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ABSTRACT 

Prototyping is the fundamental activity that structures innovation in design. While 

prototyping tools are now common for graphical user interfaces on personal computers, 

prototyping interactions for ubiquitous computing systems remains out of reach for 

designers. This dissertation contributes concepts and techniques, embodied in software and 

hardware artifacts, to answer two research questions: 

 

1) How can design tools enable a wider range of designers to create functional prototypes 

of ubiquitous computing user interfaces?  

2) How can design tools support the larger process of learning from these prototypes? 

 

Fieldwork at professional design companies showed that design generalists lack the tools to 

fluently experiment with interactions for sensor-based interfaces and information appliances. 

The first contribution of this dissertation is a set of methods, embodied in authoring tools, 

that lower the expertise threshold required to author such novel interfaces. These tools 

enable more designers to author a wider range of interfaces, faster. Visual authoring of control 

flow diagrams and plug-and-play hardware linked to software abstractions for hardware 

components enable rapid authoring of interaction logic. This dissertation also introduces 

programming by demonstration techniques for sensor-based interactions to derive high-level 

events from continuous sensor data streams. 

Enabling the construction of prototypes is an important function of design tools; 

however, it should not be the only goal. Prototypes are just a means to an end — they are built 

to elicit feedback about design choices. The second contribution of this thesis is a set of 

systems that explicitly support the design practices of exploration and iteration. Exploration 

is supported through enabling the creation of multiple, parallel user interface alternatives. 

The design-test-analysis loop of iterative design is supported through techniques for rapid 

review of user test data and techniques for revision of interaction diagrams. The presented 

work is informed by interviews and collaborations with professional interaction designers. 

The tools are evaluated through a combination of laboratory studies and deployments to 

interaction design students at Stanford and in industry. 
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CHAPTER 1 INTRODUCTION 

A decade and half after Weiser‘s call to integrate computation into the fabric of our lives 

[248], the design and evaluation of ubiquitous computing systems remains challenging. 

Difficulties arise partially because of a lack of appropriate design tools: the progress of any 

creative discipline changes significantly with the quality of the tools available 

[51,167,228,229]. As the creation of ubiquitous computing devices moves from research labs 

into design consultancies and product teams, better tools that support user experience 

professionals are needed. My fieldwork at professional design companies showed that design 

generalists currently lack the tools to fluently experiment with interactions for sensor-based 

interfaces and information appliances. 

Prototyping is the pivotal activity that structures innovation, collaboration, and 

creativity in professional design. Design studios pride themselves on their prototype-driven 

culture; it is through the creation of prototypes that designers learn about the problem they 

are trying to solve. Effective prototyping tools aid and improve design space exploration, 

design team communication, and ultimately, lead to better products. The goal of this 

dissertation is to develop principles and authoring methods that guide the creation of more 

appropriate prototyping tools for interaction design. This dissertation contributes to the 

advancement of prototyping tools by considering two different research questions: 

 

1) How can design tools enable a wider range of designers to create functional prototypes 

of ubiquitous computing user interfaces?  

2) How can design tools support the larger process of learning from these prototypes? 

 

Our exploration of the first question is concerned with improving prototyping methods—

finding new ways to model and structure the authoring task. Two complementary methods 

for authoring sensor-based interactions are introduced: a control-flow-based visual authoring 

environment for interaction logic that is based on existing storyboard practices; and a 

programming-by-demonstration environment that helps designers extract useful high-level 

interaction events from continuous sensor data. These methods lower the expertise threshold 

required to author sensor-based interfaces. The tools enable more designers to author a wider 

range of interfaces, faster.  
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The second question concerns the function a prototype plays in the larger design 

process. Prototyping is not primarily about the artifacts that get built: it is about eliciting 

feedback (from the situation, from users, team members & clients). Prototypes embody 

design hypotheses and enable designers to test these hypotheses. Prototyping tools can thus 

become more valuable to designers when they explicitly offer support for eliciting and 

managing feedback. Today, software prototyping tools are mostly agnostic to this role. This 

dissertation contributes techniques for creating and managing multiple alternative design 

solutions, and for managing feedback from both external testers and design team members. A 

brief overview of the contributions and the contents of this dissertation follows. 

1.1 THESIS CONTRIBUTIONS 

This dissertation contributes principles and systems for prototyping user interfaces that span 

physical and digital interactions. The technical contributions are based on evidence collected 

through interviews with designers and online surveys. This evidence suggests that interaction 

designers lack tools to create interfaces that leverage sensor input; to explore alternative 

interface behaviors; to efficiently review interface test videos; and to effectively communicate 

interface revisions. 

The dissertation makes the following technical contributions in three areas: 

1) Techniques for authoring user interfaces with non-traditional input/output 

configurations.  

a. Rapid authoring of interaction logic through a novel combination of storyboard 

diagrams for information architecture with procedural programming for interactive 

behaviors.  

b. Demonstration-based definition of discrete input events from continuous sensor data streams 

enabled by a combination of pattern recognition with a direct manipulation 

interface for the generalization criteria of the recognition algorithms.  

c. Management of input/output component configurations for interface prototypes through an 

editable virtual representation of the physical device being built. This 

representation reduces cognitive friction by collapsing levels of abstraction; it is 

enabled by a custom hardware interface with a plug-and-play component 

architecture. 
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2) Principles and techniques for exploring multiple user interface alternatives.  

a. Techniques for efficiently defining and managing multiple alternatives of user interfaces in 

procedural source code and visual control flow diagrams. 

b. User-directed generation of control interfaces to modify relevant variables of user 

interfaces at runtime. 

c. Support for sequential and parallel comparison of user interface alternatives through parallel 

execution, selectively parallel user input, and management of parameter 

configurations across executions. 

d. Implementations of the runtime techniques for three different platforms: desktop PCs, mobile 

phones, and microcontrollers.  

3) Techniques for capturing feedback from users and design team members on user 

interface prototypes, and for integrating that feedback into the design environment.  

a. Timestamp correlation between live video, software states, and input events generated during 

a usability test of a prototype to enable rapid semantic access of that video during 

later analysis. 

b. Novel query techniques to access such video recordings: query by state selection where 

users access video segments by selecting states in a visual storyboard; and query by 

input demonstration where sections of usability video are retrieved through 

demonstrating, on a physical device prototype, the kind of input that should 

occur in the video. 

c. A visual notation and a stylus-controlled gestural command set for revising user interfaces 

expressed as control flow diagrams. 

 

This dissertation also provides evidence, through laboratory studies and class deployments, 

that the introduced techniques are successful. In particular, the dissertation contributes: 

1) Evidence that the introduced authoring methods for sensor-based interaction are 

accessible and expressive through two laboratory evaluations and two class deployments. 

2) Evidence from a laboratory study that the techniques for managing interface alternatives 

enable designers to explore a wider range of design options, faster. 

3) Evidence from two laboratory studies that an interactive revision notation for interfaces 

leads to more concrete and actionable revisions. 
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1.2 DISSERTATION ROADMAP 

This section presents a brief overview of the structure of this dissertation by chapters. 

1.2.1 BACKGROUND: PROTOTYPES IN THE DESIGN PROCESS (CHAPTER 2) 

The terms design, prototyping, and sketching have many meanings for different audiences. 

Drawing on literature in design research, this chapter stakes out a perspective on design 

practice and how prototyping activities occur throughout the design process.  We briefly 

discuss the history of industrial design as a discipline grounded in the development of 

material goods and the later transfer of principles from industrial design to software [251]. 

While there are many different conceptions of the design process, models tend to agree 

on two core characteristics. First, design is exploratory and emergent — the structure of the 

design problem itself has to be uncovered and this uncovering happens through generating 

concrete design proposals and evaluating them. Designers think with, and communicate 

through artifacts and models [66]. These artifacts are prototypes. Second, generation and 

evaluation of solution proposals exemplifies a recurrent, fundamental interplay between 

divergent and convergent stages in design: first a range of different potential solutions is 

generated, then desirable solutions are selected from that set of alternatives. This cycle 

repeats as the focus shifts from design concepts to implementation strategies. 

The chapter concludes with a survey of literature about the role that prototypes play in 

design and software engineering. This survey leads to a classification of prototypes according 

to three questions: What purpose do prototypes serve? What aspects of a design do they 

address? And what level of functionality should they offer?  

1.2.2 RELATED WORK (CHAPTER 3) 

How are existing tools supporting prototyping activity? What needs are still unmet?  We 

describe the state of the art in professional practice and present an overview of research in 

prototyping tools. Our discussion of related research addresses the following concerns in 

separate sections: 

USER INTERFACE PROTOTYPING TOOLS  

Prior research has introduced environments for graphical user interfaces [155], web site 

information architecture design [171], and context-aware applications [219], among others. 

We review tools that focus on storyboard-based authoring, direct manipulation UI layout, 

and Wizard of Oz simulation [140] of interface functionality.  
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TOOLS SUPPORT FOR PHYSICAL COMPUTING  

Physical computing combines physical and digital interactions. Consequently, tools in this 

area often focus on the interdependence of hardware and software. We review research into 

hardware toolkits and programming models for working with sensors and actuators 

[93,178,185].  

VISUAL AUTHORING 

 Visual authoring or visual programming is thought to offer a lower threshold than textual 

programming. The reality is more nuanced. We provide an overview of visual formalisms and 

visual programming languages. We distinguish between control flow environments [87], data 

flow environments [209], augmented source editors [238], and hybrid environments [1].  

PROGRAMMING BY DEMONSTRATION 

Programming by demonstration promises to lower the barrier of specifying complex logic or 

behavior by demonstrating that behavior to a computer. The crucial step in the success of 

failure of programming by demonstration lies in the generalization step that transforms 

observed examples to general rules. We discuss how previous systems have addressed this 

challenge for programming [67] and computer vision applications [75].  

DESIGNING MULTIPLES 

 If design indeed oscillates between generating multiple alternatives and then selecting 

between these alternatives, design tools should explicitly support working with sets of 

potential designs. We survey existing work in image processing [161,239], rendering [181] and 

information querying [177] that address this challenge.  

CAPTURING & MANAGING FEEDBACK 

How can design tools capture user test data or team feedback on prototypes? We review 

work in document annotation [198] and usability video structuring through event logs 

[39,179]. 

1.2.3 AUTHORING SENSOR-BASED INTERACTIONS (CHAPTER 4) 

This chapter presents two novel prototyping methods that enable faster creation of functional 

interaction designs for sensor-based user interfaces. Myers et al. introduced the terms 

threshold and ceiling to describe use properties of a tool: the threshold is the difficulty of 

learning and using a system, while the ceiling captures the complexity of what can be built 

using the system [191]. d.tools and Exemplar help designers construct functional prototypes 
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by lowering the threshold of required expertise.  The goal of both systems is to enable users to 

focus on design thinking (how an interaction should work) rather than implementation 

tinkering (how hardware and sensor signal processing work).  

d.tools is a software and hardware toolkit that embodies an iterative-design-centered 

approach to prototyping information appliances. d.tools enables non-programmers to work 

with the bits and the atoms of physical user interfaces in concert. Supporting early-stage 

prototyping through a visual, statechart-based approach, d.tools extends designers‘ existing 

storyboarding practices (Figure 1.1). As designers move from early-stage prototypes to higher 

fidelity prototypes, d.tools augments visual authoring with scripting. A hardware platform 

based on smart components that communicate on a shared bus offers plug-and-play use of 

sensors and actuators (Figure 1.2). The architecture exposes extension points for experts to 

grow the library of supported electronic components.  

d.tools provides software abstractions for hardware and offers rapid authoring of 

interaction logic. An additional barrier for practitioners became apparent when we deployed 

d.tools to an HCI class: students often struggled to transform raw, noisy sensor data into 

useful high-level events for interaction design.  Exemplar, an extension to d.tools, bridges the 

conceptual gap between conceiving of a sensor-based interaction and formally specifying that 

interaction through programming-by-demonstration. With Exemplar, a designer first 

demonstrates a sensor-based interaction to the system (e.g., she shakes an accelerometer — 

Figure 1.3). The system graphically displays the resulting sensor signals. The designer then 

marks up the part of the visualization that corresponds to the action — Exemplar learns 

  

Figure 1.1:  The d.tools visual authoring 

environment enables rapid construction 

of UI logic. 

Figure 1.2:  The d.tools hardware 

interface offers a plug-and-play 

architecture for interface components. 

 



7 

appropriate recognizers from these markups. The designer can review the learned actions 

through real-time visual feedback and modify recognition parameters through direct 

manipulation of the visualization. 

Both d.tools and Exemplar have been evaluated through individual laboratory studies 

and deployment to interaction design courses and to industry. In a first-use evaluation of 

Exemplar, participants with little or no prior experience with sensing systems were able to 

design new motion-based controllers for games in less than 30 minutes (Figure 1.4). In our 

collaboration with educational toy company Leapfrog, we provided d.tools hardware 

schematics and software to Leapfrog‘s advanced development group. In return, Leapfrog 

manufactured a complete set of hardware toolkits for us to distribute to a second year of 

Stanford HCI students. In collaboration with Nokia, we also extended d.tools to author 

prototype interfaces for mobile devices. 

1.2.4 CREATING ALTERNATIVE DESIGN SOLUTIONS (CHAPTER 5) 

Creating multiple prototypes facilitates comparative reasoning, grounds team discussion, and 

enables situated exploration. However, current interface design tools focus on creating single 

artifacts. How might interaction design tools explicitly support creation and management of 

multiple user interface alternatives? This chapter discusses two approaches. 

We first investigated how to support exploration in Juxtapose, a source code editor and 

runtime environment for designing multiple alternatives of interaction designs in parallel. 

Juxtapose offers a code editor for user interfaces authored in ActionScript in which 

 

Figure 1.3:  Exemplar combines 

programming-by-demonstration with direct 

manipulation to author sensor-based 

interactions. 

 

Figure 1.4:  This evaluation participant 

used Exemplar to control 2D aiming in a 

game with an accelerometer, and shooting 

with the flick of a bend sensor. 
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interaction designers can define multiple program alternatives through linked editing, a 

technique to selectively modify source files simultaneously. The set of source alternatives are 

then compiled into a set of programs that are executed in parallel (Figure 1.5). Optimizing 

user experience often requires trial-and-error search in the parameter space of application 

variables. To improve this tuning practice, Juxtapose generates a control interface for 

application parameters through source code analysis and language reflection (Figure 1.6). A 

summative study of Juxtapose with 18 participants demonstrated that parallel editing and 

execution are accessible to interaction designers and that designers can leverage these 

techniques to survey more options, faster. To show that general principles of working with 

alternatives carry over into other domains, we also developed Juxtapose runtime 

environments for mobile phones and microcontrollers.  

We then discuss how ideas for exploring alternatives can be transferred from a textual 

programming environment such as Juxtapose to the visual authoring environment of d.tools. 

Visual control flow environments offer the opportunity to present alternative states side-by-

side in the same canvas. They also present some challenges in managing the additional visual 

complexity resulting from capturing multiple behavior options.  

  

  

Figure 1.5:  Side-by-side execution in 

Juxtapose enables rapid comparison of 

alternatives. 

Figure 1.6:  Juxtapose automatically 

generates control interfaces for program 

variables. 
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1.2.5 GAINING INSIGHT THROUGH FEEDBACK (CHAPTER 6) 

If prototyping is about eliciting feedback, then tools that manage the feedback process 

explicitly can help designers gain insight, capture that insight, and act on it. We present two 

methods for integrating feedback capture and management directly into design tools.  

Many prototypes go through team discussions and reviews before being tested. In word 

processing, revision management algorithms and interactions techniques effectively enable 

asynchronous collaboration over text documents. But no equivalent functionality exists yet 

for revising interaction designs. d.note introduces a revision notation for expressing tentative 

design proposals within d.tools. The tool comprises commands for insertion, deletion, 

modification and commenting on appearance and behavior of interface prototypes (Figure 

1.7). d.note realizes three benefits: it visually distinguishes tentative changes to retain design 

history, allows for Wizard of Oz simulation of proposed functionality, and manages display of 

alternative design choices to facilitate comparison. In a laboratory evaluation, twelve design 

students critiqued existing d.tools prototypes with and without d.note. Participants reported 

that the ability to express and test functional changes was a clear benefit of d.note. In a 

follow-up study, eight design students interpreted the annotated diagrams produced in the 

first study, showing that d.note diagrams were less ambiguous to interpret, but that they 

lacked high-level justification when compared to free-form annotation. 

When prototypes are tested with team mates or external users, test sessions are often 

recorded on video. Historically, the hours and days of work required for manual video analysis 

has limited the practical value of these recordings. The d.tools video suite provides integrated 

  

Figure 1.7:  d.note introduces stylus-

driven revision of interaction diagrams. 

Figure 1.8:  The d.tools test & analysis 

functions link video clips of test sessions 

to event traces of the tested prototype. 
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support for testing prototypes with users and rapidly analyzing test videos to inform 

subsequent iteration (Figure 1.8). d.tools logs all user interactions with a prototype and 

records an event-synchronized video stream of the user‘s interactions. The video is 

automatically structured through state transitions and input events. After a test, d.tools 

enables designers to view video and storyboard in parallel as a multiple view interface [41] 

into the test data. Two novel query techniques shorten the time to find relevant segments in 

the video recordings: query by state selection, where users access video segments by selecting 

states in the storyboard; and query by input demonstration, where designers demonstrate the 

kind of input that should occur in the video.  

1.2.6 CONCLUSIONS & FUTURE WORK (CHAPTER 7) 

The final chapter provides a review of the contributions, and offers an outlook to future work 

by reconsidering the fundamental assumptions made in this dissertation. The chapter 

discusses opportunities for different types of authoring tools that result if some of these 

assumptions are modified. 

1.2.7 OVERVIEW: RESEARCH CONCERNS & PROJECTS 

This dissertation explores the space of novel prototyping tools through multiple projects. To 

aid the reader, Table 1.1 shows how research concerns map onto the different concrete 

projects discussed in this dissertation.  

 

Table 1.1: An overview how research concerns map onto the concrete systems 

presented in this dissertation. 
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The research presented in this dissertation was not undertaken by me alone. While I initiated 

and led all of the projects described here, the contributions of a talented group of 

collaborators must be acknowledged — without their efforts, the research could not have 
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CHAPTER 2 BACKGROUND:  

PROTOTYPES IN THE DESIGN PROCESS 

This dissertation proposes novel tools for the prototyping of user interfaces as part of a larger 

user interface design process. Doing so successfully requires understanding underlying 

principles and practices of design. This chapter presents a brief review of different models of 

design and the role prototypes play in the process. 

