces findings from formative interviews that motivate our work.

We then describe the key interaction techniques for creating, executing, and modifying

alternatives with Juxtapose. We describe implementations for desktop, mobile, and tangible

applications. Next, we present evaluation results and conclude by discussing tradeoffs and

limitations of our approach.

5.2 FORMATIVE INTERVIEWS

To augment our intuitions from our own teaching and practice, we conducted three

interviews with interaction designers. Here, we briefly summarize the insights gained.

First, arriving at a satisfying user experience requires simultaneous adjustment of multiple

interrelated parameters. For example, a museum installation developer shared that getting an

interactive simulation to ―feel right‖ required time-intensive experimentation with parameter

settings. Similarly, an instructor for a course on computer-vision input in HCI reported that

students found adjusting recognition algorithm parameters to be a lengthy trial-and-error

process.

Second, creating alternatives of program logic is a complementary practice to parameter

tuning. In one participant‘s code, we saw multiple alternative code strategies living side-by-

side inside a single function (Figure 5.4). To try out these different approaches in succession,

this interviewee would change which alternative was uncommented (i.e., active), recompile,

and execute.

Lastly, all interviewees reported writing custom control interfaces for internal program

variables when they were unsure how to find good values. These tuning interfaces are not

actually part of the functionality of the application — they function exclusively as

exploratory development tools.

Across the three concerns, interviewees resorted to ad-hoc practices that allowed for

some degree of exploration despite a lack of tool support. The following scenario illustrates

123

how Juxtapose can improve such exploration by explicitly addressing parameter variation,

alternative creation and control interface generation.

5.3 EXPLORING OPTIONS WITH JUXTAPOSE

Tina is designing the graphical interface for a new handheld GPS device that both pedestrians

and bicyclists will use. She imagines pedestrians will pan the map by tilting the device, and

use buttons for zooming. Bicyclists mount the device in a fixed position on their handlebars,

so they will need buttons to pan and zoom.

To try out navigation options, Tina loads her existing map prototype and clicks the Add

Alternative button (Figure 5.5A); this duplicates her code in a new tab. With the Linked Edit

box checked, she adds a function to respond to button input. This code change propagates to

both alternatives. She clears the Linked Edit checkbox so that she can write distinct input

handlers in the function body of each alternative (Figure 5.5B). In unlinked mode, edits only

apply to the active tab. A colored background highlights code that differs between

alternatives (Figure 5.5C).

Tina executes her designs. Juxtapose‘s runtime interface shows the application output of

each code alternative side-by-side (Figure 5.5D). One alternative is active, indicated by a red

outline. Global Number and Boolean-typed variables of this alternative are displayed in a

variable panel to the right of the running applications. Tina expands the entries for layer

visibility, panning speed and zoom step size to reveal tuning widgets that allow her to change

values of each variable interactively (Figure 5.5E). Tina uses the tuning widgets to arrive at

fluid pan and zoom animations.

Figure 5.4: Example code from our inquiry: two behaviors co-exist in the same function

body. The participant would switch between alternatives by changing which lines were

commented.

124

Tina also hypothesizes that bicyclists will value velocity-contingent visual and

typographic levels of detail. To adjust the text sizes of multiple road types simultaneously, she

moves her non-dominant hand to an external physical control board (Figure 5.5F). She places

one finger on each slider, and quickly moves multiple sliders simultaneously to visually

understand the gestalt design tradeoffs, such as legibility and clutter. To focus in on the

details of one alternative, she toggles between viewing alternatives side-by-side, and viewing

just one alternative (Figure 5.5G).

Tina finds several promising parameter combinations for showing levels of detail and

uses the snapshot panel to save them (Figure 5.5H). Back in the code editor, she introduces a

speed variable to simulate sensed traveling velocity, and adds code to load different snapshots

from the Juxtapose environment when the speed variable changes. To constrain tuning to

useful values, she adds range annotation comments, e.g., indicating that speed should vary

between 1 and 30 mph (Figure 5.5I). She runs her design again and selects speed for tuning.

