
143

CHAPTER 6 GAINING INSIGHT THROUGH FEEDBACK

Iterative design proceeds in cycles of creating prototypes, testing what was created, and

analyzing the obtained feedback to drive the next design. The ultimate purpose of a prototype

is thus to elicit feedback that can inform future designs. If iteration based on feedback is a

central activity of design, then tools should include functionality to explicitly support

capturing, organizing, and analyzing feedback obtained from a particular prototype. This

chapter presents two approaches to make prototyping tools feedback-aware: capturing and

organizing video data from prototype test sessions, and managing revisions and change

suggestions in visual storyboard diagrams.

6.1 FEEDBACK IN USER TESTING: SUPPORTING DESING-TEST-

ANALYZE CYCLES

Video recordings of prototypes in use can provide critical usability insights and aid in

communicating these insights to other team members, but working with usability video can

be prohibitively time consuming [179]. Our fieldwork indicated that, even though video

recording of user sessions is common in design studios, resource limits often preclude later

analysis of this data. Video is recorded, but rarely used after the fact. This section introduces

techniques that radically shorten the time required to review usability test data of physical

prototypes to unlock some of the latent value of usability videos for design teams. The d.tools

Figure 6.1: d.tools supports design, test & analysis

stages through integration with a video editor.

144

video suite integrates support for design, test, and analysis of prototypes in a single tool

(Figure 6.1). The guiding insight is that timestamp correlation between recorded video and execution

event traces of the prototype can provide access from the video to the model, and vice versa.

The d.tools video suite adds two usage modes to the d.tools environment: test mode,

which records live video and an event trace of the test; and analysis mode, which provides

access to the recorded data from one or more test sessions and introduces interaction and

visualization techniques that enable rapid video querying. The following sections describe

each mode in turn.

6.1.1 TESTING PROTOTYPES

After completing construction of a prototype, when seeking to gather feedback from others,

designers switch to test mode. In test mode, d.tools records live video and audio of user

interactions with the prototype — important for understanding ergonomics, capturing user

quotes, and finding usability problems (Figure 6.2). During a test, a video camera (Figure

6.2A) is aimed at the tester and the prototype (Figure 6.2B). The interaction logic of the

prototype is defined by a particular storyboard (Figure 6.2C). As in design mode, input from

the prototype causes state transitions in the storyboard and corresponding output defined in

states is shown on the prototype. In addition to this normal functionality, all device events

and state transitions are saved in a time stamped log for video synchronization. Live video

from the camera is recorded in a video editor (Figure 6.2D & E). The live video stream is

augmented with event and state transition metadata in real-time. As events and transitions

Figure 6.2: Testing a prototype built with d.tools: A camera (A) is aimed at the tester and

the physical prototype (B), which is driven by a storyboard (C) in d.tools. Live video of the

test is recorded in the video editor (D) and annotated with events and state changes (E).

Designers can add additional events to the record with a control console (F).

145

occur during a test, they are visualized in several annotation tracks in a timeline display

(Figure 6.3).

One row of the timeline corresponds to the active state of the storyboard at any given

point in time (Figure 6.3A). To clarify correspondence between storyboard states and video

segments, state outlines in the editor are color coded, and the same color scheme is used for

timeline segments. A second row in the timeline displays hardware input events. Three types

of hardware events are displayed. Instantaneous events, such as a switch changing from on to

off, appear as short slices on the timeline. Events with duration, such as the press and release

of a button, show up as block segments (Figure 6.3B). Lastly, continuous events, such as

slider movements, are drawn as small line graphs of that event‘s value over time (Figure 6.3C).

In addition to automatically generated timeline events, the designer can also explicitly

add markers during a test session on an attached video control console (Figure 6.2F). The

console enables designers to quickly mark sections for later review (e.g., interesting quotes or

usability problems). The experimenter‘s annotations are displayed in the video view as a

separate row on the timeline.

Figure 6.3: The video recording interface in test mode. A: Active states at any point in

time are encoded in a timeline view. B: Discrete input events show up as instantaneous

events or press/release pairs. C: Continuous input data is visualized in-situ as a small

graph in the timeline.

146

6.1.2 ANALYZING TEST SESSIONS

Analyze mode allows the designer to review the data from one or more user test sessions. The

video view and storyboard editor function in tandem as a multiple view interface [41] into the

test data to aid understanding of the relationship between the user experience and the

underlying interaction model (Figure 6.4). d.tools supports both single user analysis and

group analysis, which enables designers to compare data across multiple users.