2.1 DESIGN, DEFINED 

User interface design is informed and influenced by professional design disciplines such as 

product design on one side and by software engineering on the other side. This section 

provides a brief overview of the history of professional design and introduces some 

established models of the design process to motivate the development of design-specific tools.  

2.1.1 WHAT DO WE MEAN BY DESIGN? 

Herbert Simon provided a very broad definition of design as ―devising courses of action aimed 

at changing current situations into preferred ones‖ [230]. Countless competing definitions 

exist. Common to many definitions is the focus on a specific process, with the goal of creating 

plans or models for the creation of new artifacts, which have to fit potentially conflicting sets of 

constraints, requirements, and preferences. To elaborate on these three core characteristics: 

1) Design is a process and has structure — there is a set of core activities designers engage 

in, regardless of the domain of design. 

2) Design is not manufacturing — for physical artifacts, the final realization is done by 

someone else. For software, the division between design and implementation may be less 

clear. In both domains, the end product of design is often a specification that will be 

interpreted and implemented by someone else. 

3) Design has a client and users — it is accountable to external judgment. Different 

stakeholders may have conflicting expectations.  

Design is thus distinguishable as a unique discipline from art (creation which is accountable 

to the vision of the artist); engineering (―the application of scientific and mathematical 
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principles to practical ends‖ [31]); and science (the development of generalizable knowledge 

through observation, experimentation and hypothesis testing). 

A more pragmatic characterization would be that design is what professional designers do. The field 

of design research adopts this perspective and describes the practices of successful 

practitioners to analyze what makes these practices effective. Cross [66], a prominent design 

researcher, argues that design has a ―unique way of knowing‖ and distills four core abilities 

exercised by professional practitioners:  

1) resolving ill-defined problems 

2) adopting solution-focused cognitive strategies  

3) employing abductive or appositional thinking  

4)  using non-verbal modeling media  

In ill-defined or ―wicked‖ [213] problems, the problem formulation itself is not clear at the 

outset and remains to be defined. Because the problem statement itself is not fixed, it is not 

possible to enumerate all possible options or to find an optimal solution. Simon argued that 

design problems therefore cannot be solved by optimizing, they can only be satisficed [230] — 

one can tell an adequate solution from an inadequate one, and make relative judgments of fit, 

but no global optimum exists.  

Designers adopt solution-focused strategies by generating possible solutions first, then 

checking to what extent the generated ideas are adequate for the problem. Cross, reporting on 

a study of designers, summarizes: ―Instead of generating abstract relationships and attributes, 

then deriving the appropriate object to be considered, the [designers] always generated a 

design element and then determined its qualities.‖ [66:100]. Creation comes before analysis, 

and only through the creation of prototypes and other representations is it possible to test to 

what extent a design idea fulfills the design goals.  

This tendency to produce proposals first is an expression of abductive reasoning which, in 

contrast to deductive or inductive thinking, starts with concrete observations and guesses, 

which only later lead to theories about a design space. Making the right guesses or creative 

leaps requires experience.  

Finally, designers tend think with, and communicate through artifacts and models rather 

than written language – sketches, diagrams, models and prototypes are used both to work 

through problems as well as to anchor communication with design team members and other 

stakeholders [66:28]. 
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2.1.2 A SHORT HISTORY OF PROFESSIONAL DESIGN 

Architecture has the claim to being the oldest design discipline. Its focus is on the holistic 

creation of structures that simultaneously satisfy requirements of functionality, economy, and 

aesthetics. Notably the architect is not the one who creates the building itself: her role is to 

transform needs, requirements, and constraints into a suitable plan that can then executed by 

a builder. Professional product design as a discipline emerged as a result of the shift from one-off 

artifacts created by craftspersons to mass production after the industrial revolution. While 

craftsmen would iterate from project to project and slowly evolve a product over time, mass 

production yielded many identical copies [175,237]. Because making changes to the tooling for 

mass manufacturing became more expensive, while marginal cost of production decreased, 

more care and planning was needed before manufacturing commenced to ensure that the 

manufactured product was in fact functional and desirable to consumers. Notable pioneers of 

product design in the first half of the 20th century include Henry Dreyfuss, Raymond Loewy, 

Walter Dorwin Teague, and Norman Bel Geddes. Their autobiographies offer detailed 

accounts of the mid-century industrial design process in North America [73,175,237]. 

Product design as a methodology has since been assimilated by the software industry. 

One of the formative academic works that advocated for this transfer of process was 

Winograd‘s ―Bringing Design to Software‖ [251]. As software is ultimately used by people, its 

user interfaces should be created with the same concern for utility, usability, and satisfaction 

as other artifacts of daily life.  

2.1.3 HOW DO DESIGNERS WORK? MODELS OF THE DESIGN PROCESS 

How do the underlying principles of designerly knowledge introduced in section 2.1.1 find 

expression in designers‘ work practices? The process that evolved from architecture and 

product design is characterized by four core strategies: need finding through user research 

methods to establish constraints, ideation to generate many possible ideas and subsequently 

select promising ideas, prototyping to create concrete models and approximations based on 

those ideas, and iterative refinement based on testing generated prototypes.  A more detailed 

model of this iterative process, as described by Moggridge [189], is shown in Figure 2.1. 

Need finding involves learning about the target users of a new product — what are their 

unmet needs and unresolved pains; what are their motivations? Needs, requirements, and 

constraints may be expressed in narrative form, e.g., as personas and scenarios [64:p. 123]; or 

more formally, e.g., as user and task models [99]. The data gathered from such user research is 
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then used to construct a concrete point of view or framing that encapsulates the goals a new 

design seeks to achieve. Given a framing, designers generate a multitude of concrete 

proposals. Initially, idea generation can take the shape of brainstorming or sketching of 

alternatives. To move from graphical envisioning towards concrete, testable artifacts, 

designers next generate concrete prototypes. These proposals are then compared an evaluated 

— against each other, or against user or stakeholder feedback. The gained knowledge is then 

used to drive the next iteration.  

The process model described above is commonly observed, but by no means canonical. A 

wide-ranging overview of different design methodologies can be found in Jones [135]. Jones 

categorizes these methods and distills an important common thread: design is a sequence of 

divergent steps, where ideas are produced; and convergent steps, where ideas are eliminated. 

Buxton echoes this theme, writing that design alternates between concept generation and 

concept selection [55]. 

2.2 UNDERSTANDING PROTOTYPES 

The prior section established that prototyping is a core activity in design across different 

domains. This section reviews some conceptions of prototypes in design and computer 

science and summarizes the literature on the purpose, role, and place of prototypes.  

 

Figure 2.1: Design process stages according to Moggridge 

[189]. Diagram redrawn by the author. 
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2.2.1 PROTOTYPES, DEFINED 

The notion of a prototype is overloaded and there is no generally agreed upon definition. As a 

broad, inclusive definition, Moggridge regards a prototype as ―a representation of a design, 

made before the final solution exists.‖ [189]. Houde and Hill similarly point to the purpose of 

prototypes as indicators of a future reality, and distinguish between two functions — 

exploration and demonstration [126]. Buchenau and Suri add a third function of prototypes as 

tools for gaining empathy: ―[A]n Experience Prototype is any kind of representation, in any 

medium, that is designed to understand, explore or communicate what it might be like to 

engage with the product, space or system we are designing‖ [52]. Lim and Stolterman 

foreground the role of prototypes as learning vehicles: ―Prototypes are the means by which 

designers organically and evolutionarily learn, discover, generate, and refine designs.‖ [170] 

The above definitions place very little restrictions on the medium of the prototype or the 

attributes of a design it tries to represent. In the software engineering literature, prototypes 

are often defined more narrowly as working models, created in the same software medium as 

the final deliverable. Lichter writes that ―Prototyping involves producing early working 

versions (‗prototypes‘) of the future application system and experimenting with them‖ [166]. 

Connell and Schafer explicitly distinguish software prototypes from — in their view 

insufficient — other modeling media: ―A software prototype is a dynamic visual model 

providing a communication tool for customer and developer that is far more effective than 

either narrative prose or static visual models for portraying functionality.‖ (quoted in [208]) 

In contrast to the software engineering focus on producing functional software, Rettig 

[211] and Wong [255] advocate that user interface prototypes should not be constructed in 

software in early project stages. Both argue for low-fidelity paper-based prototypes. To better 

understand this multitude of viewpoints, this section summarizes prior publications about 

prototypes and prototyping in design in general, and within HCI and software engineering in 

particular. 

2.2.2 BENEFITS OF PROTOTYPING 

Are there concrete, measurable, defensible benefits of using a prototyping-driven design 

approach, as opposed to a more linear approach, e.g., the waterfall model? This section reviews 

experimental and theoretical arguments for the benefit of prototyping. 
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2.2.2.1 Quantifying the Value of Prototyping 

The ideal experimental result in favor of prototyping would be that prototyping leads to 

better design outcomes. However, operationalizing design quality in experimental settings is 

difficult and isolating the impact of prototyping has proven to be problematic for real-world 

design tasks. The most concrete result to date is reported by Dow et al. [72] who found that 

for a constrained experimental design task with a time limit and a concretely measurable 

outcome, participants who built early prototypes and iterated outperformed those who did 

not prototype. Dow‘s experimental task was the mechanical engineering egg-drop exercise —

participants are asked to create a vessel that protects a raw egg from a vertical fall and 

subsequent impact, using a limited set of everyday materials. In a between-subjects design, 

the treatment group, which had to build a testable prototype early and was forced to iterate 

on that prototype, outperformed the control group, in which prototyping was not 

encouraged. In particular, novices unfamiliar with the task who prototyped performed as well 

as experts who did not prototype. 

In the absence of other strong experimental results, a frequently cited benefit by 

proponents is that prototyping leads to earlier identification of problems and blind alleys, 

when it is still feasible to fix them. McConnell summarizes several studies that have shown 

that for software defects, the cost of finding an error increases by an order of magnitude for 

each product phase [183:29], and it appears reasonable to extrapolate similar costs to 

usability and user experience problems.  

2.2.2.2 Cognitive Benefits of Prototyping 

Research in Cognitive Science suggests that the construction of concrete artifacts — 

prototyping — can be an important cognitive strategy to successfully reason about a design 

problem and its solution space. This section presents some arguments for the cognitive 

benefits of prototyping. 

ARGUMENT 1: WE KNOW MORE THAN WE CAN TELL.  

Embodied cognition theory argues that thought (mind) and action (body) are deeply 

integrated and co-produce learning and reasoning [59,60,61]. In this view, ―thinking through 

doing‖ — engaging with ideas on a tangible level — is a more successful strategy for design 

than thinking hard about the problem alone. Why might this be the case? 

Polanyi argues that much of our expertise and skill are ―action-centered‖ and as such not 

available to explicit, symbolic cognition. Polanyi introduced the term tacit knowledge to 
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describe such expertise. A well-known example is the problem of describing to someone else 

how to ride a bicycle. Riding a bike is an action-centered skill, one gained through repeated 

practice and one only accessible as an action in the context of sitting on a bike. Practicing 

designers such as Moggridge [189] argue that much knowledge in design is tacit and that 

designers therefore need to create concrete artifacts to express their tacit knowledge [207]. 

ARGUMENT 2: COGNITIVE ACTIVITY EXTENDS INTO OUR ENVIRONMENT. 

Proponents of distributed cognition argue that what is cognitive extends beyond the individual 

and encompasses the environment, artifacts and other people [123,130]. Hutchins describes in 

detailed case studies how people solve hard problems by offloading tasks into appropriate 

artifacts in their environment. For example, medieval navigation was aided by the Astrolabe; 

airline navigation is a task distributed between pilot, co-pilot, and instruments.  

In this view, designers need concrete artifacts such as prototypes to be more effective in 

their reasoning. Along the same lines, Hutchins also argues that ―material anchors‖ help 

stabilize conceptual knowledge [131]: ―Reasoning processes require stable representations of 

constraints. [...][T]he association of conceptual structure with material structure can 

stabilize conceptual representation.‖  

ARGUMENT 3: ACTIONS IN THE WORLD CAN OUTPERFORM MENTAL OPERATIONS 

Kirsh and Maglio introduced a distinction between pragmatic and epistemic actions [143]: 

pragmatic actions are those that advance us toward a known goal; epistemic actions in 

contrast uncover more information about the goal. Kirsh and Maglio showed, through a study 

of Tetris players, that external actions in the world can be faster or more efficient than mental 

operations. Their study measured the amount of piece rotations performed by novice and 

expert Tetris players, and found that experts rotated their pieces more frequently. Why? 

Because the cost of performing the rotation in the game and then visually comparing the 

shape of the piece with the shape of open gaps on the board was faster than mentally rotating 

and checking for fit. Similar results have been found for the game of Scrabble, where expert 

players rearrange their set of letters to help them reason about possible words that can be 

formed with that set. Constructing concrete prototypes could thus be faster than trying to 

reason about a design problem in the abstract. 

2.2.2.3 Reflective Practice: The Value of Surprise 

Schoen introduced the concept of reflective practice to describe designers‘ activity during 

visualization and prototyping [221]. Reflective practice is the repeated framing and evaluation 
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of a design challenge by working it through, rather than thinking it through. For Schoen, 

successful product and architectural designs result from a series of ―conversations with 

materials.‖ Here, the ―conversations‖ are interactions between the designer and the design 

medium — sketching on paper, shaping clay, building with foam core. The production of 

concrete prototypes provides the crucial element of surprise, unexpected realizations that the 

designer could not have arrived at without producing a concrete manifestation of her ideas. 

Schoen terms this element of surprise ―backtalk‖. The backtalk that artifacts provide helps 

uncover problems or generate suggestions for new designs.  

2.2.2.4 Prototyping as a Teaching Technique 

Prototyping has also been considered teaching technique that seeks to instill better design 

intuitions over time [136]. By continually forcing designers to be faced with the consequences 

of their actions through prototype testing, they are held accountable for their ideas. Designers 

thus develop a better sense for which ideas work and which do not.  

2.2.3 THE PURPOSE OF PROTOTYPING — DESIGN PERSPECTIVES 

What questions do prototypes answer? When and how should they be constructed? This 

section summarizes arguments from product design and human-computer interaction 

research. The subsequent section will present contrasting arguments from software 

engineering. 

2.2.3.1 What Do Prototypes Prototype? 

Houde and Hill [126] classified ways in which prototypes can be valuable to designers. 

Prototypes in their view include ―any representation of a design idea, regardless of medium.‖ 

Their model defines three types of questions a prototype can address: the role of a product in 

the larger use context; its look and feel; and its technical implementation. These questions are set 

up as end points in a triangular, barycentric coordinate design space into which prototypes 

are plotted (Figure 2.2). 
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Role refers to questions about the function that an artifact serves in a user‘s life—the way 

in which it is useful to them. Look and feel is concerned with questions about the concrete 

sensory experience of using an artifact—what the user looks at, feels and hears while using it.  

Implementation refers to algorithms and engineering techniques used to realize functionality 

of a product — ―the ‗nuts and bolts‘ of how it actually works.‖  

For reasons of economy, any given prototype will only address some of these aspects, or 

prioritize some over others. For example, a video clip that shows a ―commercial‖ of an 

envisioned product in use would prioritize its role (Figure 2.2–1); a screen mockup of a new 

graphics application showing menus and toolboxes would prioritize look and feel (Figure 

2.2–2); while a demonstration of algorithms required for that graphics application would 

prioritize implementation. Prototypes that strive to strike a balance and address all three 

questions are labeled ―integration prototypes‖ (Figure 2.2–3). Such prototypes most closely 

approximate the final design and permit testing of the overall user experience, but are also 

most resource intensive to construct. 

2.2.3.2 Experience Prototyping  

Buchenau and Suri [52] introduced the term ―Experience Prototyping‖ to refer to prototyping 

activity that enables stakeholders to gain first-hand experiential understanding of either 

design problems or of proposed solutions. An example of such a prototype given by the 

authors is wearing gloves while operating a consumer electronics device to experience the 

reduced dexterity of older adults. Experience prototypes focus on direct active bodily 

involvement of the designer or client in a constructed situation. Three uses for experience 

prototyping are described: understanding existing use; exploring future situations; and 

communicating designs to others. 

 

Figure 2.2: The Houde & Hill model distinguishes Role, 

Implementation, and Look and Feel functions of prototypes. 

(Diagram redrawn by the author). 
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To understand existing situations that call for better design solutions, experience 

prototyping may involve role playing to gain empathy for target users. As an example, the 

authors cite the redesign of a remote control interface for an underwater camera vehicle. The 

existing experience was prototyped by one designer ―playing‖ the vehicle with a shoulder 

mounted camera, and another designer yelling commands (―move up‖) and watching the 

video feed on a television monitor. 

To explore future situations, Buchenau and Suri advocate creating multiple concrete 

artifacts or repurposing found artifacts and everyday objects. Designers on the project team 

have enough shared context to interpret these objects as stand-ins for future artifacts. For 

example, a pebble might be used to suggest a handheld wireless controller. However, if 

exploration requires input from external users, experience prototypes may have to be more 

specific and functional, as end users don‘t share the same background or conceptual 

framework with the team.  

When communicating design solutions to clients and other external parties through 

prototypes, the intent is frequently to persuade. Such prototypes are often polished and 

complete and can take on the role of a ―living specification.‖ The authors caution that 

prototypes that succeed in conveying a complete experience can easily be mistaken to be a 

complete product.  

2.2.3.3 Inspiration, Evolution, Validation 

In personal communication, Hans-Christoph Haenlein, Director of Prototyping at IDEO, the 

prominent Bay Area design consultancy, described a company-internal three stage view of 

prototyping (Figure 2.3) [100]. In the beginning of a project, many parallel prototypes are 

 

Figure 2.3: The IDEO three-stage model of prototyping: as a 

design project progresses, the number of entertained ideas 

decreases, and prototypes turn from inspiration tools to 

validation tools. Diagram redrawn by the author. 
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generated to get inspiration. Here, prototypes are often very dissimilar from each other to 

explore fundamentally different design options. Later on, a smaller number of ideas are 

iteratively evolved to resolve more focused design questions. Through both phases, project 

specifications are derived from the prototypes. Towards the end of a project, very complete 

prototypes are built to validate the design specification as a whole. Haenlein also makes an 

explicit distinction between prototypes used internally by the design team for exploration, 

and prototypes created for communicating design insights to external clients and other 

stakeholders. 