Moving the associated slider now switches between the snapshot values she previously saved.

She checks the Linked Tuning box to propagate changes in simulated speed to all alternatives

in parallel (Figure 5.5J).

5.4 ARCHITECTURE FOR ALTERNATIVE DESIGN

This section outlines fundamental requirements for parallel editing, execution, and tuning,

and describes how the Juxtapose implementation supports these techniques.

Figure 5.5: UI vignettes for the Juxtapose Scenario.

125

5.4.1 PARALLEL EDITING

To make working with multiple code alternatives feasible, an authoring environment must

keep track of code differences across alternatives, make this structure visually apparent to the

user, and offer efficient interaction techniques for manipulating content across alternatives.

To support these three requirements, Juxtapose extends Toomim et al.‘s linked editing

technique [244]: alternatives are accessible through document tabs; source differences

between tabs are highlighted with a shaded background; and edits can be either local to one

alternative or global to all alternatives. Toomim‘s work focused on sharing code snippets

across different locations within a project. Juxtapose instead targets creation of sets of

applications based on a core of shared code. To enable interactive editing across multiple

documents, Juxtapose replaces Toomim‘s algorithm with incremental correspondence

tracking during editing and slower content differencing during compilation. The efficiency

gains thus realized enable Juxtapose to run comparisons after each key press. Average times

for single character replacement operations were under 1 ms with up to 5 alternatives on a 2

GHz PC running Windows Vista.

Juxtapose tracks correspondences between alternatives by partitioning all source

alternatives into corresponding blocks. In linked editing, the block structure stays fixed and

block content is modified in all alternatives. In unlinked editing, code blocks are subdivided

and alternatives store different content in their sub-blocks (Figure 5.6). When inserting text

while unlinked, Juxtapose‘s data structure splits the code into pre- and post-insertion blocks

and creates a new code block for the inserted text. Juxtapose splits all alternatives, inserting

an empty element into the unmodified alternatives. Deletions also split code blocks. Here, the

active document represents the deletion with an empty element; the corresponding elements

in the other alternatives contain the deleted text. Code modifications are expressed as

deletions followed by insertions. Blocks are never merged during editing.

INSERTION DELETION

Figure 5.6: Juxtapose’s implementation of linked editing is

based on maintaining block correspondences between

alternatives across document modifications.

A top of page text box for a figure or table

126

Incremental structure tracking performs differently than content-based matching if a

user types identical code into corresponding locations in two distinct documents: content-

based approaches will mark this as a match; structure-based approaches will not. To obtain

both interactive performance and content matching, Juxtapose optimizes global block

structure with a slower longest common subsequence algorithm at convenient times (i.e.,

when compilation is started).

5.4.2 PARALLEL EXECUTION AND TUNING

Executing a set of related interaction designs raises two principal questions: Should

alternatives be presented in series or in parallel? And should users interact with these

alternatives one-at-a-time or simultaneously? To investigate how different target devices offer

unique opportunities for parallel input and output, we implemented versions of the Juxtapose

environment for three domains: desktop interactions written in ActionScript for Adobe Flash;

mobile phone interactions for Flash Lite; and physical interactions based on the Arduino

microcontroller platform. The three implementations share a common editor but differ in

their runtime environment. We discuss each in turn.

DESKTOP

Desktop PCs offer sufficient screen resolution to run alternative interactions side-by-side,

analogous to application windows. In our implementation, alternatives are authored in

ActionScript 2, from which Juxtapose generates a set of Flash movie files using the MTASC

compiler [27]. The generated files are then embedded into the Juxtapose Java runtime

interface using a Windows-native wrapper library [28]. For consistency with the temporally

multiplexed input of windowed operating systems, only one active alternative receives

keyboard and mouse input events by default. However, Juxtapose offers the option to

replicate user input across alternatives through event echoing [176]. By using a provided

custom mouse class, mouse events can be intercepted in the active alternative and injected

into all other alternatives, which then show a ghost cursor. This parallelism only operates at

the low level of mouse move and click events, which is useful when both application logic and

visual layout are similar across alternatives. However, in the absence of a model that

translates abstract events in one application into equivalent events in another, users cannot

usefully interact with different application logic simultaneously. While development of an

abstract input model that provides such a mapping is certainly possible, it is unlikely to occur

during prototyping, when the application specification is still largely in flux.