6.1.2.1 Single User Analysis

Single user mode provides playback control of a single test session video. The timeline

visualization of collected metadata shows the flow of UI state and data throughout that

session. d.tools speeds up video analysis by enabling designers to access interaction models

through the corresponding video segments and to access video segments from the interaction

model, facilitating analysis within the original design context. In addition to this dynamic

search and exploration, the storyboard also shows an aggregation of all user interactions that

occurred during the test: the line thicknesses of state transitions are modified to indicate how

often they were traversed (Figure 6.5). This macro-level visualization shows which

transitions were most heavily used and which ones were never reached.

Figure 6.4: In analysis mode, a dual-screen workstation

enables simultaneous view of state model and video editor.

147

VIDEO TO STORYBOARD

During video playback, a dynamic visualization of transition history is displayed in the d.tools

storyboard. The state that was active at the current point in time of the video is highlighted.

d.tools also animates moving trail along the state transitions, indicating which state a user

Figure 6.5: Line thickness in analysis mode shows how many

times a given transition was taken.

Figure 6.6: Two query techniques link storyboard and video.

A: Selecting a video segment highlights the state that was

active at that time. B: Selecting a state in analyze mode

highlights the corresponding video segment(s).

Figure 6.7: Designers can query by demonstration:

Generating input events in analyze mode filters recorded

video so that only those sections where similar events were

received are shown.

148

was coming from, and which state will become active next. This window into the chronology

of interactions provides a visual reminder of context. Selecting any state segment in the

timeline moves the play head to that segment and, as a result, highlights the corresponding

state in the storyboard (Figure 6.6A)

STORYBOARD TO VIDEO

To query video using the interaction model, the designer can select a state in the storyboard

— the recorded video is then filtered such that only segments where the user was in the

corresponding state are highlighted in the timeline view and played (Figure 6.6B). In addition

to querying by selecting states, designers can query for video segments in which certain input

components were used through a query-by-demonstration technique: manipulating a hardware

component on the physical prototype (e.g., pushing a button or moving a slider) causes the

corresponding input event category to be selected in the video view (Figure 6.7). Designers

can also select multiple categories by manipulating multiple hardware components within a

small time window. Thus, the designer can effectively search for a particular interaction

pattern within the video data by reenacting the interaction on the prototype itself.

6.1.2.2 Group Analysis

Group mode collects data from multiple test sessions of a given storyboard (Figure 6.8). The

timeline now aggregates flows for each user. The video window displays an n × m table of

Figure 6.8: Group analysis mode aggregates video and event data of multiple user

sessions into one view.

149

videos, with the rows corresponding to the n users, and the columns corresponding to m

categories (comprised of states, hardware events, and annotations). Thus, a cell in the table

contains the set of clips in a given category for a given user. Any set of these clips may be

selected and played concurrently. Selecting an entire row plays all clips for a particular user;

selecting an entire column plays all clips of a particular category. As each clip is played, an

indicator tracks its progress on the corresponding timeline.

6.1.3 IMPLEMENTATION

The d.tools video editor is implemented as an extension to the VACA video analysis tool [54].

The video viewer is implemented in C# and uses Microsoft DirectShow technology for video

recording and playback. Synchronization between the storyboard and video views is

accomplished by passing XML fragments over UDP sockets between the two applications. As

video recording and playback is CPU-intensive, this separation also allows authoring

environment and video editor to run on different machines. DirectShow was chosen because

it allows synchronized playback of multiple video streams, which is needed for group analysis

mode. The use of Microsoft APIs for video processing limits use of d.tools testing and analysis

modes to Windows PCs.

6.1.4 LIMITATIONS & EXTENSIONS

The d.tools video suite introduces ways to integrate the prototype authoring environment

and a video review tool for analyzing user test sessions. The focus on rapid review of test

sessions of a single prototype limits the utility of d.tools video functions in some important

areas, which we review in this section.

6.1.4.1 No Support for Quantitative Analysis

Analysis in formal user testing often involves quantifying observations and computing

statistics for those observations. In d.tools, video analysis so far is restricted to accessing and

reviewing video segments. The introduced interaction techniques shorten the time required

to access the right parts of the video. We hypothesize that tools could further aid designers

by extracting relevant statistics for the test automatically.

Two complementary strategies to support more quantitative analysis suggest

themselves: the first is to automatically extract data from the recorded test (e.g., state dwell

statistics — how long did users spend in each state, which states were never reached). The

second is to provide the reviewer with better tools to conduct such analyses manually. An

150

example of a more fine-grained analysis approach is Experiscope [97], a tool for analyzing user

tests of mouse- or stylus-based interaction techniques. Experiscope can both visualize input

event data well as produce aggregate reports of event frequency and duration. As an initial

step into this direction, d.tools visualizes how many times a transition was taken by changing

transition line thickness in the diagram. However, it is not currently possible to extract the

precise number of times the transition was taken, or to derive a similar figure for the number

of times a state was active during a test.