Buxton [55] draws a distinction between sketches and prototypes. For him, sketches are 

―quick, timely, inexpensive, disposable, plentiful‖; ―they suggest and explore rather than 

confirm‖. Prototypes in contrast are ―didactic, they describe refine, answer, test, resolve; they 

are specific and are depictions‖ [55:140]. While the distinction in nomenclature is unique to 

Buxton, the expressed difference between prototypes used for inspiration and those used for 

experimentation, evolution and validation matches the IDEO model.  

2.2.3.4 Prototyping as Inquiry 

Gedenryd stresses that prototypes are ―inquiring materials‖, that is, materials with a cognitive 

purpose [84]. Many prototyping approaches all share the underlying goal to envision the 

future situation of the designed artifact in use — prototyping is thus a ―situating strategy‖. 

Echoing distinctions drawn by Haenlein and Buxton, Gedenryd distinguishes between 

exploratory prototypes used to familiarize oneself with the problem, and experimental 

prototypes, which probe and test specific design hypotheses. He further distinguishes 

between horizontal relevance (breadth) and vertical relevance (depth) of the functionality 

explored in a prototype. 

As a guideline, Gedenryd advocates that prototypes exhibit a minimalist approach: 

―A good prototype serves its purpose as a basis of inquiry and interactive cognition, while 

being simple to create. This means that it should have the properties required for its purpose, 

and as few other properties as possible. It also means that relevance is always relative to just 

what exactly a prototype will be used for; this determines what properties it will need to 

have.‖ [84:165] 

2.2.3.5 Low-Fidelity Prototypes Might Be Preferable 

Rettig [211] and Wong [255] argue that the resolution or fidelity of a user interface prototype 

should match the level of detail of the questions asked of the prototype. In particular, Rettig 
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advocates against building functional software prototypes of user interfaces early on because 

their surface finish is too high at a time when the general resolution of the project is still low. 

According to Rettig, building functional UI prototypes (―high-fidelity prototypes‖) early on 

squanders design resources and yields the wrong kind of feedback. Particularly, Rettig cites 

four problems:  

1) High-fidelity prototypes take too long to construct and modify. 

2) Testers of the prototype are lead to comment on surface attributes such as typography 

and alignment, when those are not the attributes tested. 

3) The act of constructing a high-fidelity prototype creates emotional investment by 

developers in that prototype, which results in resistance to act on feedback that asks for 

fundamental changes. Similarly, a high-fidelity prototype creates expectations by users 

exposed to the prototype that may be hard to change later. 

4) High-fidelity prototypes are too brittle and have no graceful ―repair strategies‖ if users 

run into bugs. 

As an alternative, Rettig proposes paper prototyping of user interfaces, where interfaces are 

assembled out of different layers of cut out paper strips. A designer simulates the logic of the 

application by rearranging paper strips. Wong is also concerned with the fidelity of UI 

prototypes and suggests taking inspiration from graphic design by creating ―rough‖ UI 

prototypes through sketching and omission of concrete details.  

One fundamental shortcoming of paper-based UI prototyping is that the human 

―computer‖ who rearranges UI elements fundamentally changes the experience of interface 

dynamics. While useful for exploring questions of interface layout, content, and structure, 

paper prototypes are therefore less useful for exploring interactive behaviors in user 

interfaces. 

2.2.4 THE PURPOSE OF PROTOTYPING —  

SOFTWARE ENGINEERING PERSPECTIVES 

This section summarizes publications on prototyping from outside the field of human-

computer interaction and product design. Not surprisingly, software engineering prototypes 

are more frequently concerned with testing implementation strategies than user experience. 

However, the software engineering literature also departs from human-computer interaction 

publications on prototyping in additional ways: prototypes are frequently seen as early 

version of the final software, rather than standalone artifacts to be discarded after testing. In 
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addition, more emphasis is placed on capturing and documenting what questions a prototype 

explored, and what was learned from it. 

2.2.4.1 Exploration, Experimentation, Evolution 

Floyd [79], in an early workshop on prototyping for complex software systems, describes two 

primary goals of prototypes: 1) functioning as ―learning vehicles‖ and 2) enhancing 

communication between developers and users, as developer introspection of user needs often 

leads to inadequate products.  

For Floyd, a software prototype must be functional enough to be demonstrated to users 

with ―authentic, non-trivial tasks.‖ That functionality may either be implemented, or 

simulated. In either case, Floyd assumes that for complex software projects, resource 

constraints only permit one such prototype to be built and tested at a time. Floyd also claims 

that by demonstrating a prototype to users, their expectations of the final system are ―deeply 

influenced‖ so that the designer is committed to the overall outline of the prototype. This 

places the designer in a paradoxical situation: prototypes are constructed to learn, but their 

very construction constrains the extent to act on what was learned by modifying the design. 

This paradox may have been an artifact of the types of applications considered — custom 

software written for individual clients, so that the prototype testers and final users are 

identical. 

Three different purposes of prototyping are distinguished by Floyd (Table 2.1): exploration 

(clarifying requirements, discussing alternatives), experimentation (measuring how adequate a 

proposed solution is), and evolution (adapting an existing system to changing requirements). 

Floyd suggests that prototypes should be expanded into the target system or integrated into 

it — that is, the prototype is an earlier version of the final product. This implies using similar 

production tools for the prototype as for the final deliverable and thinking about modularity, 

both of which may require more time and expertise than the ―quick and dirty‖ prototypes 

Approach Purpose Topic of Investigation 

Explorative Elicit requirements, determine scope and 
different alternatives of computer support 

Requirements 

Experimental Try out technical solutions to meet 
requirements 

Particular solutions 

Evolutionary Continually adapt a system to a rapidly 
changing environment. 

Evolving requirements 

Table 2.1: Three purposes of prototypes according to Floyd [79] (table redrawn from 

Schneider’s summary [220].) 
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advocated by designers, which are created with the expectation of being discarded. 

2.2.4.2 Prototypes as Immature Products 

Riddle [212] states that ―prototyping is an approach to software development that 

emphasizes the preparation of immature versions that can be used as the basis for assessment 

of ideas and decisions.‖ Riddle identifies two ―dimensions of immaturity‖ along which a 

prototype may fall short of complete software: a prototype may offer less than a final, polished 

system in terms of quality (response time, maintainability, robustness), or in terms of 

functionality. While prototypes should be produced quickly, Riddle also stresses that a 

rational, controlled approach to prototype development is needed to preserve modifiability 

and understandability of the produced code, which suggests that the implementation of the 

prototype should be integrated into the main production codebase to some degree. Finally, 

since prototypes are constructed for assessment, Riddle argues that tools should also provide 

ways to instrument prototypes to gather pertinent usage data automatically. 

2.2.4.3 Presentation Prototypes, Breadboards, and Pilot Systems 

Lichter et al. [166] present case studies of prototype use in industrial software development 

and introduce a taxonomy that distinguishes kinds of prototypes, goals of prototypes, and 

prototype construction techniques. Four different kinds of prototypes are distinguished, 

based on the phase of software development they support: 

1) A presentation prototype is used as a persuasive tool to convince a client of the feasibility of 

a project before starting major work on it.  Other authors also describe prototypes as 

persuasive tools, but usually as the outcome of some design process, not its precursor. 

2) A prototype proper is a ―provisional operational software system‖ that is limited to specific 

parts of the user interface or implementation. 

3) A breadboard is designed to clarify implementation problems for the development team 

and does not usually involve end-user feedback. 

4) A pilot system is any software not constructed specifically for experimentation or 

communication, but part of the core project being developed (e.g., an alpha version). 

The purposes of prototyping are adapted from Floyd (exploratory, experimental, and 

evolutionary). Construction techniques are distinguished based on whether functional 

coverage is horizontal across application layers (e.g., user interface only, database only) or 

vertical (e.g., implementing all aspects touched by the shopping cart in an ecommerce 
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system). Lichter et al.‘s review of five real-world case studies showed little consistency in the 

selection of prototyping strategies in the surveyed companies. 

2.2.4.4  Capturing and Sharing Knowledge Gained from Prototypes 

Schneider [220], in investigating the role of prototypes in software engineering, lamented that 

frequently, no systematic effort is made to capture and share the knowledge gained from 

developing and testing prototypes. Because prototypes only examine particular details of a 

future product, they often cannot stand alone and require their developers‘ explanation to 

clarify context and scope: ―The prototype itself is not well suited to indicate what it does well 

or poorly‖.  Schneider therefore argues that the right level of analysis is the ―developer-

prototype system‖ since only the two together can fully capture intent and meaning. 

Documentation for each prototype should thus be systematically captured through design 

tools. 

2.2.5  SYNTHESIS OF THE SURVEYED MATERIAL 

Given the previous review of both human-computer interaction and software engineering 

literature on prototyping, we can now combine the various presented perspectives in to a 

single framework that addresses purpose, aspects, and functionality of user interface 

prototypes. For this dissertation, we will define a user interface prototype as a concrete artifact 

that can be experienced by a user as if it possessed some or all of the interactive qualities of the envisioned 

interface, constructed for the purpose of generating feedback. 

Three high-level goals why designers prototype have been presented (Figure 2.4): First, 

 

Figure 2.4: Why are prototypes constructed in design?  

 



27 

prototypes are built to give the designer experiential insight into some situation that already 

exists [52]. Second, prototyping is a technique to gain information about possible future 

situations [84]. As described by Floyd [79] and Haenlein [100], this stage of prototyping can 

have three different goals: to explore the space of alternatives, to conduct more focused 

experiments comparing two or more options, and to get real-world validation. Third, 

prototypes are used to aid communication between different project stakeholders with 

different ―languages.‖ Within a design team, experts with different realms of expertise use 

prototypes to serve as boundary objects [233] that can bridge language differences and serve 

as a common referent in discussion. For communication with clients, prototypes are 

frequently constructed to persuade the client. 

Three different aspects of a final product can be tested in a prototype (Figure 2.5), as 

described in Houde & Hill [126]: The role a current or future product plays for a users; the 

look and feel of the product, and its implementation strategies. Within the category of look 

and feel, designers further distinguish between ―looks like‖ prototypes that express the 

 

Figure 2.5: What aspects of a product can prototypes 

approximate?  

 

 

Figure 2.6: What kind of functionality can prototypes exhibit? 
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aesthetic, visual, and material qualities of a product, and ―works like‖ prototypes that exhibit 

interactive behaviors.  

Works-like prototypes can either exhibit full functionality, or limit functionality by 

selecting a horizontal or vertical slice of behavior (Figure 2.6). The functionality in a works-

like prototype may or may not share implementation strategies and tools with the final 

product. Thus, four different realization methods are possible: building a working 

implementation with the same toolset as the final product; building a working 

implementation with a different toolset specifically geared towards prototyping; creating a 

lower-fidelity approximation; or simulating the functionality. 

The prototyping tools in this dissertation support the creation of a specific subset of 

prototypes (shown through shading in Figure 2.4–Figure 2.6). The introduced tools focus on 

prototypes created to explore design options or test specific ideas through experiments; these 

prototypes have working interactive behaviors, but are not necessarily comprehensive and are 

expressed in a new, prototype-specific tool, rather than in production-ready code.  

With this particular point-of-view established, we next review related prior research 

into authoring techniques and systems. 

 



29 

CHAPTER 3 RELATED WORK 

Authoring tools and techniques for creating user interfaces have a rich history in human-

computer interaction. They have also been a commercial success — few graphical user 

interfaces are created without the help of UI authoring tools. This chapter first reviews the 

status quo of UI prototyping in industry, and then presents a survey of related research to 

answer three questions: What tools are interaction designers using today to prototype user 

interfaces? What additional tools have been introduced by prior research? What important 

gaps in tool support remain?  

3.1 STATUS QUO: TOOLS & INDUSTRY PRACTICES TODAY 

Before surveying related research, it is useful to understand which tools are used by 

interaction designers today. We will first review tools to build user interface prototypes, and 

subsequently survey tools to gain insight from those prototypes. 

3.1.1 BUILDING PROTOTYPES 

A wide variety of commercial applications are available for prototyping desktop user 

interfaces, and survey data reporting on the use of such tools by professionals is available. In 

contrast, few commercial applications support the creation of UIs that do not target desktop 

or mobile phone platforms, leading today‘s practitioners to appropriate other tools or build 

their own scaffolding for prototyping. This section reviews these two areas in turn. 

3.1.1.1 Desktop-Based User Interfaces 

Myers et al. [195] conducted a survey of 259 interaction designers of desktop- and web-based 

applications. Statistics for the most frequently used tools are reproduced in Figure 3.1. To 

make sense of these tool choices, consider the three different high-level tasks involved in 

creating a user interface prototype. Designers have to define appearance — the graphic design 

of static screens; information architecture — how screens relate to each other; and behavior — 

animations and transitions. We can examine how each of the reported applications supports 

these three tasks: 
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APPEARANCE 

For static screen design, many designers rely either on complex graphics software for 

professionals (Adobe Photoshop and Illustrator) or they appropriate office productivity 

software with vector-graphics layout functions (Microsoft PowerPoint and Visio). It is not 

uncommon for interaction designers to have a background in graphic design, which gives 

them familiarity with professional tools. One factor favoring the use of office productivity 

tools may be their widespread availability on desktop computers, regardless of their 

suitability for the task. 

INFORMATION ARCHITECTURE 

To capture key interaction sequences, PowerPoint is used to create linear walkthroughs from 

screen to screen. Such walkthroughs can describe important paths through an interface, but 

they cannot capture the multiple options usually available to the user at any given point in an 

interface. For more complex structure, dedicated user interface construction tools such as 

Adobe Flash (for dynamic web applications), Adobe Director (for stand-alone applications), 

and Adobe Dreamweaver (for web pages) are used. 

BEHAVIOR 

The task of creating interactive behaviors was judged to be more difficult by Myers‘ 

respondents than creating appearance. The toolset behaviors is also more limited. Two 

 

Figure 3.1: Common tools used for UI prototyping as 

reported in Myers’ survey of interaction designers [195]. 

Figure redrawn by the author. 
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different kinds of dynamic behaviors are one-shot animations that are not dependent on user 

interaction once started, and user-in-the-loop behaviors, where continuous user input drives the 

behavior. One-shot animations can be prototyped using direct manipulation tools in 

presentation applications such as PowerPoint and in UI software such as Adobe Flash. User-

in-the-loop behaviors mostly require textual programming to set up polling loops or event 

handlers.  

It is notable that tools specifically created for the task of prototyping user interfaces, 

such as Axure RP, have relatively little mind- and market share with Myers‘ respondents. 

Whether this is due to a lack of perceived need for such software, or due to other factors such 

as pricing and marketing cannot be determined from the published data, but deserves 

additional attention.  

3.1.1.2 Non-Traditional User Interfaces 

Interfaces that target other devices than desktop PCs suffer from a relative paucity of tool 

support. Because smart phones are rapidly becoming the next standardized platform for 

software, it is useful to distinguish between interfaces for such commodity hardware, and 

interfaces for custom devices.  

COMMODITY HARDWARE 

Of the tools reported in the previous section, some support the creation of prototypes that 

can be tested on mobile devices: Adobe Flash can generate applications for mobile phones 

that run a special Flash player software; web pages and web applications can be used on a 

mobile phone if the target device has a suitable web browser. Mobile development platforms 

also often include a desktop PC-based emulator in which mobile applications can be tested 

without having to load the application onto a device. The downside to this approach is that 

the unique input affordances of the phone are lost and that it is not possible to test the 

prototype in realistic use contexts outside the lab. To our knowledge, no comprehensive 

survey about mobile prototyping techniques has been published to date. 

CUSTOM HARDWARE 

The commercial tools reported in Myers‘ survey all lack direct support for creating user 

interfaces with custom hardware. Creating functional prototypes of physical user interfaces 

involves the design of custom electronics or the creative repurposing of existing devices 

through ―hardware hacking.‖ In our own fieldwork with eleven designers and managers at 

three product design consultancies in the San Francisco Bay Area, we found that most 
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interaction designers do not have the technical expertise required for either approach. Where 

expertise exists, it is often restricted to a single individual within an organization. At two of 

the companies we visited, a single technology specialist would support prototyping activities 

by programming microcontroller platforms such as the Parallax Basic stamp [2] to the 

requirements of the design teams.  

Two fundamentally different approaches to custom hardware are to create standalone 

devices that function on their own, or to create devices that are tethered in some way to a 

desktop PC, which can provide processing power and audio-visual output. While tethering 

constrains testing to the lab (or requires elaborate laptop-in-a-backpack configurations), it 

allows the design of prototypes without having to pre-maturely optimize for hardware 

limitations. Two examples of such tethered prototypes from the literature attest to their use 

in professional settings: Pering reports on prototyping applications for the Handspring PDA 

using custom hardware for input, and a PC screen for output [204] (Figure 3.2); Buchenau 

and Suri describe a prototype of an interactive digital camera driven by a desktop PC in [52] 

(Figure 3.3). 

HARDWARE HACKING 

In our own physical computing consulting work, we encountered requests from interaction 

designers to ―glue‖ new hardware input into their existing authoring tools, for example by 

providing new input events to an Adobe Flash application. Such solutions are brittle since 

most authoring tools are built around the assumption that all input emanates from a single 

  

Figure 3.2:  Pering’s “Buck” for testing 

PDA applications: PDA hardware is 

connected to a laptop using a custom 

hardware interface. Application output is 

shown on the laptop screen. 

Figure 3.3:  IDEO interaction prototype for 

a digital camera UI. The handheld 

prototype is driven by the desktop 

computer in the background. 
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mouse and keyboard — the standard graphic GUI widgets are not written to interpret 

different kinds of input events. One approach to reusing standard GUI tools is to marshal 

hardware input events into mouse and keyboard events, e.g., by reusing standard keyboard 

and mouse electronics, but attaching different input mechanisms to them. Examples of 

hardware hacking for the purpose of prototyping include Zimmerman‘s augmented shopping 

cart, where a standard mouse was used to sense rotational motion of the cart (described in 

[108]); and Buxton‘s Doormouse [56], which sensed the state of an office door by means of a 

belt around the door hinge connected to the shaft encoder in a disassembled mouse (Figure 

3.4). Hardware hacks might look appealing because they can control any existing application, 

but their reach is limited because of many assumptions made by operating systems and 

application about how input from standard devices is structured. For example, widget 

behavior for multiple simultaneous key presses is not well defined, and it is not easily possible 

to use more than one mouse in an application. 

3.1.2 GAINING INSIGHT FROM PROTOTYPES 

What tools are used in design practice to gain insight from prototypes? Three important 

aspects to consider are: support for expressing and comparing alternatives, capturing change 

suggestions through annotations and revisions, and capturing and analyzing feedback from 

user test sessions. 