127

To accomplish runtime variable tuning, bi-directional data exchange between the user‘s

application and the tuning interface is required. On startup, the application transmits

variable names, types, and values to Juxtapose (Figure 5.7). The tuning interface in turn sends

value updates for variables to the application whenever its widgets are used. Loading

snapshots defined in the tuning interface from code is initiated by a request from the user

application, followed by a response from Juxtapose. To accomplish this communication, the

user adds a Juxtapose library module to their code. In our implementation, communication

between the Flash application and the hosting Java environment takes place through a

message-passing protocol and synchronous remote procedure call interface built on top of the

Flash Player API.

MOBILE PHONE

For smart phones, the most useful unit of abstraction for parallel execution might not be an

application window on a handset, but rather the entire handset itself. The small form factor

and comparatively lower cost make it attractive to leverage multiple physical devices in

parallel (Figure 5.8). In Juxtapose mobile, developers still compose and compile applications

on a PC. At runtime, the tuning interface resides on the PC, and the alternatives run on

different handsets. A designer can rapidly switch between alternatives by putting one phone

down and picking another one up. To target tuning events to an application running on a

particular phone, Juxtapose offers alternative selection buttons in the runtime interface.

Figure 5.7: Runtime tuning is achieved through bi-directional

communication between a library added to the user’s

application and the Juxtapose runtime user interface.

128

Our Juxtapose mobile prototype generates binaries which run on the Flash Lite 2.0

player on Nokia N93 smart phones. The desktop tuning interface and the smart phone

communicate through network sockets. When designers run an application on the mobile

phone, it opens a persistent TCP socket connection to the Juxtapose runtime interface on the

PC. Our prototype uses Wi-Fi for simplicity. Informally, we found that the phone receives

variable updates at approximately 5 Hz, much slower than on the PC, but still sufficient for

interactive tuning. Response rates are slower because mobile devices trade off increased

battery life for slower network throughput and increased latency. A limitation of the current

Figure 5.8: When using Juxtapose mobile, code alternatives

are executed on different phones in parallel. Variable tuning is

accomplished through wireless communication.

Figure 5.9: Two prototypes built with Juxtapose mobile. Left: A map navigation

application explored use of variable tuning. Right: Two alternatives of a fisheye menu

navigation technique running on two separate phones.

129

Juxtapose mobile implementation is that users must manually upload compiled files to the

phones and launch them within the Flash Lite player. This is due to restrictions of the phone‘s

security architecture. We have explored the utility of Juxtapose mobile with several UI

prototypes, including map navigation and fisheye menus (Figure 5.9). While the latency of

tuning messages made the external MIDI controller less useful in our tests (it generates too

many events which queue up over time), the ability to modify the application running on the

phone while another user is interacting with that phone appeared to be especially useful.

PHYSICAL INTERACTIONS

Many interaction designers work with microcontrollers when developing new physical

interfaces because they offer access to sensors and actuators. The primary difference to both

desktop and mobile development is that novel physical interaction design involves building

custom hardware, which is resource intensive. Consequently, designers are likely to embed

multiple different opportunities for interaction into the same physical prototype.

Juxtapose supports developing for the Arduino [185] platform and language, a

combination popular with interaction designers and artists. Code for all alternatives is cross-

compiled with the AVR-GCC compiler suite. Juxtapose for Arduino uploads and runs only

one code alternative on one attached Arduino board at a time. When the designer switches

between alternatives, Juxtapose transparently replaces the binary running on the

microcontroller through a bootloader (Figure 5.10).

Figure 5.10: For microcontroller applications, Juxtapose

transparently swaps out binary alternatives using a

bootloader. Tuning is accomplished through code wrapping.