6.1.4.2 Limited Visibility of Application Behavior During Test

d.tools video records a single stream of live video from a digital camera. Recording how a

device was handled is especially important for devices with new form factors, as ergonomics

and questions about device control layout may be part of the test. This focus on embodied use

of a device during a test comes at a price: it is not always possible to see what happened on

the screen(s) of the tested prototypes in live video. Linking the video to the state diagram

enables the tester to see which state the device was in at any given time. However, states

present only a static view of the application. Dynamic animations scripted in d.tools are not

visible — reviewing these may be important as well. One possible solution suggested by

commercial GUI testing applications such as Silverback [4] is to record multiple video

streams of both live video and screen output and to then composite those streams into a

single video feed.

6.1.4.3 Cannot Compare Multiple Prototypes in Analysis Mode

The video spreadsheet view enables comparison of multiple test sessions by multiple users,

but only for a single prototype. As the previous chapter has argued, exploration of design

alternatives is an important practice and should therefore be supported in analysis tools as

well. We see two separate opportunities for further research: 1) enabling comparative testing

of multiple, simultaneously developed alternatives; 2) supporting comparison of prototypes

across different design iterations.

Tohidi and Buxton [243] note that testing multiple prototypes is preferable to testing a

single prototype, since users will feel less pressured to be ―nice‖ to experimenters and can

draw comparisons between prototypes. In addition, if prototypes are more refined and the

designer has concrete hypotheses in mind, formal comparative testing is required to support

or reject these hypotheses. For traditional GUI interactions, tools that support such

comparative analysis of alternatives exist. Experiscope [97] enables testers to visually

151

compare event traces of multiple treatment conditions side-by-side. However, existing tools

such as Experiscope do not link the recorded trace back to the source of the application being

tested. It is an open question how tools can show video, event traces, and software models for

multiple alternative designs simultaneously without overwhelming the designer with

complexity.

A separate question is how one might support the comparison of different iterations of a

given project over time. In the iterative design-test-analyze paradigm, subsequent iterations

are informed by what was learned before. Testing tools should offer support for checking

whether the feedback collected during prior iterations was properly acted on in later

iterations and if identified issues were in fact resolved.

6.1.4.4 Limited Query Language

An additional limitation of d.tools video analysis is that the query language over states and

events is rather primitive at the present time. The queries that can be executed select

segments from single video files based on states or input events. A natural extension would be

to enable testers to specify more complex, and thus more useful, queries. Badre suggests using

regular expressions to filter user events [39]. We are skeptical whether regular expressions

are accessible to our target audience. An alternative approach would be to use a textual query

language, such as SQL, and then building GUI tools for specifying queries in that language.

Interactive query builders are common for expressing SQL queries in database applications.

6.1.4.5 Interaction Techniques Have Not Been Formally Evaluated

The introduced interactions have not been evaluated in a formal user study. Their efficacy in

real design contexts has not been established, although the rapid video query techniques have

received positive comments from professional designers in informal conversations and at

presentations to professional design conference attendees.

152

6.2 CAPTURING FEEDBACK FROM OTHER DESIGNERS: D.NOTE

Interaction design in teams oscillates between individual work and team reviews and

discussions. Team reviews of user interface prototypes provide valuable critique and suggest

avenues forward [189:pp. 374-5]. However, changes proposed by others can rarely be realized

immediately: often the proposer lacks the implementation knowledge, the changes are too

complex, or the ideas are not sufficiently resolved.

In many areas of design, annotations layered on top of existing drawings and images, or

―sketches on top of sketches‖ [55], are the preferred way of capturing proposed changes. They

are rapid to construct, they enable designers to handle different levels of abstraction and

ambiguity simultaneously [66], and they serve as common ground for members with different

expertise and toolsets [205]. Individual designers later incorporate the proposed changes into

the next prototype. This annotate-review-incorporate cycle is similar to revising and

commenting on drafts of written documents [198]. While word processors offer specialized

revision tools for these tasks, such tools don‘t yet exist for the domain of interaction design.

This section demonstrates how three primary text revision techniques can be applied to

interaction design: commenting, tracking changes, and visualizing those changes. It also

Figure 6.9: d.note enables interaction designers to revise

and test functional prototypes of information appliances using

a stylus-driven interface to d.tools.