3.1.2.1 Considering Alternatives 

Alternatives of static content such as UI layouts can be compared by showing them side-by-

side on screen or by printing and pinning them to a wall. Different graphic alternatives can 

 

Figure 3.4:  Buxton’s Doormouse [56] is 

an example of a “hardware hack” that 

repurposes a standard mouse. 
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also be generated using layer sets and other features in professional graphics programs. Terry 

reports that on a micro-level, designers use undo operations to explore A/B comparisons in 

such software [240]. While comparison of alternatives of UI appearance is feasible, Myers 

notes that tool support for comparing behaviors is still lacking: 

―[D]esigners frequently wanted to have multiple designs side-by-side, either in their 

sketchbooks, on big displays, or on the wall. However, this is difficult to achieve for behaviors 

— there is no built-in way in today‘s implementation tools to have two versions of a behavior 

operating side-by-side.‖ [195] 

3.1.2.2 Annotating and Reviewing 

To find out how interaction design teams currently communicate revisions of user interface 

designs, we contacted practitioners through professional mailing lists and industry contacts. 

Ten designers responded, and seven shared detailed reports. There was little consistency 

between the reported practices — techniques included printing out screens and sketching on 

them; assembling printouts on a wall; capturing digital screenshots and posting them to a 

wiki for comments; and using version control systems and bug tracking databases. We 

suggest that the high variance in approaches is due to a lack of specific tool support for user 

interface designers.  

We also noted a pronounced divide between physical and digital processes [144] — one 

designer worked exclusively on printouts; four reported a mixture between working on paper 

and using digital tools; and two relied exclusively on digital tools. To make sense of this 

divide, it useful to distinguish between two functions: the recording of changes that should be 

applied to the current design (what should happen next?); and keeping track of multiple 

versions over time (what has happened before?). For expressing changes to a current design, 

five of the surveyed designers preferred sketching on static images because of its speed and 

flexibility. In contrast, designers preferred digital tools to capture history over time and to 

share changes with others. Designers would thus benefit from tools that bridge this divide 

and enable both fluid sketching of changes and tracking of revisions inside their digital 

authoring tools.  

3.1.2.3 Feedback from User Tests 

Evaluation strategies to assess the usability of user interface prototypes can be divided into 

expert inspection and user testing. In expert inspection techniques such as heuristic evaluation 

[199] and the cognitive dimensions of notation questionnaire [47], expert evaluators review 
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an interface and identify usability issues based on a pre-established rubric. The main benefit 

of expert inspection is its low cost.  

Rubin‘s Handbook of usability testing [216] provides a blueprint for usability studies 

with non-expert users: Participants are asked to complete a set of given tasks with the device 

or software being tested, and are asked to vocalize their cognitive process using a think-aloud 

protocol [162:Chapter 5]. Sessions are video- and audio-recorded for later review and analysis.  

What tools are used to record and analyze prototype evaluations in practice? A review of 

discussion threads on the Interaction Design Association mailing list [3] suggests that the use 

of specialized usability recording applications such as Silverback [4] and Morae [5] is 

common. Such tools record both screen output as the participant sees it, as well as video of 

the participant and audio of their utterances. These media streams are then composited or 

played back in synchrony for analysis. Some tools like Morae can also capture low-level input 

events, such as mouse clicks and key presses. However, the tested application is treated as a 

black box — no information about the application‘s internal state is recorded. Morae‘s 

observer software also makes it possible for the experimenter to add indices to the video as it 

is being recorded. These features echo functionality described in d.tools video suite and 

appeared roughly simultaneously. We became aware of them after our research was 

completed.  

Usability recording tools are predominantly targeted at the evaluation of desktop UIs. 

Methods for testing mobile and custom device prototypes are less established. Video-

recording the screen of a mobile device using either over-the-shoulder, head-mounted, or 

device-mounted cameras has been reported in mailing list discussions. Detailed interaction 

meta-data is usually not available for these approaches. 

We next turn to a review of related research. 

3.2 UI PROTOTYPING TOOLS 

Prior research has introduced tools aimed at constructing and testing prototypes for 

particular types of user interfaces (e.g., desktop, mobile, speech) and for specific functionality 

exhibited by these interfaces (e.g., location awareness, animation). Research prototyping 

tools are often based on fieldwork with groups of target designers and seek to strike a balance 

between preserving successful elements of existing practice and introducing new 

functionality to aid or enhance the authoring process. Generally, these tools offer the 

following three benefits: 
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1) They decrease UI construction time. 

2) They isolate designers from implementation details. 

3) They enable designers to explore a new interface technology previously reserved to 

engineers or other technology experts.  

While many prototyping tools target design professionals, the offered benefits also match the 

characteristics of successful end-user toolkits reported by von Hippel and Katz: 

1) End-user toolkits enable complete cycles of trial-and-error testing. 

2) The ―solution space‖ of what can be built with the tools matches the user‘s needs. 

3) Users are able to utilize the tools with their existing skills and conceptual knowledge. 

4) The tools contain a library of commonly used elements that can be incorporated to avoid 

re-implementing standard functionality.  

To facilitate comparison between the different systems reviewed in this section, Table 3.1 

summarizes characteristic features and approaches, while Figure 3.5 provides a historical 

timeline.  

 

Table 3.1: Comparison of prior research in UI prototyping tools. 
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HYPERCARD & VISUAL BASIC 

The first successful UI prototyping tool is probably Atkinson‘s HyperCard [36]. HyperCard 

enables rapid construction of graphical user interfaces on the Macintosh computer by 

introducing the notion of cards. A card contains both data and a user interface, composed of 

graphics, text, and standard GUI widgets. The user interface can be created through direct 

manipulation in a GUI editor. Different cards make up a stack; the links between cards in the 

stack is authored in HyperTalk, a scripting language. HyperTalk‘s legacy can be found in 

other applications that combine a direct manipulation GUI editor with a high-level scripting 

language, e.g., Visual Basic [63] and Adobe Director[6] and Flash[1]. One challenge such 

applications have faced is the constant pull to turn into a more complete, secure, robust 

development platform. Feature creep and software engineering abstractions progressively 

raise the threshold of expertise and time required to use the environment such that it 

becomes less and less suitable for rapid prototyping. 

SILK 

Landay‘s SILK system [155,156] introduced techniques for sketching graphical desktop user 

interfaces with a stylus on a tablet display. Stylus input preserves the expressivity and speed 

of paper-based sketching, while adding benefits of interactivity. A stroke recognizer matches 

ink strokes to recognize common widgets, which can then be interacted with during a test. 

To capture the information architecture of an interface, multiple screens can be assembled 

into a storyboard; transitions from one page to another can be initiated by the drawn widgets. 

DENIM  

Lin et al.‘s DENIM [171] builds on the techniques introduced in SILK to enable stylus-based 

prototyping of (static) HTML web sites. Users draw pages and page elements on a 2D canvas 

 

Figure 3.5: Timeline of prototyping tools for graphical user interfaces. 
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and establish hyperlinks by drawing connecting links between pages. DENIM adds semantic 

zooming — hiding and revealing information based on a global level-of-detail setting — to 

move between overview, sitemap, storyboard, sketch, and detailed drawing. 

DESIGNERS‘ OUTPOST  

The Designers‘ Output [147] also targets prototyping of web site information architectures, 

but focuses on design team collaboration, rather than individual work. Fieldwork uncovered 

that information architecture diagramming frequently takes place by attaching paper post-it 

notes to walls to facilitate team discussion. Respecting the physical aspects of this practice, 

Outpost introduces a large vertical display to which notes representing pages can be affixed. 

Notes are tracked and photographed using a computer vision system and a high-resolution 

still camera. Links between pages are authored using a digital pen, so the hierarchy model can 

be captured digitally. 

DEMAIS 

Bailey‘s DEMAIS [40] contributes a visual language to author dynamic behaviors through 

stylus marks (Figure 3.6). DEMAIS focuses on interaction with audio and video elements 

embedded in the user interface. It combines connections between different screens in a 

storyboard editor, similar to SILK and DENIM, with behaviors within a screen that can be 

authored with ―behavioral ink strokes.‖  The visual language for these ink strokes allows 

expression of source events (e.g., mouse click, mouse rollover, and elapsed time) and actions 

(navigational control of audio/video elements, show/hide elements).  

 
 

Figure 3.6: Bailey’s DEMAIS system 

introduced a visual language for sketching 

multimedia applications [40]. 

Figure 3.7: Li’s Topiary system for 

prototyping location-aware mobile 

applications [163]. 
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TOPIARY & BRICKROAD 

Topiary [163] contributes authoring techniques for prototyping location-based applications 

for handheld devices. In addition to the customary storyboard, it adds an ―active map‖ view to 

the authoring tool, where users can model the location of places (regions on the map), objects, 

and people (Figure 3.7). Designers can then add actions that should be executed when the 

relation between places, objects and people change. Applications can be tested without 

requiring the designer to physically move using a Wizard of Oz interface [140], in which the 

designer can move people and objects on a map and see the resulting changes in the mobile 

interface a user would see. BrickRoad [174] expands on the role the Wizard can play by 

enabling real-time composition of mobile application output based on a visualization for the 

Wizard where the mobile device user is located at a given moment. 

MONET & K-SKETCH  

Where many of the other tools surveyed thus far are concerned with high-level interaction 

logic and information architecture, Monet [164] introduces techniques for prototyping 

continuous, user-in-the-loop graphical behaviors. Users sketch the interface appearance on a 

tablet PC and then demonstrate how the appearance should change during user interaction. 

K-Sketch [68] introduces interaction techniques for rapidly authoring animations. Its stylus 

controlled interface enables users to sketch graphics, and express animation of rotation, 

translation, and scale by demonstration. Motivated by the insight that too many features slow 

down the authoring process and raise the threshold for non-expert animators, K-Sketch 

introduces an optimization technique that seeks to find the minimum feature set in the 

authoring tool that satisfies the greatest number of possible use cases. 

MAESTRO 

Maestro [7] is a commercial design tool for prototyping mobile phone interactions. It provides 

a complex visual state language with code generators, software simulation of prototypes, and 

compatibility with Nokia‘s Jappla hardware platform. Maestro and Jappla together offer high 

ceiling, high fidelity mock-up development; however, the complexity of the tools make them 

too heavyweight for informal prototyping activities. The availability of such a commercial tool 

demonstrates the importance of prototyping mobile UIs to industry.  

ACTIVITY DESIGNER  

The ActivityDesigner tool [165] supports prototyping applications that respond to and 

support user activities, where an activity is defined as long-term transformation process 

towards a motivation (e.g., staying fit) that finds expression in various concrete actions. 
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ActivityDesigner distinguishes itself from other tools by not treating screens or UI states as 

the top-level abstraction. Instead, it introduces situations (location and social context), 

scenes (pairs of situations and actions), and themes (sets of related scenes). Prototyping 

applications thus involves both modeling of context through these abstractions as well as 

concrete authoring of application behavior. 

MIXED-FIDELITY PROTOTYPING  

De Sa‘s Mixed-Fidelity Prototyping tool [217] offers support for building prototypes of mobile 

applications at different levels of resolution. The most rapid way is to show single images of 

sketched user interfaces on the device; user interaction, e.g., stylus taps on the screen, are 

relayed back to a wizard, who can then select the next screen to show. Interaction logic can 

also be created using node-link diagrams and a library of widgets so wizard action is not 

required. 

SKETCH WIZARD  

Sketch Wizard [69] proposes to accelerate prototyping of pen-based user interfaces (those 

that rely on stylus input and handwriting) by providing a Wizard with a powerful control 

interface tailored to the pen-input domain. The end-user who interacts with a tablet 

application prototype can provide free-hand input on a drawing canvas. That drawing canvas 

is also shown to a Wizard on a desktop PC, who can modify the user‘s strokes, delete them, or 

add new content in response to the user‘s input. The main contribution of this work is the 

design of the control interface that enables designers to provide quick responses to stroke-

based user input, which could be intended as text, drawing, or commands. 

ADOBE FLASH CATALYST  

Adobe Flash Catalyst [8], while not an academic research project, is worth including in this 

summary because it represents the latest commercial product specifically aimed at 

prototyping graphical user interfaces. Flash Catalyst uses states or frames as the top-level 

abstraction, as many of the other authoring environments reviewed in this section. However, 

different states are not laid out in a node-link diagram with transitions. Rather, transitions 

are listed in a table. Each transition can then be associated with animation commands for 

graphical elements in the source and destination states. 

SUMMARY 

A number of themes emerge from the review of related UI prototyping tools. Early UI design 

tools introduced a combination of direct manipulation UI layout editors with high-level 
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scripting languages for behavior programming. While successful in commercial tools such as 

HyperCard and Visual Basic, use of scripting languages has not been a focus in research 

prototyping tools. Many research tools use storyboards as an authoring abstraction. A frame 

or screen in such a storyboard corresponds to a unique screen in a user interface. To capture 

the UI architecture, relationships between storyboard frames are frequently expressed as 

node-link diagrams. Several tools rely on sketch-based input to define both UI contents as 

well as visual diagrams for UI logic. Finally, a recurring question across tools is to what 

extent functionality should be implemented (through script or diagrams) versus simulated 

(through Wizard of Oz techniques).  

d.tools adopts successful choices from prior work such as the use of visual storyboards. It 

goes beyond purely visual authoring by enabling scripted augmentations to storyboard 

diagrams. All discussed tools assume some fixed hardware platform with standardized I/O 

components. d.tools and Exemplar move beyond commodity platforms by supporting flexible 

hardware configurations and definitions of new interaction events from sensor data. The 

Juxtapose project takes a different approach by building directly on top of ActionScript, the 

procedural language used by Adobe Flash; it investigates how to support the exploration of 

multiple interaction design alternatives expressed entirely in source code. 

3.3 TOOL SUPPORT FOR PHYSICAL COMPUTING 

The previous section reviewed prototyping tools for desktop, web, and mobile user interfaces. 

A separate set of research has enabled experimentation in physical computing with sensors 

and actuators. These systems have focused less on supporting professional designers, perhaps 

because the design of such user interfaces is not an established discipline yet. Greenberg 

argues that toolkits in established design areas, such as GUI design, play a different role from 

toolkits in emergent areas of technology, such as ubiquitous computing [91]: ―Interface 

toolkits in ordinary application areas let average programmers rapidly develop software 

resembling other standard applications. In contrast, toolkits for novel and perhaps unfamiliar 

application areas enhance the creativity of these programmers.‖ Table 3.2 provides a feature 

comparison of the physical computing systems reviewed in this section, while Figure 3.8 

presents a historical timeline. 
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BASIC STAMP 

The Basic Stamp [2] represents an early attempt at making embedded development accessible 

to a broad range of users. Instead of writing firmware for a microcontroller in a low-level 

language like Assembly, Basic Stamp developers write programs in a high-level BASIC dialect, 

which is then interpreted on the Basic Stamp chip. The Stamp is successfully used to teach 

electronics and programming fundamentals in secondary schools, and has also found its way 

into product design studios, as reported by Moggridge [189]. The Basic Stamp is geared 

towards creating standalone devices and is not powerful enough to handle graphics, limiting 

its utility for modern interfaces that combine graphics output with novel input devices. 

 

Table 3.2: Comparison of prior research in physical computing tools. 

 

 

Figure 3.8: Timeline of selected physical computing toolkits. 
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PHIDGETS 

The Phidgets [93] system introduced physical widgets: programmable ActiveX controls that 

encapsulate communication with USB-attached physical devices, such as switches, pressure 

sensors, or servo motors. Phidgets abstracts electronics implementation into an API and thus 

allows programmers to leverage their existing skill set to interface with the physical world. In 

its commercial version, Phidgets provides a web service that marshals physical I/O into 

network packet data, and provides several APIs for accessing this web service from standard 

programming languages (e.g., Java and ActionScript). d.tools shares much of its library of 

physical components with Phidgets. In fact, Phidgets analog sensors can be connected to 

d.tools. Both Phidgets and d.tools store and execute interaction logic on the PC. However, 

d.tools differs from Phidgets in both hardware and software architecture. First, d.tools offers a 

hardware extensibility model not present in Phidgets. Second, on the software level, d.tools 

targets prototyping by designers, not development by programmers. The d.tools visual 

authoring environment contributes a lower threshold tool and provides stronger support for 

rapidly developing the ―insides of applications‖ [191]. Finally, Phidgets only addresses the 

design part of the design-test-analyze cycle — it does not offer support for testing or 

analyzing user test data.  

CALDER 

Calder [37,159] makes RFID buttons and other wired and wireless devices accessible in C and 

the Macromedia Lingo language. The small form factor of Calder input components facilitate 

their placement on physical prototypes; Calder also describes desirable mechanical 

attachment mechanisms and electrical properties (e.g., battery-powered RF transceivers) of 

prototyping components. Like Phidgets, Calder‘s user interface is a textual API and only 

supports the creation of prototypes, not testing or exploration of alternatives.  

ISTUFF & ISTUFF MOBILE 

iStuff [43] contributes an architecture for loose coupling between input devices and 

application logic, and the ability to develop physical interactions that function across 

different devices in a ubiquitous computing environment. iStuff, in conjunction with the 

Patch Panel [44], enables standard UIs to be controlled by novel inputs. iStuff targets room-

scale applications.  

iStuff Mobile [42] introduces support for sensor-based input for mobile phone 

applications through a ―sensor backpack,‖ attached to the back of the mobile device. Since 

most mobile phones do not permit communication with custom hardware, iStuff mobile 
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interposes a desktop PC that receives sensor data using a wireless link. The events are 

processed using Quartz Composer [9], a visual data flow language and relayed to the mobile 

phone using a second wireless link. On the phone, a background application receives these 

messages and can inject input events to control existing phone applications. 

LEGO MINDSTORMS 

The Lego Mindstorms Robotic Invention System [10] offers plug-and-play hardware 

combined with a visual environment for authoring autonomous robotics applications. 

Mindstorms uses a visual flowchart language where language constructs are represented as 

puzzle pieces such that it is impossible to enter syntactically invalid programs. While a 

benchmark for low-threshold authoring, Lego Mindstorms targets autonomous robotics 

projects; the programming architecture and library are thus inappropriate for designing user 

interfaces. Mindstorms programs are downloaded and executed on the hardware platform 

without a communication connection back to the authoring environment, which prevents 

inspection of behaviors at runtime.  