130

Real-time tuning of variables requires a mapping from variable names to types and

storage locations, which is not available in the C language that Arduino uses. Juxtapose

constructs this map using a preprocessing step that transforms a user‘s program before

compilation (Figure 5.11). The user‘s source code is parsed to build a table of global variable

names, types, and pointers to their memory locations. The source is then wrapped in

Juxtapose-specific initialization code, into which the variable table is emitted as C code.

When a variable is tuned (Figure 5.12), the embedded wrapper code uses this table to find a

pointer to the correct runtime variable from its name and changes the value of the memory

location. The wrapper code also contains communication functions to exchange information

between microcontroller and PC through a serial port. Some price must be paid for this added

flexibility. The developer has to relinquish control of a hardware serial port, and application

state is lost whenever alternatives are switched. Snapshots provide a way to save and restore

values across such changes.

Figure 5.11: The pre-compilation processing step extracts

variable declarations and emits them back into source code

as a symbol table.

Figure 5.12: Example application demonstrating live tuning of

color parameters of a smart multicolor LED through the

Juxtapose runtime user interface.

131

5.4.3 WRITING TUNABLE CODE

Ideally, programmers should be able to leverage tuning and alternatives in their project

without changing their source. In practice, tuning is invisible unless modified parameter

values have some observable effect on program execution. In other words, the changed

variable has to be read again and some action has to be taken based on its value after it was

modified at runtime. Thus programmers may have to write additional code that is solely

concerned with making their application tunable.

To help programmers express the logic for runtime updates, callback functions provide a

lightweight harness: whenever a variable is tuned at runtime, the application is notified of the

parameter name and its updated value. In ActionScript, this callback facility is already

provided on the language level by the Object.watch() method. The following example calls

a redraw routine whenever the variable tunable is updated by the Juxtapose tuning UI:

01 var tunable = 5; //@RANGE 0..100

02 var counter; //@IGNORE

03 var callback= function(varName,oldVal,newVal){

04 redraw();

05 return newVal;

06 }

07 this.watch(′tunable′,callback);

Beyond callbacks, protocols to communicate information from the source code to the runtime

interface enable designers to initialize the runtime UI programmatically. Programmers can

specify minimum and maximum values for Number variables through comment annotations

(line 1). They can also hide variables for which tuning is not useful, e.g., counters, from the

variable list (line 2). Code annotations have been used in other projects as a source of meta-

information, e.g., for labeling different experimental conditions for user testing [180].

Juxtapose currently uses code comments to capture annotations; this functionality could

become part of the language definition in an alternative-aware programming language.

5.4.3.1 Hardware Support

Three important benefits can be realized by using a dedicated external controller instead of

mouse and keyboard input for parameter control. First, spatially multiplexed input enables

users to modify multiple parameters simultaneously. Second, with mouse control, tuning is

mainly a hand-eye coordination task — with a dedicated control board, it turns into a motor

task that leaves the eyes free to focus on the application being tuned. Third, moving the

tuning UI to a dedicated controller allows for tuning of interactions that require mouse and

132

keyboard input, e.g., adjusting the rate at which mouse wheel movement magnifies a

document.

Our implementation supports a commercially available USB MIDI device [29] with 16

buttons with LED status indicators, 8 rotary encoders (presently not used) and 8 motorized

faders (Figure 5.13). The controller transmits input events as MIDI control change messages

and receives similar control change messages to actuate sliders and toggle LED feedback.

Actuation of the hardware controller is essential for saving and restoring parameter snapshots

— without actuation it is impossible to recall saved parameter values and edit them

incrementally. To facilitate locating a particular variable‘s control, the mixer was augmented

with a small top-mounted projector which displays parameter names next to the appropriate

controls, a technique inspired by Crider et al. [65]. While a projector setup is unwieldy in

practice, controllers with embedded text LCDs that can offer the same functionality are

commercially available.