153

introduces revision tools unique to interaction design: immediate testing of revisions and

proposing alternatives. The novel revision techniques are embodied in d.note (Figure 6.9), an

extension to d.tools. The d.note notation supports modification, commenting, and proposal of

alternatives (see Section 5.7, p. 140) for both appearance and behavior of information

appliance prototypes. Concrete modifications to behavior can be tested while a prototype is

running. Such modifications can exist alongside more abstract, high-level comments and

annotations.

This section also contributes a characterization of the benefits and tradeoffs of digital

revision tools such as d.note through two user studies. We show that the choice of revision

tool affects both what kind of revisions are expressed, as well as the ability of others to interpret

those revisions later on. Participants who used d.note to express revisions focused more on

the interaction architecture of the design, marked more elements for deletion, and wrote

fewer text comments than participants without d.note. Participants who interpreted d.note

diagrams asked for fewer clarifications than participants that interpreted freeform

annotations, but had more trouble discerning the reviser‘s intent.

In the remainder of this section, we first describe revision principles from related

domains. Current practices of UI designers were described in Section 3.1.2.2. We then

introduce d.note and its implementation. We present results from two studies of revision

expression and interpretation, and conclude by discussing the design space of revision tools.

6.2.1 REVISION PRACTICES IN OTHER DOMAINS

Interaction designers are concerned with both look and feel of applications [189]. Absent a

current, complete solution for both aspects, we can draw on important insights from revising

textual documents, source code, and movie production.

Figure 6.10: Interlinear revision tracking and comment

visualization in word processing.

154

TEXT DOCUMENTS

The fundamental actions in written document revision are history-preserving modification

(insertion, deletion) and commenting. Each operation has two components: visual syntax and

semantics. For example, in word processing, a common interlinear syntax to express deletion

is striking through the deleted text (Figure 6.10); the semantics are to remove the stricken

text from the next version of the document, should the revision be accepted. Original and

modification are visible simultaneously, to communicate the nature of a change. Furthermore,

edits are visually distinguished from the base version so the recipient can rapidly identify

them. When editing documents collaboratively, different social roles of co-author,

commenter, and reader exist [198]. Offering ways to modify the underlying text as well as

adding meta-content that suggests further modification serves these different roles.

SOURCE CODE DOCUMENTS

Source code revision tools, such as visual difference editors, enable users to compare two

versions of source files side-by-side [115] (Figure 6.11). In contrast to document revision tools,

changes are generally not tracked incrementally, but computed and visualized after the fact.

Comments in source code differ from comments in text documents as they are part of the

Figure 6.11: Source code comparison tools show two versions

of a file side-by-side.

Figure 6.12: Video game designers draw annotations directly

on rendered still images (from [55:p. 179]).

155

source document itself. Meta comments (comments about changes) are generally only

available for an entire set of changes.

VISUAL MEDIA

WYSIWYG document editors do not distinguish between source and final document;

authors revise a single, shared representation. For program source code, there is no way to

comment directly on the output of the program, only the source. In contrast, movie producers

and video game developers convey revisions by drawing directly on output, i.e., rendered

video frames (Figure 6.12). Because the revisions address changes in appearance, sketching is

the preferred method of expression. Working in the output domain is a compelling approach,

but has thus far been limited to static content [55].

DESIGN PRINCIPLES

Comparing these three existing domains leads to the formulation of four design principles. UI

revision tools should support the following workflows:

1) History-preserving incremental modification of the source representation

2) Commenting outside the underlying source language

3) Sketching as an input modality for graphical content

4) Revising the output, i.e., the resulting user interface screens, not just the source.

6.2.2 A VISUAL LANGUAGE FOR REVISING INTERACTIONS

Guided by our assessment of current practice and tools available in other domains, we

developed d.note, a revision notation for user interface prototypes. d.note extends the d.tools

authoring environment. In text, the atomic unit of modification is a character. Because visual

program diagrams have a larger set of primitives, the set of possible revision actions is more

complex as well. In d.tools, the primitives are states, transitions, the device definition, and

graphical screens. With each primitive, d.note defines both syntax and semantics of

modification. This section will provide an overview of each modification operation. Concrete

examples of these operations in d.note are provided in Figure 6.13 – Figure 6.17.

6.2.2.1 Revising Behavior

d.note uses color to distinguish base content from elements added and removed during

revision. In d.note and in the following diagrams, states and transitions rendered with a black

outline are elements existing in the base version; added elements are shown with a blue

outline; deleted elements in red.

156

In revision mode, users can add states and transitions as they normally would; these states

and transitions are rendered in blue to indicate their addition (Figure 6.13, Figure 6.14).

Semantically, these states and transitions behave like their regular counterparts.

When users remove states from the base version, the state is rendered as inactive in red.