ARDUINO 

The Arduino project [185] consists of a microcontroller board and a desktop IDE to write 

programs for that hardware platform in the C language. It is included in this review because it 

is one of the most popular platforms with students and artists today. Arduino wraps the 

open-source avr-gcc tool chain for developing and deploying applications on 8bit AVR RISC 

microcontrollers. The avr-gcc tool chain is commonly used by professional developers of 

embedded hardware. Unlike many other tools reviewed here, Arduino does not offer visual 

programming or high-level scripting. The success of the platform is probably attributable to 

hiding of configuration complexity where possible (removing ―incidental pains‖ of 

programming); careful design of a small library of most commonly used functions; and a focus 

on growing a user community around the technology that contributes examples and 

documentation. The success of Arduino programming (and of HyperCard) suggests that it 

might not be necessary to eliminate all textual programming to build a rapid, accessible 

prototyping tool, if the tasks the designer wants to accomplish can be succinctly expressed 

using provided libraries. 

THUMBTACKS 

Hudson‘s Thumbtacks system [127] focuses on using novel hardware input to interact with 

existing applications. Only discrete input from capacitive switches in supported. Users 

capture screenshots of running existing applications, and draw regions onto those 
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screenshots corresponding to areas where mouse clicks should be injected when an external 

switch is pressed or released. Key presses can be similarly injected at the system event queue 

level. Exemplar also offers the ability to generate such events. Keyboard & mouse event 

injection has the benefit that any existing application can be targeted. It has serious 

drawbacks, too: the response to a mouse click or key press may depend on internal 

application state, which cannot be sensed or modeled in the Thumbtacks system. In addition, 

the rest of the computer is essentially inoperable while events are injected. One solution to 

this problem is to run the authoring environment on a different machine than the application 

that should be controlled, and relay events through network messages from one computer to 

the other. 

DART 

DART [178], The Designers‘ Augmented Reality Toolkit, supports rapid development of AR 

experiences, where computer-generated graphics (and audio) are overlaid on live video. 

DART was implemented as a set of extensions for Macromedia (now Adobe) Director [6], 

enabling designers familiar with that tool to leverage their existing skill set. d.tools shares 

DART‘s motivation of enabling interaction designers to build user experiences in a technical 

domain previously beyond their reach, but supports different types of interfaces and also 

introduces its own authoring environment instead of extending an existing software package. 

PAPIER-MÂCHÉ & EYEPATCH 

Papier-Mâché [146] focuses on supporting computer-vision based tangible applications. It 

introduces architectural abstractions that permit substitution of information-equivalent 

technologies (e.g., visual tag tracking and RFID). Papier-Mâché is a Java API — applications 

have to be programmed in Java — restricting its target audience to advanced programmers. 

Papier-Mâché contributes the methodology of user centered API design and a visual preview 

window, where internal state of recognition algorithms and live video input can be seen, 

enabling inspectability of running code. EyePatch [182] also targets vision-based applications. 

It offers a larger number of recognition approaches and outputs data in a format that a variety 

of other authoring applications can consume. EyePatch relies on programming by 

demonstration, and will thus be covered in more detail in that section. 

BUG 

The BugLabs BUG [11], a commercial product introduced after the publication of d.tools, is a 

modular hardware platform for developing standalone mobile devices. It consists of a base 

into which modular units (LCD display, GPS, general purpose IO, accelerometer) can be 
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plugged. Applications for the BUG are written in a subset of Java and execute on a virtual 

machine on the base unit. The development environment, which extends the Eclipse Java 

environment on a desktop PC, links to a shared online repository of applications that one can 

download and immediately execute on the BUG. The plug-and-play architecture resembles 

the d.tools hardware interface, although the embedded BUG Linux system is more powerful 

(and more complex to manage). Like Phidgets, the BUG system mainly targets accomplished 

programmers — while changing hardware configurations is trivial, the software abstractions 

of the BUG API are not suitable for non-expert developers.  

3.4 VISUAL AUTHORING 

Many existing prototyping tools have adopted some form of node-link diagram to express 

interface semantics. How do these particular authoring techniques fit into the larger space of 

visual programming? Why might they be a good fit or why might other techniques be more 

suitable? This section provides an overview of different approaches to use visual 

representations in the authoring process. 

Visual means have been used both to describe programs, as well as to implement them. 

We will first review visual formalisms — systematic ways of diagramming or otherwise 

graphically describing computational processes. Visual programming proper uses graphics to 

implement software. The following section provides a summary of different visual 

programming systems. A third approach to leverage graphics in programming is to employ a 

textual programming language and offer rich visual editors that help with writing correct 

code (structured editors) or substitute graphic editing for some tasks, i.e., GUI layout, while 

also allowing textual programming (hybrid environments). The last section reviews 

important research in such structured editors and rich, hybrid IDEs.1 

3.4.1 VISUAL FORMALISMS 

Visual formalisms use graphical means to document or analyze computational processes. 

Some can be transformed automatically into executable code. Others may not be useful as a 

way to implement programs because they may be too abstract or purposefully ambiguous, or 

they may require too much effort to describe programs of useful complexity. Some of the main 

ways of graphically describing computation are state diagrams, statecharts, flowcharts, and 

                                                               
1 The structure and some of the examples used in this section are inspired by Brad Myers‘ survey talk on 
the Past, Present and Future of Programming in HCI [189]. 
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UML diagrams (which subsume the previous and add additional diagram types). A 

comprehensive review of additional visual specification techniques can be found in 

Wieringa‘s survey [250]. 

3.4.1.1  State Diagrams 

State diagrams are graphical representations of finite state machines [125:Chapter 2], a 

computational model consisting of states, transitions, and actions. States capture the current 

point of computation; transitions change the active state based on conditional expressions 

over possible program input. Actions modify internal memory or generate program output. 

Actions can be defined for state entry, state exit, input received while in a state, and 

activation of a transition. State diagrams are easy to comprehend and to generate. However, 

they also have fundamental limitations: capturing concurrent, independent behaviors leads to 

a combinatorial explosion in the number of states. Adding behavior that should be accessible 

from a number of states requires authoring corresponding transitions independently for each 

state, which makes maintenance and editing cumbersome and results in a ―rat‘s nest‖ of many 

transitions. As state and transition density increases, interpreting and maintaining state 

diagrams becomes problematic; state diagram thus suffer from multiple scaling limitations, a 

problem common to many visual formalisms and visual programming languages [53]. 

3.4.1.2 Statecharts  

Harel‘s statecharts [105] find graphical solutions for some of the limitations of simple state 

machines. Statecharts introduce hierarchical clustering of states to cut down on transition 

density; introduce concurrency through multiple active states in independent sub-charts; and 

 

Figure 3.9: A partial, hierarchical statechart for a wrist watch 

with alarm function; redrawn from an example in Harel [105]. 
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offer a messaging system for communication between such sub-charts. Harel summarizes: 

―statecharts = state-diagrams + depth + orthogonality + broadcast communication.‖ Harel uses 

the example of a programmable digital watch — an early ubiquitous computing device —and 

models its entire functionality with a statechart in his original paper on the topic (Figure 3.9). 

Both state diagrams and statecharts have been used extensively to describe reactive systems, i.e., 

those that are tightly coupled to, and dependent, on, external input. Both industrial process 

automation and user interfaces fit into this reactive paradigm. The added flexibility of the 

statechart notation makes generating correct charts and reasoning about them harder than 

working with simple finite state machines. Heidenberg et al. [117] studied defects in 

statecharts produced in an industrial setting and found that use of orthogonal components, 

one of the parts that make statecharts more powerful than state diagrams, also contributed to 

defect rate and advocated that its use should therefore be minimized. 

3.4.1.3  Flowcharts  

Flowcharts [48] express algorithms as a directed graph where nodes are computational steps 

(evaluating statements that change variable values, I/O, conditionals) and arrows transfer 

control from one step to another (Figure 3.10). One important use of flowcharts is to 

document algorithms written in procedural programming languages. Nassi-Shneiderman 

structograms [197] are a more succinct graphical representation of control flow in procedural 

  

Figure 3.10: Example of a flowchart, 

adapted from Glinert [87]. 

Figure 3.11:  Example of a Nassi-

Shneiderman structogram, adapted from 

Glinert [87]. 
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languages (Figure 3.11). Graphical elements of structograms include process blocks, which 

contain program statements, branching blocks for conditionals, and testing loops, to express 

iteration with a stopping condition. 

3.4.1.4 Data Flow Diagrams 

State diagrams and flowcharts express the change of program control over time. In contrast, 

data flow diagrams (DFDs) focus on describing how data travels in complex, multi-

component systems. Arrows in DFDs denote the flow of information from one component to 

another; nodes represent processes that operate on incoming data flows and emit outgoing 

flows (Figure 3.12). As a diagramming technique, data flow modeling is extensively used in 

Structured Systems Analysis [82,259]. Flow diagrams expose the type of data that is 

transmitted, its origin and destination. Flow diagrams do not capture any sequencing of 

computation. Reasoning about the order of execution or other temporal aspects of programs 

is therefore not well supported in DFDs. 

3.4.1.5 Unified Modeling Language 

The Unified Modeling Language (UML [12]) is an umbrella term used to characterize a set of 

13 different diagramming techniques (in UML 2.0) that can be used to describe various 

aspects of a computer system. UML is closely linked to object oriented programming 

languages, while flowcharts arose at the same time as structured programming languages. 

UML distinguishes between structure diagrams that show the interrelation of different 

components, e.g., class diagrams, behavior diagrams, which subsume state machines; and 

interaction diagrams which model sequences of communication and control transfer between 

different components. Dobing and Parsons [71] report survey results on how UML is used in 

practice; their survey found that many diagram types were not well understood.  

 

Figure 3.12: Example of a data flow diagram, redrawn by the 

author from Yourdon [259: p. 159] 
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3.4.2 VISUAL PROGRAMMING PROPER 

Visual programming constructs executable programs using graphical means. Many visual 

programming languages follow a node-and link diagram paradigm, but the meaning of nodes 

and links vary significantly. Two main approaches are control flow languages, where nodes 

express program state and links express transitions that move a program through those 

states; and data flow languages, where states are transformation operations to be performed 

on data, and links are pipes through which data flows from node to node. Some languages 

have been created by directly operationalizing the visual formalisms described in the previous 

section. State diagrams, statecharts, and all fall under the category of control flow; data flow 

diagrams, predictably, express data flow. 

In general, purely visual programming languages are not widely used in practice to 

implement general programs or user interfaces. This is partially due to the relatively high 

viscosity (resistance to modification) of visual languages (see section 3.4.4 on cognitive 

dimensions of notations). The exceptions are applications in education where flowchart-

based languages have had success with novice and hobbyist programmers; and digital signal 

processing (with electronic music being one application), where visual data flow languages 

are used.  

Early research in visual programming languages has been reviewed by Glinert [87].  

Rather than opting for breadth, this section discussed a small number of concrete examples 

chosen for historical interest or relevance to user interface design. 

3.4.2.1 Control Flow Languages 

FLOWCHARTS 

Glinert‘s Pict [87] is an early example of a purely visual programming environment. Pict 

operationalizes program flowcharts and can be used to implement simple but non-trivial 

numerical algorithms such as the Fibonacci function. I/O is numerical only, so no user 

interfaces can be constructed. The design environment is entirely cursor controlled, without 

any text input. Pict introduced visual animation of execution by adding graphical decorators 

to the design diagram — such runtime feedback in the design environment is also used in 

d.tools. A user study with 60 computer science students revealed that novices reacted 

positively to Pict, while expert programmers were more critical and less likely to prefer it over 

textual approaches. 
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More recently, the Lego Mindstorms Robotics kit [10] includes a flowchart 

programming language. Programs can have parallel ―tracks‖ to express concurrency, but the 

language does not have variables. Resnick‘s Scratch [13] is an environment for programming 

interactive animations and games aimed at young, novice programmers. The editor also offers 

a flowchart-inspired programming environment, with support for user-defined variables. 

STATECHARTS 

Wellner reports the development of an early user interface management system (UIMS) 

based on Statecharts [249]. Statecharts were drawn in a graphics package to capture event 

logic for UI dialogs. These graphics had to be manually transcribed into a text format to make 

them executable. Completely automatic systems that generate executable code from 

statecharts such as IBM Rational Rose RealTime [14] also exist, though they do not focus on 

integration with user interface development. 

STORYBOARDS AS CONTROL FLOW LANGUAGES 

Storyboards as used in UI prototyping systems in Section 3.2 are variants of finite state 

machines. Traditional, hand-drawn storyboards from film production present a linear 

sequence of key frames. When applied to user interface design, storyboard frames often 

consist of different unique user interface views. To capture the information architecture — 

how different screens relate to each other — storyboards are then enhanced with connecting 

arrows. The semantics of a canonical storyboard state diagram can be expressed as follows: 

the ―enter state‖ action in each state corresponds to showing the interface of the particular 

storyboard frame. Transitions are conditionals that express that a different state or screen 

should be shown based on an appropriate input event. Because storyboard-driven authoring 

tools equate a state with a complete UI definition, no parallelism or encapsulation is offered. 
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3.4.2.2 Data Flow Languages 

Data flow languages have found successful applications in domains such as digital signal 

processing (DSP) and electronic music. LabView [15] is a digital signal processing and 

instrumentation language widely used in electrical engineering. LabView programs are 

referred to as Virtual Instruments and are defined by graphically connecting different 

functional units, e.g., data providers such as sensors, Boolean logic, and mathematical 

functions. To support control flow constructs such as loops, LabView offers control flow 

blocks that are embedded into the data flow language. Other data flow languages used for 

measuring and instrumentation are MatLab Simulink [16], and Agilent Visual Engineering 

Environment [17]. In focusing on measurement and instrumentation, these applications 

support different user populations than d.tools and Exemplar, with different respective needs 

and expectations.  

Max/MSP [18] and its open-source successor Pure Data (Pd) [209] are used by artists to 

program new electronic musical instruments, live video performances, or interactive art 

 

Figure 3.13: Examples of commercial or open source data flow languages. A: Quartz 

Composer; B: Pure Data; C: Yahoo Pipes 
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installations. The interface metaphor for these languages is that of an analog patch cord 

synthesizer, where different functional units (the nodes) are ―patched together‖ with 

connections (Figure 3.13B). Output from one node thus flows into an input of another node. 

There is no visual notion of ―state‖ and in fact, reasoning about the order in which operations 

are performed in these languages is subtle and non-trivial. Both environments make 

distinctions between nodes and transitions that operate on sound data, which has to be 

updated on a fixed audio rate, and those that operate on control data (e.g., human 

interaction), which is event-based and can be processed at much lower rates.  

Data flow to process and transform input streams or filter signals has also been applied 

in other multimedia applications. Apple‘s Quartz Composer [9] employs a data flow paradigm 

to author image processing pipelines for graphics filters and animation (Figure 3.13A); it has 

been integrated into the iStuff Mobile toolkit [42] for sensor data processing. The MaggLite 

toolkit [129] uses a similar approach to provide a flexible interconnection layer between new 

kinds of input devices and suitably instrumented applications that expose abstract input 

event hooks. 

A third application area for data flow languages has been the processing of online data 

streams queried via web service APIs and RSS feeds. Yahoo Pipes [19] is a recent example of a 

browser-based tool that allows the merging and filtering of multiple data streams (Figure 

3.13C). Common examples programmed in Pipes are meta search engines that combine query 

results from multiple sources, and ―mashups‖ which combine data from multiple web services 

in novel ways [108]. 

3.4.2.3 Control Flow and Data Flow in d.tools and Exemplar 

In d.tools, states express output to screens or other output components (e.g., motors, LEDs). 

To enable continuous behaviors and animations, d.tools offers two extensions to pure visual 

control flow: First, d.tools supports a limited amount of data flow programming by drawing 

arrows from input components to output components within a state. This way, for example, 

an LED can be dimmed by a slider. However, there is no compositionality as in other data 

flow languages and d.tools‘ primary representation remains control flow, because it maps 

directly to interface states. Second, d.tools combines visual authoring with procedural 

scripting in each state. The next section will review different related approaches of combining 

visual and textual programming. 

Exemplar is a direct manipulation visual environment that is organized according to a 

data flow model: raw sensor data arrives as input, and emerges transformed as high-level UI 
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output events. As such, Exemplar could be seen as one possible processing node in a data flow 

language, which would allow for further composition. At present, it is a standalone 

application that feeds event data to d.tools or controls existing GUI applications through 

mouse & keyboard event injection. 

3.4.3 ENHANCED EDITING ENVIRONMENTS 

Beyond purely visual programming, different ways of combining graphical and textual 

authoring exist. Three common combinations are: visual GUI editors that generate source 

code for textual programming languages; structured editors that use graphic techniques to 

facilitate code entry and prevent errors; and hybrid approaches where some computation is 

specified graphically, and other computation is specified in source code. 

3.4.3.1  Visual Editors  

GUI editors enable direct graphical layout of user interfaces. In general these editors are 

restricted to defining the appearance of UIs. Behavior and architecture have to be expressed 

separately in code. Two types of visual GUI editors exist: 1) editors that generate code in the 

source language, and 2) editors that generate code in some intermediate, often declarative 

language that is then interpreted later by a suitable library in the application. 

Early GUI editors, e.g., for Java Swing, generate procedural code and accordingly read 

procedural code as well. A recurring issue for such systems is the roundtrip problem: If 

procedural code generated by these systems is later edited manually by a programmer, the 

visual editor may not be able to parse the modified text and re-created an editable graphical 

interface for it. The roundtrip problem exists for any environment that produces user-editable 

source, but it is exacerbated when the produced text is code for a full-fledged programming 

language, where arbitrary statement can be added. 

Recent years have seen a shift towards GUI editors that generate declarative UI 

specifications, often in some UI-specific XML dialect (e.g., HTML, MXML, XAML). Such UI 

specifications may have more runtime overhead, but reduce the roundtrip problem. 

Declarative UI definitions are also thought to be easier to write and reason about, since layout 

of hierarchical UI elements on screen is expressed by the hierarchical structure of the source 

document. Examples of editors that produce declarative UI specifications are Adobe Flex 

Builder, Adobe Dreamweaver, and Microsoft Expression Blend. 

Beyond visual editing of layout, some GUI editors also allow direct manipulation 

definition of dynamic behavior, such as path-following animations. Conversely, graphics 



55 

applications that are primarily direct manipulation editors may also offer programmability 

through scripting language APIs. 3D modeling applications such as Google SketchUp 

(programmable in Ruby) and Autodesk Maya (programmable in MEL, a C-like scripting 

language) are examples of such an approach. 