5.5 USER EXPERIENCES WITH JUXTAPOSE

To evaluate the authoring approach embodied in Juxtapose, we built example prototypes

using the tool and conducted a summary usability study of Juxtapose for desktop

applications. We recruited 18 participants, twelve male, six female. Participants were

undergraduate and graduate students with HCI experience. Their ages ranged from 20 to 32

Figure 5.13: An external controller enables rapid surveying of multidimensional spaces.

Variables names are projected on top of assigned controls to facilitate mapping.

133

years. All but one participant had at least working knowledge of procedural programming

and all had at least some expertise in interaction design.

5.5.1 METHOD

Evaluation sessions lasted approximately 75 minutes. Participants were seated at a

workstation with mouse, keyboard and MIDI controller. After a demonstration of Juxtapose,

participants were given three tasks. The first task was a warm-up exercise to modify a grid

animation reacting to mouse movement, adapted from the book Flash Math Creativity [206].

Participants were asked to make changes that required both code alternatives and tuning.

The second task was a within-subject comparison that asked participants to adjust four

parameters of a recursive tree-drawing routine to match four specific tree shapes (Figure

5.14). The provided code was also adapted from Flash Math. For two trees, this was

accomplished using the full Juxtapose interface. For the other two, participants were given

the same editor without the possibility of creating alternatives or tuning. Order of assignment

between Juxtapose and control conditions was counterbalanced and a random tree order was

generated for each participant.

The third task asked participants to work on the mapping scenario introduced earlier.

They were provided with a working ActionScript program that loaded a map containing 28

different layers of information (e.g., land areas, parks, local streets, local street names,

highways). Participants were given 30 minutes to create two map navigation alternatives.

They were then asked to present their maps to a researcher. Documentation contained

examples for how to programmatically change visibility of layers, color and brightness, text

size and formatting, and mouse interactions. Participants had to modify and add to these

examples to either hardcode design decisions or to set up tunable parameters through

callback functions in the source code.

Figure 5.14: Study participants were given a code example

that generates images of trees. They were asked to then

match the four tree images shown above.

134

5.5.2 RESULTS

In all tasks, all participants properly applied linked and unlinked editing and tuning, with no

apparent confusion. Participants commented positively on the ease of adjusting numerical

parameters through tuning and the reduced iteration time this permitted. One participant

commented that the explicit management of alternative documents improved on their

existing practice of ―half-hearted attempts to name saved [configurations] with memorable

names.‖ Today, designers commonly use layer sets as a technique for composing alternatives

in graphics. A participant commented that Juxtapose brings this pattern to interaction

design.

TUNING ENABLES MORE PARAMETER EXPERIMENTATION, FASTER

In the tree matching task, participants took an average of 258 seconds (σ: 133 s) to complete

the matching in the control condition, and an average of 161 seconds (σ: 82 s) to complete the

task with Juxtapose. This difference was significant (one-tailed, paired Student‘s t-test; p <

Figure 5.15: Study participants were faster in completing the

tree matching task with Juxtapose than without.

Figure 5.16: Study participants performed many more design

parameter changes per minute with Juxtapose than without.

0

100

200

300

400

Tree 1 Tree 2 Tree 3 Tree 4
se

co
n

d
s

Tree Matching Task:
Mean Completion Times by Tree

Control

Juxtapose

0

10

20

30

40

Histogram of Parameter Changes

Juxtapose Tuning
Interface

Edit-Compile-Test
Cycle

T
ri

al
s

(2
 e

ac
h

 p
er

 p
ar

ti
ci

p
an

t)

Changes per Minute

135

0.01). When looking at completion times by tree (Figure 5.15), a large discrepancy for trees

three and four becomes apparent. For these trees, participants quickly narrowed in on the

approximate shape but frequently had trouble minimizing the remaining visual disparity

when they could no longer reason about how to proceed toward the goal. Participants then

often broadened their search in parameter space and diverged from the solution while looking

for the right parameters to adjust. We believe that Juxtapose outperformed the control

condition here because the penalty for an uncertain, diverging move was much smaller — the

result could immediately be observed and corrected.