To visually communicate that a state can no longer be entered or exited, all incoming and

outgoing transitions are rendered as inactive with dashed lines (Figure 6.15). At runtime,

incoming transitions to such states are not taken, making the states unreachable. Individual

transitions can also be directly selected and deleted. Deleted transitions are shown with a

dashed red line as well as a red cross, to distinguish them from transitions that are inactive as

a result of a state deletion (Figure 6.16). As with many source code and word processing tools,

deleting states or transitions that were added in revision mode completely removes the

objects from the diagram.

Figure 6.13: States added

during revision are

rendered in blue.

Figure 6.14: New screen

graphics can be sketched in

states.

Figure 6.15: State

deletions are rendered in

red. Connections are

marked as inactive.

Figure 6.16: Transition

deletions are marked with

a red cross and dashed

red lines.

Figure 6.17: Comments can

be attached to any state.

Figure 6.18: Alternative

containers express

different options for a

state.

157

6.2.2.2 Revising Appearance

Designers can modify graphics by sketching directly on top of them with a pen tool within

the d.tools graphics editor (Figure 6.19). Sketched changes are then rendered on top of the

existing graphics in a state at runtime. In addition to sketching changes to appearance, users

may also rearrange or otherwise modify the different graphical components that make up the

screen output of a state. d.note indicates the presence of such changes by rendering the screen

outline in the state editor in a different color, as showing modification side-by-side with the

original graphics would interfere with the intended layout. The changes are thus not

visualized on the level of an individual graphical widget, but in aggregate.

6.2.2.3 Revising Device Definition

Thus far, we have described changes to the information architecture and graphic output of

prototypes. When prototyping products with custom form factors such as medical devices,

Figure 6.19: Sketched updates to screen content are

immediately visible on attached hardware.

Figure 6.20: Changes to the device configuration are

propagated to all states. Here, one button was deleted while

two others were sketched in.

158

the set of I/O components used on the device may also be subject to change and discussion.

When revising designs in d.note, users can introduce new input elements by sketching them

in the device editor (Figure 6.20). Prior to binding the new component to an actual piece of

hardware, designers can simulate its input during testing using the d.tools simulation tool

(see Section 4.1.3). Currently, the d.note implementation does not support adding output

devices through sketching; we believe adding output within this paradigm would be fairly

straightforward.

6.2.2.4 Commenting

In addition to functional revision commands, users can sketch comments on the canvas of

device, graphics, and storyboard editors (Figure 6.17). Any stroke that is not recognized as a

revision command is rendered as ink. This allows tentative or ambiguous change proposals to

coexist with concrete changes. Inked comments are bound to the closest state so they

automatically move with that state when the user rearranges the diagram.

6.2.2.5 Proposing Alternatives

As covered in Section 5.7 (p. 140), users can introduce alternatives for appearance and

application logic. We summarize the functionality of alternative containers again briefly:

d.tools represents the alternative by duplicating the original state and visually encapsulating

both original and alternative (Figure 6.18). The original state‘s incoming connections are

rerouted to point to the encapsulating container. Each state maintains its own set of outgoing

transitions. To define which of the alternative states should become active when control

transfers to an alternative set, the set container shows radio buttons, one above each

contained state. To reduce visual clutter, only outgoing transitions of the active alternative

are shown; other outgoing transitions are hidden until that alternative is activated.

6.2.3 SCENARIO

The following scenario summarizes the benefits d.note provides to interaction design teams.

Adam is designing a user interface for a new digital camera with on-camera image editing

functions. To get feedback, he drops his latest prototype off in Betty‘s office. Betty picks up

the camera prototype, and tries to crop, pan and color balance one of the pictures that Adam

preloaded on the prototype. She notices that exiting to the top level menu is handled

inconsistently in different screens. She opens up the d.tools diagram for the prototype and,

with d.note enabled, changes the transitions from those screens to the menu state. She next

159

notices that the image delete functionality is lacking a confirmation screen – images are

deleted right away. To highlight this omission, Betty creates a new state and sketches a

rudimentary confirmation dialog, which she connects to the rest of the diagram with new

transitions so she can immediately test the new control flow. Betty is not convinced that the

mapping of available buttons to crop an image region is optimal. She selects the crop state and

creates an alternative for it. In the alternative, she redirects button input and adds a comment

for Adam to compare the two implementations. She also thinks that the current interface for

balancing colors via RGB sliders is cumbersome. Since she does not have time to change the

implementation, she circles the corresponding states and leaves a note to consider using an

alternative color space instead.

6.2.4 THE D.NOTE JAVA IMPLEMENTATION

d.note was implemented as an extension to d.tools. As such, it was written in Java 5 and

makes use of the Eclipse platform, specifically the Graphical Editing Framework (GEF) [24].

d.note runs on both Windows and Mac OS X operating systems.