3.4.3.2 Structured Source Editors 

Structured editors add interaction techniques to source code editors that facilitate correct 

entry of source code by using knowledge about valid syntax constructs in the target language 

(e.g., by using the language grammar) or knowledge about the structure of language types and 

libraries. Where traditional syntax editors operate on individual characters in plain text files, 

structured editors operate on the abstract syntax tree (AST) that can be constructed by 

parsing the source text. Structured source editors can use this knowledge to enforce correct 

syntax, and other statically verifiable properties, by making it impossible to enter incorrect 

programs, or they can check these properties and inform the programmer of detected 

problems. 

The Cornell Program Synthesizer [238] is an early example of a syntax-directed editor 

which enforced correct syntax through a template-instantiation system for programs written 

in PL/I. Common language constructs were encoded in templates — keywords and 

punctuation were immutable, while placeholders could be replaced by either inserting 

variables, immediate values, or other templates. 

The CMU MacGnome project developed multiple structured editors to facilitate 

learning of programming by novices [188]. Alice2 [139], an environment for developing 

interactive 3D virtual worlds, features a structured editor where program statements can be 

composed through drag-and-drop. Suitable values (immediate or through variables) can be 

selected through drop-down lists. One challenge of structured editors is that they may 

increase the viscosity and hinder provisionality of expressed programs — by enforcing 

correctness, they may make it harder to experiment or make changes that require breaking 

the correctness of the program during intermediate steps (as noted by Miller [188]). 
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3.4.3.3 Hybrid Environments 

A final way to combine visual and textual programming is to permit embedding of textual 

code into visual programming systems. One response to the criticism that visual programming 

either does not scale, or becomes hard to reason about and modify, is to move away from a 

purely visual system and permit expression of both visual and textual programs within the 

same environment. For example, the data flow language Pd permits procedural expressions 

within certain nodes (Figure 3.14). Conditional logic or mathematical formulas, which are 

cumbersome to express in pure data flow, can thus succinctly be captured in a single node. 

The Max/MSP language permits evaluation of JavaScript and use of Java classes in its 

language. 

d.tools also opts for a hybrid approach by following a storyboard approach to capture 

high-level architecture of the designed interface, while relying on an imperative scripting 

language, BeanShell [200], for most continuous behaviors. This flexibility comes at a price: 

simultaneous presence of multiple different authoring paradigms raises the number of 

concepts a user has to learn to effectively use that environment. 

3.4.4 ANALYZING VISUAL LANGUAGES WITH COGNITIVE DIMENSIONS OF 

NOTATION 

How might one compare the relative merits and drawbacks of different visual programming 

environments, or of visual and textual programming languages? The most complete effort to 

date to develop a systematic evaluation instrument is Greene and Blackwell‘s Cognitive 

Dimensions of Notation framework (CDN) [89,90]. The CDN framework offers a high-level 

inspection method to evaluate the usability of information artifacts. In CDN, artifacts are 

analyzed as a combination of a notation they offer and an environment that allows certain 

manipulations of the notation. As an expert inspection method, it is most comparable to 

 

Figure 3.14: Example of hybrid authoring in Pure Data:  

a visual node contains an algebraic expression. 
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Nielsen‘s heuristic evaluation, with a different set of metrics. Blackwell and Green‘s Cognitive 

Dimensions Questionnaire [47] asks evaluators to first estimate of how time is spent within 

the authoring environment, and then analyze the software against the framework‘s 13 

cognitive dimensions (Table 3.3).  

Evaluation of the notation is always relative to some target activity. Greene distinguishes 

six major activities: incrementation, transcription, modification, exploratory design, 

searching, and exploratory understanding. Any given task will likely break down into a 

mixture of these cognitive activities. Similarly, any given notation and environment will 

support or impede these activities to different extents. A CDN analysis can therefore be seen 

as establishing the impedance match (or mismatch) of a particular programming task and a 

particular programming system. 

Dimension Description 

Abstraction What are the types and availability of abstraction mechanisms? 

Hidden Dependencies Is every dependency overtly indicated in both directions? 

Premature Commitment Do programmers have to make decisions before they  
have the information they need? 

Secondary Notation Can programmers use layout, color, or other cues to convey extra 
meaning, above and beyond the ‗official‘ semantics of the language? 

Viscosity How much effort is required to perform a single change? 

Visibility Is every part of the code simultaneously visible, or is it at least possible 
to juxtapose any two parts side-by-side at will? 

Closeness of Mapping Closeness of visual representation to problem domain.  
What ‗programming games‘ need to be learned? 

Consistency When some of the language has been learnt, how much of the rest can 
be inferred? 

Diffuseness How many symbols or graphic entities are required to express a 
meaning? 

Error-proneness Does the design of the notation induce ‗careless mistakes‘? 

Hard mental operations Are there places where the user needs to resort to fingers or penciled 
annotation to keep track of what‘s happening? 

Progressive evaluation Can a partially-complete program be executed to obtain feedback? 

Role-expressiveness Can the reader see how each component of a program relates to the 
whole? 

 

Table 3.3: The main dimensions of the Cognitive Dimensions of Notation inspection 

method (from [90: p.11]). 
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3.5 PROGRAMMING BY DEMONSTRATION 

Programming by demonstration (PBD) is the process of inferring general program logic from 

observation of examples of that logic. Given a small number of examples, PBD systems try to 

derive general rules that can be applied to new input. This generalization from examples to 

rules is the crucial step in the success or failure of PBD systems [168]. The inference step often 

leverages machine learning and pattern recognition techniques. Demonstration and 

generalization techniques are not enough to build a PBD system. In textual programming, 

more time is spent editing and modifying existing code than writing new code [194]. For PBD 

systems, where program logic is built ―under the hood‖, this implies that separate techniques 

are needed to present what was learned back to the user, and allow her to edit this 

representation as well. 

Because PBD builds functionality without requiring textual programming, it has been a 

strategy employed for end-user development [196]. Comprehensive surveys of PBD systems 

can be found in books edited by Cypher [67], Lieberman [168]; and Lieberman, Paterno and 

Wulf [169]. 

3.5.1 PBD ON THE DESKTOP 

In many PBD systems, the examples or demonstrations are provided as mouse and keyboard 

actions in a direct manipulation graphical user interface. PBD has been employed in 

educational software to introduce children to programming concepts [231]; for the 

specification of functionality in GUI builders [192]; to author spreadsheet constraints [193]; 

and to author web automation scripts by demonstration [173]. In the realm of prototyping 

tools, demonstration has been used for authoring animations and other dynamic behavior in 

Monet [164]. Monet learns geometric transformations applied to widgets through continuous 

function approximation using radial basis functions centered on screen pixels. 

3.5.2 PBD FOR UBIQUITOUS COMPUTING  

Early examples of using demonstrations that take place in physical space or that have effects 

on physical space can be found in the robotics field. Andreae used demonstration to specify 

robot navigation [35]; Friedrich et al employed it to define grasp motions for robotic assembly 

arms [80]. Our research on Exemplar builds upon the idea of using actions performed in 

physical space as the example input. 
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The closest predecessor to Exemplar in approach and scope is a CAPella [70]. This 

system focused on authoring binary context recognizers by demonstration (e.g., is there a 

meeting going on in the conference room?), by combining data streams from discrete sensors, 

a vision algorithm, and microphone input. Exemplar shares inspiration with a CAPella, but it 

offers important architectural contributions beyond this work. First, a CAPella was not a 

real-time interactive authoring tool: the authors of a CAPella reported the targeted iteration 

cycle to be on the order of days, not minutes as with Exemplar. Also, a CAPella did not 

provide strong support for continuous data. More importantly, a CAPella did not offer 

designers control over how the generalization step of the PBD algorithm was performed 

beyond marking regions. We believe that this limitation was partially responsible for the low 

recognition rates reported (between 50% and 78.6% for binary decisions).  

FlexiGesture is an electronic instrument that can learn gestures to trigger sample 

playback [186]. It embodies programming by demonstration in a fixed form factor. Users can 

program which movements should trigger which samples by demonstration, but they cannot 

change the set of inputs. Exemplar generalizes FlexiGesture‘s approach into a design tool for 

variable of input and output configurations. We share the use of the dynamic time warping 

algorithm [218] for pattern recognition with FlexiGesture.  

We also drew inspiration for Exemplar from Fails and Olsen‘s Crayons technique for 

end-user training of computer vision recognizers [75]. Crayons enables users to sketch on 

training images, selecting image areas (e.g., hands or note cards) that they would like the 

vision system to recognize. Maynes-Aminzade‘s EyePatch [182], a visual tool to extract 

interaction events from live camera input data, expands on Crayons‘ interaction techniques. 

With EyePatch, users also directly operate on input images to indicate the kind of objects or 

events they would like to detect. While Crayons only supported a single recognition 

algorithm (induction of decision trees), EyePatch shows that different detection algorithms 

require different kinds of direct manipulation techniques. For example, training an object 

detector may require highlighting examples of objects in frames of multiple different video 

clips, while training a motion detector requires interaction techniques to select sequences of 

consecutive frames, and a visualization of the detected motion on top of the input video. 

Crayons and EyePatch complement our work well, offering a compelling solution to learning 

from images, where as Exemplar introduces an interface for learning from time-series data.  
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3.6 DESIGNING MULTIPLE ALTERNATIVES &  

RAPID EXPLORATION 

To explore the space of possible solutions to a design problem, single point designs are 

insufficient. Two strategies for enabling broader design space exploration are to build tools 

that support working with multiple alternatives in parallel; and tools that minimize the cost 

of making and exploring changes sequentially. This section reviews prior art in both areas. 

3.6.1 TOOLS FOR WORKING WITH ALTERNATIVES IN PARALLEL 

The research on alternatives in this dissertation, embodied in Juxtapose, was directly 

motivated by Terry et al.‘s prior work on tools for creating alternative solutions in image 

editing. Side Views [241] offer command previews, e.g., for text formatting, inside a tooltip. 

Parameter Spectrums [241] preview multiple parameter instances to help the user choose 

values. Similar techniques are now part of Microsoft Office 2007, attesting to the real-world 

impact of exploration-based tools. Parallel Pies [242] enable users to embed multiple image 

filters into a single canvas, by subdividing the canvas into regions with different trans-

formations. Since Juxtapose targets the domain of textual programming of interaction 

designs, its contributions are largely complementary. Unlike creating static visual media, the 

artifacts designed with Juxtapose are interactive and stateful, which requires integration 

between source and run-time environments. 

Terry also proposed Partials, an extension to Java syntax that delays assignment of 

values to variables until runtime [239:Appendix B]. Partial variables list a set of possible 

values in source code; at runtime, the developer can choose between these values through a 

generated interface. Juxtapose extends this work by contributing both authoring 

environment and runtime support for specifying and manipulating alternatives.  
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Automatic generation of alternatives was proposed in Design Galleries [181] a browsing 

interface for exploring parameter spaces of 3D rendered images. Given a formal description of 

a set of input parameters, an output vector of image attributes to assess, and a distance 

metric, the Design Galleries system computes a design-space-spanning set of variations, along 

with a UI for structured browsing of these images. Design Galleries require developers to 

manually specify a set of image features to steer a dispersion algorithm; options are then 

generated automatically. In Juxtapose, options are created by the designer. Juxtapose makes 

the assumption that the results of parameter changes can be viewed instantaneously, while 

rendering latency motivated Design Galleries. Table 3.4 shows a comparative overview of 

Design Galleries, Terry et al.‘s work, and Juxtapose. 

Subjunctive interfaces [177] introduced working with alternatives in information 

processing tasks. Multiple scenarios co-exist simultaneously and users are able to view and 

adjust scenarios in parallel. Clip, connect, clone [81] applies these interface principles to 

accessing web application data, e.g., for travel planning. There are no design tools for creating 

subjunctive interfaces; only applications that realize these principles in different information 

domains.  

Spreadsheets also inherently support parallel exploration through their tabular layout. 

Prior research has applied the spreadsheet paradigm to image manipulation [161] and in-

formation visualization [58]. Such graphical spreadsheets offer a more complex model of 

defining and modifying alternatives than Juxtapose‘s local-or-global editing. Investigating 

how a spreadsheet approach could extend to interaction design is an interesting avenue for 

future work.  

 Does evaluation of 
output require real-
time input? 

How are parameter  
values created? 

Who creates parameter-to-output 
mapping? 

Design 
Galleries 

No — output is a 
static image or a 
sequence of images. 

Generated by dispersion 
algorithm 

Expert specifies for each DG instance 

Side Views/ 
Parallel Pies 

No — output is a 
static image 

Mixed initiative: 
parameter spectrums 
are auto-generated; 
designers chooses values 

Mixed: image processing library 
provides primitives; designers 
compose primitives in  
Side Views 

Juxtapose Yes, output is a user 
interface 

Designer creates values 
in code alternatives or 
tunes at runtime 

Developers specify mapping in their 
source code 

Table 3.4: Differences between Design Galleries, set-based interaction, and Juxtapose 

are based on requirements of real-time input, method of alternative generation, and the 

source of input-output mapping. 
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TEAM STORM [101] addresses management of multiple sketches by a team of designers 

during collaborative ideation. The system, consisting of individual tablet devices and a shared 

display wall, allows design teams to manage and discuss multiple visual ideas. Like Terry‘s 

work, the system only addresses working with static visual media — interaction can be 

described in these sketches, but not implemented or tested.  

3.6.2 RAPID SEQUENTIAL MODIFICATION 

Rapid sequential changes, such as undo/redo actions are frequently used by graphic design 

professionals to explore alternatives [240]. In the realm of programmed user interfaces, 

research has explored several strategies to reduce the cost of making changes.  

CREATING CONTROL INTERFACES 

One strategy is to make data in a program modifiable at runtime. Many breakpoint debuggers 

for modern programming languages allow the inspection of runtime state when then program 

is suspended; some allow modification of the values as well. However, breakpoint debugging 

is not always feasible when testing interactions that require real-time user input. 

Furthermore, the user interface for parameter access has not been a focus of research in 

debuggers.  

In Juxtapose, suitable control interfaces are automatically generated.  Adobe‘s Pixel 

Bender Toolkit [20] also automatically creates control sliders for scalar parameters in image 

processing code. In this domain, the entire specified algorithm can be rerun whenever a 

parameter changes. Juxtapose offers a more general approach that enables developers to 

control what actions to take when a variable value is changed at runtime and to select which 

variables will be shown in the control interface. 

Juxtapose furthermore enables settings of multiple parameters to be saved in ―parameter 

snapshots.‖ The notion of parameter snapshots exists in Isadora [62], a visual dataflow 

language for multimedia authoring. In Isadora, the parameter sets are predetermined by the 

library of data processing nodes. The notion of parameter snapshots is also commonly found 

in music synthesizers. Many early synthesizers offered a fixed hardware architecture, i.e., a 

certain number of oscillators and filters. The different presets or sounds shipped with the 

synthesizer were essentially different parameter snapshots for that given architecture.  In 

Juxtapose, the programmer can define new variables for tuning in the source at any point. 
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LIVE CODING 

Beyond changing parameter values, some tools offer ―live‖ coding where source code can be 

modified while the program is executing. Interpreted languages such as Python may offer an 

interactive command line, which enables access to the internals of the running program. JPie 

[88] is an environment for Java education which permits real-time inspection and 

modification of all objects in a Java program. The Eclipse IDE [21] permits modifications of 

Java method contents in a running program. However, it is not always obvious when the 

modified class will be replaced in the virtual machine, and some modifications, e.g., to method 

signatures, require terminating and restarting the application. ChucK is a programming 

language expressly written for live music synthesis [246]. Juxtapose shares the goal of 

eliminating edit-compile-test cycles in favor of real-time adjustment. Juxtapose offers less 

flexibility than live coding languages for editing objects and logic. Conceptually, Juxtapose 

makes a distinction between a low-level source representation, and a higher-level set of 

―knobs‖ used for runtime manipulation. This higher-level abstraction allows for more 

controlled live improvisation. 

3.7 FEEDBACK FROM USER TESTING 

Prior research has investigated how to aid the analysis of user interface tests by making use of 

metadata generated either by the application being tested, by the system the application runs 

on, or by experimenters and users. Logged data is then either visualized directly, or it is used 

for structured access to other media streams, e.g., audio or video, also recorded during a test. 

Accelerating review and analysis of usability video data is especially valuable, as the high cost 

of working with video after its capture (in terms of person hours) restricts its use in 

professional settings today.  

Two literature surveys are available that cover most existing techniques in automatically 

capturing and analyzing test data. Hilbert and Redmiles presented a comparative survey of 

systems that extract usability data from application event traces for remote evaluation, where 

experimenter and participant are geographically separated [119]. Ivory and Hearst present a 

survey of techniques to automate aspects of usability testing [133]. Their taxonomy 

distinguishes techniques for automatic capture of data (e.g., event traces) from techniques for 

automated analysis (e.g., statistics), and techniques for automated critique (e.g., suggestions 

for improvement). Most existing work has focused on WIMP applications on desktop PCs or 
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on web applications that run inside a browser. Test support for other types of user interfaces 

has received less attention. 

3.7.1 IMPROVING WORK WITH USABILITY VIDEOS 

Several techniques correlate time-stamped event data and video of GUI application tests. 

Mackay, in an early paper [179], described challenges that have inhibited the utility of video in 

usability studies, and outlined video functionality that would be useful to usability 

researchers and designers: capturing multiple, timestamp-correlated data streams, spatial 

viewing of temporal events, symbolic annotation, and non-destructive editing and reordering. 

Mackay introduced EVA, which offers researcher-initiated annotation at record time and 

later on during review. All annotations in this system were generated explicitly by the 

experimenter. 

Hammontree et al. developed an early UI event logger that records low-level system 

events (key presses and mouse clicks). A programmable filter aggregates these observations 

into more meaningful, higher-level events such as command invocations. A ―Multimedia Data 

Analyzer‖ then allows researchers to select elements in the log of UI events to locate the 

corresponding point in time in the video [103]. Hammontree speculated that video analysis 

tools would be particularly appropriate to compare different UI prototypes.  

I-Observe by Badre et al. [38] enabled an evaluator to access synchronized UI event and 

video data of a user test by filtering event types through a regular expression language.  

Akers et al. [34] showed that for applications that support creative authoring tools, e.g., 

image editing and 3D modeling, collecting undo and redo events then filtering usability video 

around these occurrences is a successful strategy to uncover many relevant usability problems 

at a fraction of the time required to survey full video. 