To quantify the cost of making a change, we investigated how many parameter

combinations participants explored. In the control condition, on average, participants tested

2.60 parameter combinations per minute to arrive at matches (σ: 0.93; we counted each

execution after changing source as one combination). In contrast, using Juxtapose,

participants executed the Flash file only once, and generated parameter changes through the

tuning interface. Here participants explored 64 combinations on average (σ: 80; we counted

each variable change sent to Flash as a tuning event). The external MIDI controller generated

many input events and one might contend that our definition of parameter change over-

estimates the number of perceptually different states explored by users. We note that

participants adopted a wide range of tuning strategies — some exclusively typing in numbers

in the tuning interface, others using multiple sliders simultaneously. This resulted in a wide

spread of parameter changes per minute for Juxtapose (Figure 5.16), but even participants at

the lower end of the histogram explored an order of magnitude more states than participants

in the control condition.

ALTERNATIVES & TUNING PROVIDE VALUE, AT A PRICE

In our mapping task, many participants began by adding instrumentation code to the

provided framework to make map attributes tunable at runtime. While hard-coding design

choices into source code would have been easier from a programming perspective,

participants spent extra effort to make variables tunable so they could experiment at runtime.

Two participants mixed strategies, making some parameters tunable while setting others in

code in different alternatives when they were sure about their desired values. For example,

one participant hard-coded a higher initial magnification factor in the pedestrian map

interface.

Most participants preferred to set the ranges for Number variables in source code, not in

the runtime interface. Only one participant used the runtime interface for this purpose. A

136

possible explanation is that reasoning about ranges has to do with how a variable is used in

the source so participants were more inclined to express ranges there.

SUGGESTIONS FOR IMPROVEMENT

The map task also uncovered a number of usability shortcomings. In multiple instances,

participants closed the runtime window to change a line of code and recompile, discovering

that their runtime parameter settings from the last execution were gone. To address this,

Juxtapose could automatically save the last parameter values in a snapshot when the runtime

window is closed.

Participants also wished for a larger range of variables to access — for the study, only

variables declared in the main application class and variables of the root object of the visual

hierarchy were accessible for tuning. Participants thus had to introduce intermediate

variables to influence other graphical objects. It would be preferable to have a ―tuning mode‖

for direct manipulation of all graphical objects, extending ideas introduced in SUIT [203].

Many participants expressed frustration at the lack of search and undo in the source

editor. Both could clearly be added. Multiple participants also felt that it was overly onerous

to properly write the application callbacks that make a design tunable. This can be addressed

in two ways. Directly modifying object fields can be handled by making all fields tunable, not

just global variables. More complex parameter mappings however will still require callbacks:

producing these callbacks can be supported through a code generation wizard.

5.6 LIMITATIONS & EXTENSIONS

Juxtapose focused on exploring alternatives of user interfaces that were programmatically

defined within a single file of source code. The design choices made during the development

of Juxtapose represent one particular point in a larger space of tools for explorative

programming. In this section, we discuss assumptions made in our current design and

highlight limitations of our implementation. Following Fitzmaurice‘s design space for

graspable interfaces [78], we summarize the most salient design decisions in Figure 5.17. This

design space is not meant to be exhaustive — it covers the decision points encountered

during prototyping and development. Nevertheless, the table suggests additional techniques,

such as automatic generation of alternatives, which may be a fruitful area for future work.

137

5.6.1 WILL DESIGNERS REALLY BENEFIT FROM LINKED SOURCES?

The efficacy of linked editing in Juxtapose rests on the assumption that interaction designers

create multiple alternatives of a common code document, where individual alternatives only

differ in parameter settings and small sections of code. Experimenting with code in this

manner only covers part of the solution space for a given problem. Different solution

approaches may be based on distinct implementations. Alternatives as discussed in this paper

explore options within one particular solution strategy. Are alternative designs related

enough in practice to benefit from linked editing and tuning?