6.2.4.1 Specifying Actions Through Stylus Input

Because much of early design relies on sketches as a visual communication medium [55],

d.note‘s revision interface can be either operated through mouse and keyboard commands, or

it can be entirely stylus-driven. Stylus input allows for free mixing of commands and non-

command sketches. When using the stylus, strokes are sent through a recognizer (the Paper

Toolkit [258] implementation of Wobbrock et al.‘s $1 recognizer [253]) to check if they

represent a command. Command gestures to create states and alternatives use a pigtail

delimiter [120], to reduce the chance of misinterpretation of other rectangular strokes (Figure

6.21). Gesture recognition takes into account what existing diagram element (if any) a gesture

was executed above. The gesture set contains commands to delete the graphical element

Figure 6.21: The d.note gesture set for stylus operation. Any

stroke not interpreted as one of the first four actions is

treated as a comment.

160

underneath the gesture, and to create new states, transitions and alternatives. All other

strokes are interpreted as comments. In addition to providing drawing and gesture

recognition, d.note extends the d.tools runtime system to correctly handle the interaction

logic semantics of its notation, e.g., ignore states marked for deletion.

6.2.5 EVALUATION: COMPARING INTERACTIVE & STATIC REVISIONS

To understand the user experience of the interactive revision techniques manifest in d.note,

we conducted two studies: the first compared authoring of revisions with and without d.note;

the second compared interpretation of revisions with and without d.note. We recruited

product design and HCI students at our university. Because the required expertise in creating

UIs limited recruitment, we opted for a within-subjects design, with counterbalancing and

randomization where appropriate.

6.2.5.1 Study 1: Authoring Revisions

In the domain of word processing, Wojahn [254] found that the functionality provided by a

revision interface influenced the number and type of problems discussed. Do users revise

interaction designs differently with a structured, interactive tool than by making freeform,

static annotations on a diagram?

METHOD

We recruited twelve participants. Participants each completed two revision tasks: one

without d.note and one with. The non-d.note condition was always assigned first to prevent

exposure to d.note notation from influencing freeform annotation patterns. Each revision task

asked participants to critique one of two information appliance prototypes, one for a

keychain photo viewer, and one for the navigation and management of images on a digital still

camera (Figure 6.22). The tasks were inspired by student exercises in Sharp et al.‘s

interaction design textbook [226]. We counterbalanced task assignment to the conditions.

Participants were seated in front of a Mac OS X workstation with an interactive 21‖,

1600×1200 pixel tablet display (Figure 6.23). Participants could control this workstation with

stylus as well as keyboard and mouse. We first demonstrated d.tools to participants and had

them complete a warm-up menu navigation design (taken from the d.tools evaluation in

Section 4.1.5.1) to become familiar with the visual authoring language. In the condition with

d.note, students were given a demonstration of its revision features, and five minutes to

become familiar with the commands using the warm-up project they completed earlier.

161

Participants were then given a working prototype, run by d.tools and d.note, and were asked

to take 15 minutes to revise the prototype directly in the application using d.note‘s

commenting and revision features.

In the non-d.note condition, participants were given a working prototype along with a

static image of the d.tools state diagram for the prototype. The image was loaded in Alias

Sketchbook Pro [30], a tablet PC drawing application, and participants were given 15 minutes

to draw modifications and comments on top of that image.

The caveat of our design is that ordering of conditions may have affected usage. For

example, participants may have become more comfortable, or more fatigued, for the second

condition. However, we judged this risk to be lower than the potential learning effect of

becoming familiar with the d.note annotation language and then applying it in the non-d.note

Figure 6.22: Participants were given a prototype device with a

color display and button input. They were asked to revise

designs for a keychain display and a digital camera, both

running on the provided device.

Figure 6.23: Participants in study 1 revised d.tools designs on

a large tablet display.

162

condition. After the design reviews, participants completed a survey that elicited high-level

summative feedback in free response format.

RESULTS

We categorized all marks participants made; Table 6.1 summarizes the results. Figure 6.24

shows four examples of diagrams; two for each condition. Most notably, participants wrote

significantly more text comments without d.note than with it. In contrast, deletions were rare

without d.note (4 occurrences); but common with d.note (34 occurrences; 8 out of 12

participants). Finally, revisions with d.note focused on changes to the information

Table 6.1: Content analysis of d.tools diagrams reveals

different revision patterns: with d.note, participants wrote less

and deleted more.

Table 6.2: Most frequently mentioned advantages and

disadvantages of using d.note to express revisions.

163

architecture, while freeform revisions often critiqued the prototype on a more abstract level.