While Weiler [247] suggests that solutions for event-structured video have been in place 

in large corporate usability labs for some time, their proprietary nature prevented us from 

learning about their specific functionality. Based on the data that is available, d.tools video 

analysis functions extend prior research and commercial work in three ways. First, they move 

off the desktop to physical UI design, where live video is especially relevant, since the 

designers‘ concern is with the interaction in physical space. Second, d.tools offers a bi-

directional link between software model and video where video can also be used to access and 

replay flow of control in the model. Third, d.tools introduces comparative techniques for 

evaluating multiple user sessions.  
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3.7.2 INTEGRATING DESIGN, TEST & ANALYSIS 

Most closely related to the design methodology embodied in d.tools is SUEDE [148], a design 

tool for rapidly prototyping speech-user interfaces (Figure 3.15). SUEDE introduces explicit 

support for the design-test-analyze cycle through dedicated UI modes. It also offers a low-

threshold visual authoring environment and Wizard of Oz support. At test time, SUEDE 

generates a wizard interface that allows the experimenter to guide the direction of a user test, 

by simulating speech recognition. SUEDE records a history of all user speech input and 

system speech output and makes that history available as a graphic transcript in analyze 

mode. SUEDE also computes statistics such as time taken to respond, and visualizes how 

many times a particular menu path was followed through varying link thickness. d.tools 

extends SUEDE‘s framework into a new application domain — physical user interfaces. It 

also adds integration of video analysis into the cycle. Like SUEDE, the d.tools system 

supports early-stage design activities. Aggregation and visualization of user sessions has also 

been applied to web site user tests in WebQuilt, where URL visitation patterns are logged 

using a proxy server [124]. 

3.8 TEAM FEEDBACK & UI REVISION 

Gaining feedback on a UI prototype through user testing has high external validity, but it is 

resource intensive. Design team members can also provide valuable feedback in different roles 

 

Figure 3.15: SUEDE introduced techniques to unite design, 

test, and analysis of speech user interfaces. 
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— as collaborators or as expert inspectors. Team members also have the design expertise to 

suggest changes. How can design tools aid this process of team-internal collaboration over 

prototypes and revision of prototypes? 

Research in word processing and other office productivity applications has introduced 

annotation and change tracking tools that allow suggestion of changes along with tracking a 

history of modifications. But outside word processing and spreadsheets, such tools are still 

lacking. Research in version control and document differencing systems has introduced a 

complementary set of algorithms and techniques that compute and visualize differences 

between documents after they are made. We review both areas briefly. 

3.8.1 ANNOTATION TOOLS 

Fish et al.‘s Quilt system [77] introduced annotation and messaging inside a word processor 

to support the social aspects of writing, noting that in some academic disciplines, the 

majority of publications are co-written by multiple authors. The combination of change 

tracking and commenting effectively enables asynchronous collaboration, where different 

members may have different functions, such as author, commenter, and reader [198]. In 

modern word processing tools, annotation and change tracking tools are now pervasive, 

attesting to the utility of asynchronous collaboration.  

Sketching has also been used to capture and convey changes and comments. In Paper 

Augmented Digital Documents, annotations are written on printed documents with digital 

pens; a pen stroke interpreter then changes a digital document accordingly [96]. In 

ModelCraft [232] physical 3D artifacts, created from CAD models, can be annotated with 

sketched commands to express extrusions, cuts, and notes. These annotations are then 

converted into changes in the underlying CAD model for the next iteration. d.note applies 

this approach of selectively interpreting annotations as commands to the domain of 

interaction design. 

3.8.2 DIFFERENCE VISUALIZATION TOOLS 

Change tracking editors record modifications as they happen. Another approach is to 

compute and visualize differences of a set of documents after they were edited. The well-

known diff algorithm computes a set of changes between two text two text files [128]. Offline 

comparison algorithms also exist for pairs of UML diagrams [86] and for multiple versions of 

slide presentations [74]. The d.note visual language for revising interaction design diagrams is 
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most closely related to the diagram differencing techniques introduced by Mehra et al. for 

CASE diagrams [184]. Difference visualization research contributes algorithms to identify and 

visualize changes. d.note contributes interaction techniques to create, test, and share such 

changes. 

3.8.3 CAPTURING DESIGN HISTORY 

Managing team feedback and design revisions is also related to research in capturing design 

histories, although the two fields have somewhat different goals. Design histories capture and 

visualize the sequence of actions that a designer or a design team took to get to a current 

point in their work. The visual explanations tend to focus on step-by-step transformations, 

e.g., for web site diagrams [149], illustrations [154,242], or information visualizations [116]. 

Revision tools such as d.note focus on a larger set of changes to a base document version, 

where the order of changes is not of primary concern. Design histories offer timeline-based 

browsing of changes in a view external to the design document; d.note offers a comprehensive 

view of a set of changes in situ, in the design document itself.  
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CHAPTER 4 AUTHORING SENSOR-BASED INTERACTIONS 

Ubiquitous computing devices such as portable information appliances — mobile phones, 

digital cameras, and music players — are growing quickly in number and diversity. In 

addition, sensing technologies are becoming pervasive, for example in game controllers, and 

sensor hardware is increasingly diverse and economical. To arrive at usable designs for the 

user interfaces of such physical devices, product designers have to be able to prototype the 

experience of interacting with a novel hardware device. This chapter presents two systems 

that bring prototyping of interactions based on sensor data input within reach of interaction 

designers. The first section introduces d.tools, an authoring environment that combines visual 

authoring of application logic with a novel plug-and-play hardware platform (Figure 4.1). The 

second section introduces Exemplar, an extension to d.tools that enables designers to author 

sensor-based interaction events through programming by demonstration.  

4.1 AUTHORING PHYSICAL USER INTERFACES WITH D.TOOLS 

Fieldwork with professional interaction designers revealed that the creation of ubiquitous 

computing prototypes has remained largely out of their reach. d.tools lowers the expertise 

threshold and time commitment required for creating ubiquitous computing prototypes 

through two contributions. The first contribution is a set of interaction techniques and 

 

Figure 4.1: Overview of prototyping with d.tools: A designer 

interacts both with a hardware prototype (left) and the 

authoring environment (right). 
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architectural features that support rapid, early-stage prototyping. d.tools introduces a visual, 

control flow-based prototyping model that extends existing storyboard-driven design 

practice [126]. To provide a higher ceiling than is possible with visual programming alone, 

d.tools augments visual authoring with textual programming. 

Second, d.tools offers an extensible architecture for physical interfaces. In this area, 

d.tools builds on prior work [37,43,92,93,159,185] that has shielded software developers from 

the intricacies of mechatronics through software encapsulation, and offers a similar set of 

library components. However, the d.tools hardware architecture is more flexible than prior 

systems by offering three extension points — at the hardware-to-PC interface, the intra-

hardware communication level, and the circuit level — that enable experts to extend the 

library.  

The rest of this section is organized as follows. We begin by outlining key findings of 

fieldwork that motivated our research. We then describe design principles, followed by the 

key interaction techniques for building, testing and analyzing prototypes that d.tools offers. 

We then outline implementation decisions and conclude with a report on three different 

strategies we have employed to evaluate d.tools. 

4.1.1 FIELDWORK 

To learn about opportunities for supporting iterative design of ubiquitous computing devices, 

we conducted individual and group interviews with eleven designers and managers at three 

product design consultancies in the San Francisco Bay Area, and three product design masters 

students. This fieldwork revealed that designing off-the-desktop interactions is not nearly as 

fluid as prototyping of either pure software applications or traditional physical products.  

Most product designers have had at least some exposure to programming but few have 

fluency in programming. Design teams have access to programmers and engineers, but 

delegating to an intermediary slows the iterative design cycle and increases cost. Thus, while 

it is possible for interaction design teams to build functional physical prototypes, the cost-

benefit ratio of ―just getting it built‖ in terms of time and resources limits the use of 

comprehensive prototypes to late stages of their process. Comprehensive prototypes that 

integrate form factor (looks-like prototypes) and functions (works-like prototypes) are 

mostly created as expensive one-off presentation tools and milestones, but not as artifacts for 

reflective practice. 

Interviewees reported using low-fidelity techniques to express UI flows, such as 

Photoshop layers, Excel spreadsheets, and sliding physical transparencies in and out of cases 
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(a glossy version of paper prototyping). However, they expressed their dissatisfaction with 

these methods since the methods often failed to convey the experience offered by the new 

design. In response, we designed d.tools to support rapid construction of concrete interaction 

sequences for experience prototyping [52] while leaving room to expand into higher-fidelity 

presentation models. 

4.1.2 DESIGN PRINCIPLES 

To guide the design of the d.tools authoring environment, we distilled the following design 

principles from our fieldwork observation and the general analysis of prototyping within the 

design process described in Chapter 2. 

FAVOR CONCRETE, SPECIFIC INTERACTION SEQUENCES OVER GENERAL FUNCTIONALITY 

The purpose of a UI prototype is to evoke the experience of using a future product, not to 

serve as an alpha version of the product. Exhibiting interactive behavior is a critical element 

for such prototypes, but only to the extent that it is needed to elicit the right feedback. 

Therefore, it is more important to rapidly build a concrete example of an interaction than to 

build general logic to handle different possible applications of the technique. Prototypes are 

concrete, narrow, and specific first; generalization and abstraction can be introduced at a 

later point. This guideline is a key differentiator between prototyping software and general 

programming tools.  

MINIMIZE COGNITIVE FRICTION BETWEEN WORKING IN HARDWARE AND SOFTWARE BY 

BRIDGING ABSTRACTION LAYERS 

When designing interactions for novel devices, more ―moveable parts‖ exist than in 

traditional GUI design: the shape of the physical device, the type and layout of input and 

output components, and the mapping of input events to application logic have to be defined 

in addition to the standard concerns of interface appearance, information architecture, and 

behavior. To reduce some of the complexity of dealing with different levels of abstraction, 

d.tools introduces a device designer that serves as a virtual stand-in of the physical device 

being created. The goal of this device representation is to reduce the cognitive friction 

involved in switching between working with hardware and working with software. 

OFFER IMMEDIATE, OBSERVABLE FEEDBACK ACROSS HARDWARE AND SOFTWARE 

To allow the designer to experience their own design, the time between authoring a change 

and seeing that change, or between providing test input and observing the result, should be 

minimized. To this end, tight coupling between the software and hardware domains is used 
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when appropriate: an action in physical space (e.g., pressing a button) should have an 

immediate, observable result in the authoring environment. Vice versa, an action in the 

authoring environment (e.g., changing a screen graphic) should have an immediate observable 

result in hardware as well (e.g., show the changed graphic on an external display).  

4.1.3 PROTOTYPING WITH D.TOOLS 

In this section we discuss the most important interaction techniques that d.tools offers to 

enable the rapid design of interactive physical devices. d.tools‘ goal is to support design 

thinking rather than implementation tinkering. Using d.tools, designers place physical 

controllers (e.g., buttons, sliders), sensors (e.g., accelerometers, force sensitive resistors), and 

output devices (e.g., LEDs, LCD screens, and speakers) directly onto their physical 

prototypes. The d.tools library includes an extensible set of smart components that cover a 

wide range of input and output technologies. Software proxy objects of physical I/O 

components can be graphically arranged into a visual representation of the physical device 

(Figure 4.2A). On the PC, designers then author behavior using this representation in a visual 

language inspired by both storyboards and the statechart formalism [105] (Figure 4.2B). A 

graphical user interface editor enables composition of graphics for screen output (Figure 

 

Figure 4.2: The d.tools authoring environment. A: device designer. B: storyboard editor. 

C: GUI editor. D: asset library. E: property sheet 
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4.2C). Visual interaction models can be augmented by attaching code to individual states. 

d.tools employs a PC as a proxy for an embedded processor to prevent limitations of 

embedded hardware from impinging on design thinking. Designers can test their authored 

interactions with the device at any point in time, since their visual interaction model is 

always connected to the ‗live‘ device.  

4.1.3.1 Designing Physical Interactions with ‘Plug and Draw’ 

Designers begin by plugging physical components into the d.tools hardware interface (which 

connects to their PC through USB) and working within the device designer of the authoring 

environment. When physical components are plugged in, they announce themselves to the 

d.tools authoring environment, creating virtual duals the device designer (Figure 4.3). 

Alternatively — when the physical components are not at hand or when designing 

interactions for a control that will be fabricated later — designers can create visual-only input 

and output components by dragging and dropping them from the device editor‘s palette. A 

designer can later connect the corresponding physical control or, if preferred, manipulate the 

behavior via Wizard of Oz [140,148] at test time.  

In the device designer (Figure 4.2A), designers create, arrange and resize input and 

output components, specifying their appearance by selecting images from an integrated image 

browser, the asset library (Figure 4.2D). Building a virtual, iconic representation of the 

physical device affords rapid matching of software widgets with physical I/O components and 

reduces the cognitive friction of switching between working with hardware and working 

with software. The device design can also be used to simulate interaction with a device: by 

selecting a simulation tool from the palette, clicking (for discrete inputs) and dragging (for 

 

Figure 4.3: d.tools plug-and-play: inserting a physical 

component causes a corresponding virtual component to 

appear in the d.tools device designer.  
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continuous inputs) injects input events into the d.tools system as if the associated hardware 

input component had been pressed, moved, etc.  

The component library available to designers comprises a diverse selection of inputs and 

outputs. Supported inputs include: discrete buttons and switches, rotary and linear 

potentiometers, rotary encoders, light sensors, accelerometers, infrared rangers, temperature 

sensors, force sensitive resistors, flex sensors, and RFID readers. Outputs include LCD 

screens, LEDs, DC motors, servo motors, and speakers. LCD and sound output are connected 

to the PC A/V subsystem, not our hardware interface. In addition, general purpose input and 

output circuit boards are available for designers who wish to build custom components. 

Physical and virtual components are linked through a hardware address that serves as a 

unique identifier of an input or output.  

4.1.3.2 Authoring Interaction Models 

Designers define their prototype‘s behavior by creating interaction diagrams in the storyboard 

editor (Figure 4.2B). States are graphical instances of the device design. They describe the 

content assigned to the outputs of the prototype at a particular point in the UI: screen images, 

sounds, and LED behaviors. States are created by dragging from the editor palette onto the 

storyboard canvas. As in the device editor, content can be assigned to output components of a 

state by dragging and dropping items from the asset library (Figure 4.2D) onto a component. 

All attributes of states, components and transitions (e.g., image filenames, event types, data 

ranges) can also be manipulated in text form via attribute sheets (editable tables that list 

attribute names and values – Figure 4.2E). To define graphic output, a graphical user interface 

editor provides common GUI design functionality: entering and positioning text, and loading, 

resizing and positioning graphical elements (Figure 4.2C). The designed graphical user 

interface is unique to each state. 

Transitions represent the control flow of an application; they define rules for switching 

the currently active state in response to user input (hardware events). The currently active 

state is shown with a red outline. Transitions are represented graphically as arrows 

connecting two states. To create a transition, designers mouse over the input component 

which will trigger the transition and then drag onto the canvas. A target copy of the source 

state is created and source and target are connected. Transitions are labeled with an icon of 

the triggering input component (Figure 4.4A).  

Conditions for state transitions can be composed using the Boolean AND/OR 

expressions (Figure 4.4B). A single Boolean connective is applied to all conditions on a 
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transition arrow, as complex Boolean expressions are error prone. Boolean combinations 

allow authoring conditionals such as ‗transition if the accelerometer is tilted to the right, but 

only if the tilt-enable button is held down simultaneously.‘ More complex conditionals can be 

authored by introducing additional states.  

To define discrete events for continuous sensors, designers define upper and lower 

thresholds for a sensor‘s value. Whenever the sensor value transitions into the threshold 

region, a transition event is generated. To help designers visualize such sensor thresholds, a 

graph showing both recent sensor history and threshold lines can be displayed on demand 

above the transition arrow utilizing the event (Figure 4.4C). 

Within the visual editor, timers can be added as input components to a device to create 

automatic transitions or (connected with AND to a sensor input) to require a certain amount 

of time to pass before acting on input data. Automatic transitions are useful for sequencing 

output behaviors, and timeouts have proven valuable as a hysteresis mechanism to prevent 

noisy sensor input from inducing rapid oscillation between states.  

While the storyboard aids a designer‘s understanding of the overall control flow of the 

prototype, complex designs still benefit from explanation. d.tools supports commenting with 

text notes that can be freely placed on the storyboard canvas.  

4.1.3.3 Raising the Complexity Ceiling of Prototypes 

The state-based visual programming model embodied in d.tools enables rapid design of the 

information architecture of prototypes, but the complexity of the control flow and interactive 

behavior that can be authored is limited. To support refining designs and permit higher-

fidelity behaviors, d.tools provides two mechanisms that enable more complex interactions: 

parallel states and code extensions. 

 

Figure 4.4: d.tools interaction techniques. A: creating new transitions through dragging. 

B: adding a new condition to an existing transition. C: Visualizing sensor signal input and 

thresholds in context. D: parallel active states. E: editing code attached to a state. 
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PARALLEL STATES 

Expressing parallelism in single point-of-control state diagrams results in an exponentially 

growing number of states. Our first-use study also showed that expressing parallelism via 

cross products of states is not an intuitive authoring technique. To support authoring parallel, 

independent functionality, multiple states in d.tools can be active concurrently in 

independent sub-graphs (e.g., the power button can always be used to turn the device off, 

regardless of the other state of the model – Figure 4.4D). One limitation of parallel states in 

d.tools is that the system currently lacks an explicit mechanism to define what behavior 

should occur when two states try to assign output to the same component simultaneously. 

ATTACHING CODE 

To specify behaviors that are beyond the capability of the visual language (e.g., dynamically 

generating animations tied to user input), designers can attach textual code to visual states. 

The right-click context menu for states offers actions to edit and hook or unhook code for 

each state (Figure 4.7E). A d.tools API provides read and write access to hardware 

components, and allows procedural animation of graphics objects on screen. We 

implemented two different alternatives of d.tools code extensions — one with compiled Java 

classes, and one with interactively interpreted Java — to explore the tradeoffs of mixing 

visual and textual programming. 

The compiled Java extension leverages the Eclipse programming environment‘s rich Java 

editing functionality. When users right-click on a visual state and choose the edit code 

command, d.tools generates a skeleton Java class file and launches the native Eclipse Java 

editor, which provides auto-completion, syntax highlighting, and integrated help. The 

primary benefit of this path is that is offers Eclipse‘s mature toolset. However, the toolset also 

brings with it a steep learning curve and a discontinuous authoring experience for two 

reasons. First, Eclipse targets professional software engineers and favors generality and 

completeness; many of the UI options offered are irrelevant to the more narrowly scoped task 

of writing state code in d.tools. Second, Java is a very verbose, strongly & statically typed, 

object-oriented language. The combination of these features requires designers to fully 

understand the object oriented development paradigm to make use of d.tools code extension 

— a barrier that proved too high in conversations with our target users.  