Figure 5.17: A design space for exploring program

alternatives. Choices implemented by Juxtapose are shown

with a shaded background.

138

Beyond evidence from our formative interviews, the book Flash Math Creativity [206]

provides detailed examples of source code experimentation by professionals: 15 Flash

designers share how they create computational designs in 56 projects. Each project starts

from a single idea, e.g., animating geometric grid structures. The designers then show how

they modified the initial source to explore the design space. 12 of 15 designers showed

multiple alternatives for their projects (mean: 10.2 alternatives per project; range: 3 to 23). The

difference between these alternatives is usually small: a change to a line of code to load

different graphics, alterations to parameter values, or substitutions of function calls.

5.6.2 IS TUNING OF NUMBERS AND BOOLEANS SUFFICIENT?

Juxtapose‘s runtime tuning focuses on direct manipulation of Boolean and Number types.

Would designers benefit from more expressive abstractions and additional functionality in

the tuning interface?

An underlying assumption in this work is that developers both produce the application

and tune it. If they desire a more complex mapping, e.g., a logarithmic parameter scale, they

may express this mapping in the source. Locating additional functionality in the source itself

may be more useful since logic expressed in the tuning UI is not available when the

application is run outside Juxtapose. This assessment changes if alternatives and tuning

options are used by a third party, e.g., during participatory design sessions. In this case it

would make sense to imbue the runtime interface with more flexibility to let users express a

more complete set of modifications without editing the program source, e.g., by providing

rich widgets for commonly used complex data types such as colors or coordinates.

5.6.3 ARE CODE ALTERNATIVES ENOUGH?

Perhaps the most important limitation is that Juxtapose does not offer support for managing

multiple alternatives of graphical assets. Interface design is concerned with both look and feel

— graphics and behavior. Many popular user interface authoring tools today follow a hybrid

authoring approach, where graphical appearance is edited through visual direct manipulation,

while behavior is specified in source code (e.g., Flash [1], Director [6]). We believe Juxtapose

is a first step towards an integrated authoring environment that offers management of

alternatives across graphics and code. Future research should investigate to what extent it is

possible to offer a coherent method of exploring alternatives for both, in a single tool. The

most relevant prior work for exploring graphical alternatives is Terry‘s work on embedding

alternatives for graphics manipulations into a single canvas [242], and research on editable

139

graphical histories [153,236]. However, a naive crossproduct of Juxtapose‘s linked editing and

graphical alternative or history techniques is unlikely to work, because it would likely

overburden the user with too many inconsistent methods of making choices. The goal of

future research should be to find a single, ―simple-enough‖ mental model.

5.6.4 ALTERNATIVES FOR COMPLEX CODE BASES

Another open question is how an alternative-aware editor could be extended to handle large

software projects. Juxtapose targeted UI prototypes, for which interaction logic is frequently

authored in a single source file today. If the goal is not the design of a new UI, but the

augmentation of an existing program, designers may have to contend with large existing code

bases. For example, a software engineer at Adobe reported that to try alternatives for a new

feature in a large authoring tool, he would have to check out several thousand files into

independent workspaces, and manage any changes between alternatives manually [94].

As an interaction technique, we have envisioned the use of hierarchical tabs where the

top level identifies the alternative, and a lower level identifies the file within the

alternative.The primary challenge will be to reduce the potential complexity stemming from

dealing with multiple alternatives in the authoring interface. As an implementation strategy,

it would be interesting to consider to what extent virtualization technology can be harnessed

to quickly create independent copies of complex applications and system configurations that

are adequately isolated from each other.

5.6.5 SUPPORT EXPLORATION AT THE LANGUAGE LEVEL

Juxtapose chose to implement support for runtime tuning at the library level — the source

language, ActionScript in the case of Juxtapose, remained unchanged. Juxtapose shares this

approach with prior work like Amulet [190]. Operating as a library has the advantage that

Juxtapose can target a widely used language; it has the drawback that the program has to be

explicitly changed to include library support. More importantly, the library has limited

control over program execution at runtime. For example, when running multiple alternatives

side by side, it is not possible to pause execution of one application as it loses focus — all

applications run in parallel, even if interaction with them is sequential.There are two possible

ways for future research to extend the reach of runtime exploration:

1) augment an existing programming language with additional language constructs

2) develop a new language to provide explicit developer control over alternatives and

variable parameter spaces.