Our results thus corroborate Wojahn‘s finding that the choice of revision tool affects the

number and type of revision actions [254].

The post-test survey asked participants to compare the relative merits of Sketchbook

and d.note. We categorized their freeform written answers (Table 6.2). The two most

frequently cited advantages of d.note were the ability to make functional changes (6 of 12

participants), and to then test proposed changes right away (7 of 12 participants). Three

participants suggested that commenting was more difficult with d.note; two wrote that the

tool had a steeper learning curve. Two participants with a product design background wrote

that using d.note led them to focus too much on the details of the design. In their view, the

lack of functionality in the Sketchbook condition encouraged more holistic thinking.

DISCUSSION

Why did participants write less with d.note? One possibility is that that users wrote more with

Sketchbook because it was easier to do so (Sketchbook is a polished product, d.note a

research prototype). To the extent this is true, it provides impetus to refine the d.note

Figure 6.24: Two pairs of revision diagrams produced by our study participants. Diagrams

produced with Sketchbook Pro in the control condition are shown on the left; diagrams

produced with d.note are shown on the right.

164

implementation, but tells us little about the relative efficacy of a static and dynamic approach

to design revision.

More fundamentally, d.note may enable users to capture intended changes in a more

succinct form than text comments. Four participants explicitly wrote that d.note reduced the

need for long, explanatory text comments in their survey responses: ―[with d.note] making a

new state is a lot shorter than writing a comment explaining a new state‖; ―[without d.note] I

felt I had to explain my sketches.‖ d.note‘s rich semantics enable a user‘s input to be more

economical: an added or deleted transition is unambiguously visualized as such. In d.note,

users can implement concrete changes interactively; only abstract or complex changes require

comments. Without d.note, both these functions have to be performed through the same

notation (drawing), and participants explained their graphic marks with additional text

because of the ambiguity. In our data, inked transition arrows drawn without d.note (44

drawn transitions) were replaced with functional transitions with d.note (78 functional

transitions added; only 3 drawn as comments).

Though participants could have disregarded the revision tools and only commented with

ink, the mere option of having functional revision tools available had an effect on their

activity. This tendency has been noted in other work [55,156] as well.

Why did participants delete more with d.note? While participants created new states and

transitions in both conditions, deletions were rare without d.note. Deletions may have been

implied, e.g., drawing a new transition to replace a previously existing one, but these

substitutions were rarely noted explicitly. We suggest that deletions with d.note were

encouraged by the ability to immediately test concrete changes. Quick revise-test cycles

exposed areas in which diagrams had ambiguous control structure (more than one transition

exiting a state on the same event).

Why were more changes to information architecture made with d.note? The majority of revision

actions with d.note concerned the flow of control: adding and deleting transitions and states.

In the Sketchbook condition, participants also revised the information architecture, but

frequently focused on more abstract changes (Example comment: ―Make [feedback] messages

more apparent‖). The scarcity of such comments with d.note is somewhat surprising, as

freeform commenting was equally available. One possible explanation is that participants

focused on revising information architecture because more powerful techniques were at hand

to do so. Each tool embodies a preferred method of use; even if other styles of work remain

possible, users are driven to favor the style for which the tool offers the most leverage.

165

6.2.5.2 Study 2: Interpreting Revisions

The first study uncovered differences in expressing revisions. Are there similar characteristic

differences in interpreting revisions created with the two tools?

METHOD

Eight (different) participants interpreted the revisions created by participants of the first

study. After a demonstration and warm-up task (as in study 1), participants were shown the

two working prototypes (camera and key chain) and given time to explore. Next, participants

were shown screenshots of annotated diagrams from the first study (Figure 6.24) on a second

display. Participants were asked to prepare two lists in a word processor: one that

enumerated all revision suggestions that were clear and understandable to them; and a second

list with questions for clarification about suggestions they did not understand. Participants

completed this task four times: one d.note and one freeform diagram were chosen at random

for each of the two prototypes.

RESULTS

The cumulative count of clear and unclear revision suggestions for all participants are shown

in Table 6.3. Participants, on average, requested 1.3 fewer clarifications on revisions when

using d.note than when sketching on static images (two-sample t(29)=1.90, p=0.03).

The post-test survey asked participants to compare the relative merits of interpreting

diagrams revised with d.note and Sketchbook. The most frequently mentioned benefits arose

from having a notation with specified semantics (Table 6.4): revisions were more concrete,

specific, and actionable. Frequently mentioned drawbacks were visual complexity and

problems discerning high-level motivation in d.note diagrams.

DISCUSSION

Why did participants ask for fewer clarifications with d.note? When interpreting revised diagrams,

participants are faced with three questions: First, what is the proposed change? Second, why

was this change proposed? Third, how would I realize that change? The structure of the

second user study asked participants to explicitly answer the first question by transcribing

all proposed changes. We suggest that the formal notation in d.note decreased the need for

clarification for two reasons. First, the presence of a formal notation resulted in a smaller

number of handwritten comments, and hence fewer problems with legibility (Example

without d.note: ―Change 6 — unreadable‖). Second, because of the ad-hoc nature of

handwritten annotation schemes in absence of a formal system, even if comments were

166

legible, participants frequently had trouble tying the comments to concrete items in the

interface (Example: ―I have no idea what it means to ‗make it clear that there is a manual

mode from the hierarchy‘. What particular hierarchy are we talking about?‖)

In the survey, participants commented on the remaining questions of why changes were

proposed and how one might implement those changes. We next discuss mitigation

strategies for managing visual complexity and the reported problems discerning high-level

motivation in d.note diagrams.

Visual complexity of annotated diagrams: Visual programs become harder to read as the node

& link density increases. Showing added and deleted states and transitions simultaneously in

the diagram sometimes yielded ―visual spaghetti‖: a high density of transition lines made

Table 6.3: How well could study 2 participants

interpret the revisions created by others? Each

vertical bar is one instance.

Table 6.4: Perceived advantages and disadvantages

of using d.note to interpret revisions as reported by

study participants.

167

distinguishing and following individual lines hard. The connection density problem becomes

worse when state alternatives are introduced because each alternative for a state has an

independent set of outbound transitions.

In response, we already modified the drawing algorithm for state alternatives to only

show outgoing connections for the currently active alternative within an alternative

container. Additional simplification techniques are needed though. One option to selectively

lower transition density in the diagram while preserving relevant context would be to only

render direct incoming and outgoing transitions for a highlighted state and hide all other

transitions on demand.

Capturing the motivation for changes: While many handwritten comments focused on high-

level goals without specifying implementations, tracked changes make the opposite tradeoff:

the implementation is obvious since it is already specified, but the motivation behind the

change can remain opaque. We see two possible avenues to address this challenge. First,

when using change tracking, multiple individual changes may be semantically related. For

example, deleting one state and adding a new state in its stead are two actions that express a

desired single intent of replacement. The authoring tool should detect such related actions

automatically or at least enable users to specify groups of related changes manually. Second,

even though freeform commenting was available in d.note, it was not used frequently.

Therefore, techniques that proactively encourage users to capture the rationale for changes

may be useful.

6.2.6 LIMITATIONS & EXTENSIONS

The d.note project introduced a notation and interaction techniques for managing revisions of

user interface designs expressed as state diagrams. Diagrams can be modified and annotated.

The particular implementation of revision techniques in d.note represents only one point

solution in a larger design space of possible user interface revision tools. The main salient

dimensions we considered during our work are summarized in Figure 6.25. This table reveals

limitations and additional areas of exploration we have not touched upon so far.

168

6.2.6.1 Cannot Comment on Dynamic Behavior

The stylus-driven annotation makes it easy to add comments to both layout and information

architecture. It is not feasible to efficiently comment on dynamic behaviors, as there is no

visual record of these behaviors in the interaction diagram. Recording and annotating video of

an application‘s runtime output is one promising avenue to enable comments on behavior.

d.tools can already record live video of interaction with a built prototype. If this video capture

were augmented with a second stream of screen captures, then designers could sketch

directly onto those video frames. To make such sketches useful for others, they have to be

retrievable from the editing environment. Future work should examine how to associate such

video annotations with the state diagrams and other static source views.

6.2.6.2 Cannot Revise Dynamic Behavior

d.note currently enables designers to express functional changes to the information

architecture of the user interface, and to the screen content of a given state within that larger

architecture. However, changes to scripts are not well supported in that there are no

visualizations to show in detail what has changed, and no interaction techniques to accept or

undo such changes.

Figure 6.25: A design space of user interface revision tools.

The sub-space d.note explored is highlighted in green.

169

6.2.6.3 How To Support Identified Revision Principles for Source Code?

The presented design space finally raises the question how one might offer the benefits of a

revision tool such as d.note for user interfaces specified entirely in source code. The particular

revision techniques of d.note are based on a visual language that shows both user interface

content and information architecture in the same environment. The techniques should

therefore transfer to other visual control-flow tools such as DENIM [171] or SUEDE [148]. But

what about user interfaces that are not programmed visually? Existing source revision

techniques for non-visual programs do not permit designers to comment or revise the output

of their application. Future research should investigate if sketch-based input and annotation

in the output domain of a program can be transferred to such applications.