140

Terry‘s Partials project [239: Appendix B] was an exploration of the first option. He

augmented the Java language with the keywoard ―partial‖ which could be used to decorate

variable definitions to gain runtime control over those variable values. It is worthwile to

explore what benefits an entirely new language targeted at exploration could provide.

5.6.6 INTEGRATE WITH TESTING

A final direction worth pursuing in future work is to extend parallel editing and tuning to

support user testing of alternatives. A particularly promising application domain would be

the authoring of user interfaces for web applications, since online deployment could provide a

way to rapidly gather empirical data on user preferences for different alternatives. Large web

sites already routinely test alternatives of new features by running controlled bucket

experiments: a small percentage of site visitors are exposed to a new proposed feature or

layout, and results (time spent on site, purchases made) are compared with the control

condition [16]. An interesting an as-of-yet unexplored research question is to what extent

such comparative testing with remote users is possible during earlier prototyping stages.

5.7 SUPPORTING ALTERNATIVES IN VISUAL PROGRAMS

How might support for alternative behavior transfer from the textual programming domain of

Juxtapose into visual authoring environments such as d.tools? Following our implementation

of Juxtapose, we examined to what extent the advantages of defining and editing multiple

alternatives can be realized within d.tools. We have not yet investigated how to transfer

variable tuning; partially because variables play a less prominent role within d.tools projects.

Because d.tools focuses on user interfaces with custom hardware, parallel execution of

alternatives is less likely to be useful. We therefore focused on expressing and managing

alternatives in the editor, but only support executing one alternative at a time.

What level of abstraction should alternatives operate on? Juxtapose manages alternatives

at the file level. For visual diagrams, this choice is also possible, but less compelling. A

prototype implementation of file alternatives in d.tools suggested that making sense of the

differences between alternative files is harder for visual programs than for textual ones.

Specifically, changes in the visual gestalt of the diagram are not necessarily related to changes

in the functionality expressed by the diagram. Rearranging states in a d.tools diagram changes

appearance but not logic. We therefore sought ways to express alternatives within a single

diagram, at the state level.

141

Designers can introduce state alternatives in d.tools to define both appearance and

application logic. An alternative container (Figure 5.18, Figure 5.19) encapsulates two or more

states. State alternatives are created in a manner analogous to the Juxtapose editor: designers

select a state and choose ―Add Alternative‖ from its right-click context menu. The original

state (with all defined output such as screen graphics) is duplicated and both states are

placed into an alternative contained. To express that the incoming transitions remain the

same, regardless of which alternative is active, the original state‘s incoming connections are

rerouted to point to the encapsulating container. To define which of the alternative states

should become active when control transfers to an alternative container, the container shows

Figure 5.18: Schematic of state alternatives in d.tools:

alternatives are encapsulated in a common container. One

alternative is active at a time. Alternatives have different

output and different outgoing transitions.

Figure 5.19: Screenshot of a d.tools container with two state

alternatives. In the right alternative, screen graphics have

been revised.

142

radio buttons, one above each contained state. Outgoing transitions are not shared between

alternatives: each state can thus define its own set of target states and transition events. To

reduce visual clutter, only outgoing transitions of the active alternative are shown; other

outgoing transitions are hidden until that state is activated.

State alternatives support more localized changes than Juxtapose‘s code alternatives. If

alternatives are defined for more than one state, managing correspondences between the

different alternatives is currently cumbersome. Support to combine different alternatives into

coherent alternative sets is needed and should be addressed in future work. State alternatives

have been evaluated in laboratory studies as part of the d.note project on revising d.tools

diagrams, which will be described in the next chapter.