In response to the identified complexity challenge, later versions of d.tools replaced the 

compiled Java architecture with an interactive interpreter which supports standard Java 

syntax but also offers ―syntactic sugar‖ which results in much more concise code that focuses 
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on expressing the intended logic. The scripted Java extension trades off more concise and 

structurally simpler code against limited editor support for detecting syntax errors, 

suggesting corrections, and debugging. 

 EXECUTING INTERACTION MODELS AT DESIGN TIME 

Designers can execute interaction models in three ways. First, they can manipulate the 

attached hardware. Second, they can imitate hardware events within the software workbench 

by using a simulation tool. Clicking on input components with the simulation tool then 

generate synthetic input events, e.g., button presses and release events, that are used to drive 

the interaction model as if real hardware input events had been received. Third, designers can 

employ a Wizard of Oz approach where they observe a user interacting with the prototype, 

and manually change the active state in the editor with their mouse. 

4.1.4 ARCHITECTURE AND IMPLEMENTATION 

Implementation choices for d.tools hardware and software emphasize both a low threshold 

for initial use and extensibility through modularity at architectural seams. In this section we 

describe how these design concerns and extensibility goals are reflected in the d.tools 

architecture. 

4.1.4.1 Plug-and-Play Hardware 

d.tools contributes a plug-and-play hardware platform that enables tracking identity and 

presence of smart hardware components for plug-and-play operation. I/O components for 

low-bandwidth data use a common physical connector format so designers do not have to 

worry about which plugs go where. Smart components each have a dedicated small 

microcontroller; an interface board coordinates communication between components and a 

   

Figure 4.5: The d.tools hardware interface (left). Individual smart components (middle) 

are can be plugged into any bus connector (right). 
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PC (Figure 4.5). Components plug into the interface board to talk on a common I2C serial 

bus [32] (Figure 4.6). The I2C bus abstracts electrical characteristics of different kinds of 

components, affording the use of common connectors. The interface board acts as the bus 

master and components act as I2C slaves. A USB connection to the host computer provides 

power and the physical communication layer. 

Atmel microcontrollers are used to implement this architecture because of their low cost, 

high performance, and programmability in C. The hardware platform is based around the 

Atmel ATmega128 microcontroller [22] on a Crumb128 development board from chip45 [172]. 

I/O components use Atmel ATtiny45 microcontrollers [23]. Programs for these chips were 

compiled using the open source WinAVR tool chain and the IAR Embedded Workbench 

compiler. Circuit boards were designed in CADsoft Eagle, manufactured by Advanced 

Circuits and hand-soldered. 

d.tools distinguishes audio and video from lower-bandwidth components (buttons, 

sliders, LEDs, etc.). The modern PC A/V systems already provide plug-and-play support for 

audio and video; for these components d.tools uses the existing infrastructure. For graphics 

display on the small screens commonly found in information appliances, d.tools includes LCD 

displays which can be connected to a PC graphics card with video output. This screen is 

controlled by a secondary video card connected to a video signal converter. Displays that 

receive both graphics commands and power through a single USB connection are also 

becoming available and can be substituted. 

4.1.4.2 Hardware Extensibility 

Fixed libraries limit the complexity ceiling of what can be built with a tool by knowledgeable 

 

Figure 4.6: Schematic diagram of the d.tools hardware infrastructure. Smart components 

are networked on an I2C bus. A master microcontroller communicates over a serial-over-

USB connection with the computer running the d.tools authoring environment. 
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users. While GUIs have converged on a small number of widgets that cover the design space, 

no such set exists for physical UIs because of the greater variety of possible interactions in the 

real world. Hence, extending the library beyond what ‗comes with the box‘ is an important 

concern. In the d.tools software, extensibility is provided by its Java hooks. In the d.tools 

hardware architecture (Figure 4.6) extensibility is offered at three points: the hardware-to-

PC interface, the hardware communication level, and the electronic circuit. This allows 

experts with sufficient interest and skill to modify d.tools to suit their needs. 

d.tools hardware and a PC communicate by exchanging OpenSoundControl (OSC) 

messages [256] over a USB serial connection. OSC was chosen for its open source API, 

existing hardware and software support, and human readable addressing format (components 

have path-like addresses — e.g., buttons in d.tools are labeled /btn1 or /btn6.) By 

substituting devices that can produce OSC messages or software that can consume them, 

d.tools components can be integrated into different workflows. For example, music synthesis 

programs such as Max/MSP [18] can receive sensor input from d.tools hardware. Connecting 

other physical UI toolkits to d.tools involves developing an OSC wrapper. As a proof of 

concept, we have written such a wrapper to connect Phidgets InterfaceKits [93]. 

Developers can extend the library of smart I/O components by adding components that 

are compatible with the industry standard I2C serial communication protocol. I2C offers a 

large base of existing compatible hardware. For example, the accelerometers used in d.tools 

projects are third party products that send orientation to d.tools via on-board analog-to-

digital converters. Presently, adding new I2C devices requires editing of source code for the 

master microcontroller; this configuration step could also be pushed up to the d.tools 

authoring environment.  

On the circuit level, d.tools can make use of inputs that vary in voltage or resistance and 

drive outputs with on/off control and pulse width modulation. This allows designers versed 

in circuit design to integrate new sensing and actuation technologies at the lowest level. This 

level of expansion is shared with other hardware platforms that offer direct pin access to 

digital I/O lines and A2D converters.  
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4.1.4.3 Software 

To leverage the benefits of a modern IDE, d.tools was implemented in Sun‘s Java JDK 5 as a 

plug-in for the open-source Eclipse platform. Its visual editors are fully integrated into the 

Eclipse development environment [21]. d.tools uses the Eclipse Graphical Editing Framework 

(GEF) for graphics handling [24]. d.tools file I/O is done via serialization to XML, which 

enables source control of project files in ASCII format using version control tools. The design 

environment is platform independent except for ―glue‖ code for USB port communication, 

and has been tested under Windows and Mac OS X.  

CODE EXTENSIONS 

The compiled Java code extension leverages the Eclipse programming environment‘s rich Java 

editing and compilation functionality. Eclipse automatically compiles the user‘s code into 

class files. d.tools, on entering a new state, uses a custom Java class loader to search for any 

new class files for the current state, and, if found, instantiates the class and calls its API 

methods. The initial d.tools Java API is reproduced in Table 4.1. 

The subsequently developed scripted code extension model builds on BeanShell, a Java 

interpreter [200]. The interpreter‘s namespace is populated by d.tools with objects matching 

both hardware I/O components and graphics components defined in each state. For example, 

if a button with the name ―upButton‖ exists in the device designer, then a variable 

corresponding to a Button object with name ―upButton‖ will be present in the interpreter. 

Similarly, if a screen graphic object with the name ―menuGraphic‖ is defined in a particular 

state, then a corresponding object with name ―menuGraphic‖ will be accessible in the script 

Function Description 

enterState() Is called when the code’s associated state receives focus in the statechart 
graph. 

update(String component,  

Object newValue) 
Is called when a new input event is received while the code’s state has 
focus. The component’s hardware address (e.g., “/btn5” for a button) is 
passed in as an identifier along with the updated value (Booleans for discrete 
inputs, Floats for continuous inputs, and Strings for RFID tags). 

getInput(String 

component) 
Queries the current value of an input.  

setOutput(String 

component, Object 

newValue) 

Controls output components. LCD screens and speakers receive file URLs, 
and LEDs and general output components Booleans for on/off. 

println(String msg) Outputs a message to a dedicated debug view in our editor. 

keyPress(KeyEvent e) 

keyRelease(KeyEvent e) 

Inserts keyboard events into the system’s input queue (using Java Robots)  
to remote control external applications. 

Table 4.1: The d.tools Java API allows designers to extend visual states with source 

code. The listed functions serve as the interface between designers’ code and the d.tools 

runtime system. Standard Java classes are also accessible. 
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of that state. The technique of creating objects based on name properties entered in a direct 

manipulation interface is also present in other GUI editors such as Adobe Flash. 

For programming animations, the interpreter uses a polling method for calling user-

defined graphics routines. If the user defines a function called loop(), that function is called 

repeatedly at 30Hz, a rate sufficient for generating animations. This polling technique is 

conceptually more straightforward than event callbacks and was inspired by its successful 

use in the end-user graphics programming environment Processing [210]. 

A challenge we noted in the compiled Java model was that persisting data for sharing 

between different states was cumbersome. To facilitate defining globally accessible variables 

and functions, the scripted Java extension therefore added the concept of a ―global script‖ in 

addition to individual state scripts. Variables and functions declared in the global script are 

accessible to all state scripts. Global scripts are reloaded whenever the project files are saved. 

State-specific scripts are executed whenever the associated graphical state becomes active. 

The complete d.tools scripting API is reproduced in Table 4.2 and some examples of the API 

in use are given in Figure 4.7  

//working with text objects 

text1.setText(“Hello”); 

text1.setText(text1.getText()+”, World!”); 

text1.setFontSize(24);  

 

//resize the image “clipImg” based on  

//two button events 

loop() { 

 

  //scale down 

  if(btnDown.getValue())  

    clipImg.setScale(clipImg.getScale()-5); 

 

  //scale up 

  if(btnUp.getValue()) { 

    clipImg.setScale(clipImg.getScale()+5); 

 

  //center image on stage 

  clipImg.setXY(stage.getWidth()/2- 

                clipImg.getWidth()/2, 

                stage.getHeight()/2- 

                clipImg.getHeight()/2); 

} 

Figure 4.7: Code examples for the d.tools scripting API. 
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Global Functions for Drawing and Accessing Hardware 

Function Description 
void loop() If the user‘s state script defines a loop function, 

the function will be called repeatedly at 
interactive rates while the given state is active. 

void print(String msg) Print a message to the debug console. 
boolean ditigalRead(String compName) 

void digitalWrite (String compName, 

                   boolean value) 

Read the last known state of a discrete input 
component such as a button or switch with 
identifier compName, Write a new value. 

float analogRead (String compName) 

void analogWrite (String compName,  

                  float value) 

Read the last known value of a continuous input. 
Write to a pulse-width modulated output 
component such as a PWM LED 

Hardware Component Proxy Objects 
component.setValue(boolean v)  

component.setValue(float v) 

 

Set the state of the component named 
―component‖; overloaded based on component 
type (discrete or PWM output). Corresponds to 
digitalWrite() and analogWrite() above. 

boolean component.getValue()  

float component.getValue() 

int component.getValue() 

Read the last known state of the component 
named ―component‖; overloaded based on 
component type (discrete, continuous or 
identity-reporting). Corresponds to 
digitalRead() and analogRead() above. 

GUI Objects: Stage 
int getWidth(), int getHeight() Return the width and height of stage, as defined 

in the device designer. 
void setColor (int r, int g, int b) 

int getColor(String which) 
Set/get the stage color. 

GUI Objects: Graphic Clips 
void setWidth(int w) 

void setHeight(int h) 

int getWidth(), int getHeight() 

Set/get the width and height of the clip object. 

int getX(), int getY() 

void setX(int x), void setY(int y) 
Set/get the position of the clip object. 

setVisible(boolean v) 

boolean isVisible() 
Set/get the visibility of the clip object. 

setImage(String filename) 

String getImage() 
Set/get the image displayed by this clip object. 

GUI Objects: Text 
setX(int x), setY(int y), 

int getX(), int getY() 
Set/get the position of the text object. 

setVisible(Boolean v) 

boolean isVisible() 
Set/get the visibility of the text object. 

setText(String text) 

String getText() 
Set/get the string displayed by the text object. 

setFontSize(int size) 

int getFontSize() 
Set/get the text font size. 

  

Table 4.2: The d.tools scripting API provides both global and object-oriented functions to 

interact with hardware, and a concise object-oriented set of function for manipulating GUI 

elements. 
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4.1.5 EVALUATION 

In this section, we outline the methodological triangulation we employed to evaluate and 

iteratively refine d.tools.  First, to ascertain the expertise threshold of d.tools, we conducted a 

first-use lab study with thirteen design students and professional designers. Second, the 

author and other members of our research group rebuilt prototypes of existing devices and 

used d.tools in two research projects. Third, we made d.tools hardware kits available to 

students in a project-centric interaction design course at our university. 

4.1.5.1 Establishing Threshold with a First Use Study 

We conducted a controlled laboratory study of d.tools to assess the ease of use of our tool; the 

study group comprised 13 participants (6 male, 7 female) who had general design experience. 

Three participants served as pilot testers to refine the testing protocol. Participants were 

given three design tasks of increasing scope to complete with d.tools within 90 minutes. Most 

participants were students or alumni of design-related graduate programs at our university. 

Sessions started with a demonstration of the d.tools software editor and the hardware 

components by the experimenters. We then gave participants two narrowly defined tasks 

and one open-ended design project. For the first task, participants were asked to complete a 

menu navigation design that the experimenter had started during the demonstration. For the 

second task, participants were asked to build a functional physical prototype of a device with 

one button and one switch as inputs, and one LED and a speaker as outputs. Pressing the 

button should play a sound clip and toggling the switch should turn the LED on or off. The 

two components were to function independently of each other. 

The third assignment was to begin prototyping a digital music player for children. 

Participants were given written guidelines such as ―children prefer dedicated controls and 

like elements that move better than buttons.‖ As the study allotted only 30 to 45 minutes for 

this part, participants were informed that they were not expected to produce a finished 

product. To sketch and build physical prototypes, we provided an 18‖ × 24‖ paper pad, sheets 

of foam core, pens, a selection of tools, glue and tape, and a label printer. As the final step of 

the study, participants were asked to complete a 26 question survey. 
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STUDY RESULTS 

All participants successfully completed both close-ended tasks, regardless of prior experience 

in user interface design or physical computing. Task one took a mean of 9 minutes while task 

two took a mean of 24 minutes to complete (Figure 4.8). 

For the music player design task, participants followed heterogeneous approaches: some 

started by exploring the ergonomics of different shapes to determine input component 

placement; others focused on requirements analysis on paper; yet others worked exclusively 

in software. d.tools was most frequently used for determining layout of interaction 

components in the device designer, and reasoning about the interaction model in the 

storyboard designer. Two participants with prior physical computing experience built 

functional physical prototypes with navigation and sound playback in less than 30 minutes.  

SUCCESS OF A LOW THRESHOLD AND TIGHT COUPLING  

Almost all users commented positively on the tight coupling of hardware components and 

their software counterparts, especially the automatic recognition of hardware connections. 

Authoring storyboards through link-and-create actions was immediately intuitive. Refining 

default behaviors through text properties and expressing functional independence in a 

  

Figure 4.8: Task completion times, and prior experience and 

expertise of d.tools study participants. Participants completed 

task 1 in an average of 9 minutes, and task 2 in an average 

of 24 minutes. These times demonstrate that prototyping with 

d.tools is fast enough to be appropriate for early-stage design. 
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storyboard took longer; nevertheless, participants mastered these strategies by the end of the 

session.  

After an initial period of learning the d.tools interface, participants spent much of their 

time with design thinking — reasoning about how their interface should behave from the user‘s 

point of view instead of wondering about how to implement a particular behavior. This was 

especially true for authoring UI navigation flows. 

The experimenter asked participants to hand over the devices built for the second task to 

test whether the required functionality had been achieved   — while observing this on-the-spot 

user test, many subjects expressed the wish to iterate on their designs and produced another 

version two to ten minutes later. This suggests the advantage of the rapid iteration cycles that 

d.tools enables. In a post-test survey (Figure 4.9), participants consistently gave d.tools high 

marks for enabling usability testing (µ=4.6 on 5 point Likert scale), shortening the time 

required to build a prototype (µ=4.3), and helping to understand the user experience at design 

time (µ=4.25).  

NEEDS: SOFTWARE SIMULATION, LARGER LIBRARY, RICHER FEEDBACK 

One significant shortcoming discovered through the study was the lack of software 

simulation of an interaction model: the evaluated version did not provide a mechanism for 

stepping though an interaction without attached hardware. . This prompted the addition of 

our software simulation mode. Specifying sensor parameters textually worked well for 

subjects who had some comfort level with programming, but were judged disruptive of the 

 

Figure 4.9: Post-test survey results from the d.tools user 

study. Participants provided responses on Likert scales. 
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visual workflow by others. Interaction techniques for graphically specifying sensor ranges 

were added to address this issue. Users also wished for aggregate inputs that have become 

standard navigation elements for information appliances such as combined up/down buttons, 

five-way joysticks, and keypads.  

4.1.5.2 Rebuilt Existing and Novel Devices 

To evaluate the expressiveness of d.tools‘ visual language, we recreated prototypes for four 

existing devices — an Apple iPod Shuffle music player, the back panel of a Casio EX-Z40 

digital camera (Figure 4.10A), Hinckley et al.‘s Sensing PDA [121] (Figure 4.10B), and 

Partridge et al.‘s TiltType [202] text entry device. The iPod Shuffle is a digital music player 

without a screen where all playback options are controlled through tactile switches. For the 

digital camera, we prototyped image review mode, where users can navigate through images, 

zoom, crop, and delete images. The Sensing PDA uses an accelerometer to detect device pose 

and adjust display orientation accordingly. An infrared distance sensor can detect whether 

the device is held close to a user‘s face; a force-sensitive touch sensor detects whether the 

device is held. The TiltType device uses a dual-axis accelerometer in conjunction with 

momentary switches under the user‘s index fingers to explore orientation-based text entry 

techniques. We distilled the central functionality of each device and prototyped these key 

interaction paths. 

Additionally, two research projects in our group used d.tools to provide physical input 

for table and wall interfaces. The tangible drawers project explored physical drawers as a file 

access metaphor for a shared tabletop display [112]. The author built four drawer mechanisms 

mounted underneath the sides of a DiamondTouch interactive table (Figure 4.10C, Figure 

4.10D). Opening and closing these drawers controlled display of personal data collections, 

and knobs on the drawers allowed users to scroll through their data. Ju et al. used d.tools to 

explore proxemics for interactive whiteboards through an array of infrared distance sensors 

mounted to the frame of a wall display [137] (Figure 4.10E). 

From these exercises, we learned that interactive physical prototypes have two scaling 

concerns: the complexity of the software model, and the physical size of the prototype. d.tools 

diagrams of up to 50 states are visually understandable on a desktop display (1920 × 1200); 

this scale is sufficient for the primary interaction flows of current devices. Positioning and 

resizing affords effective visual clustering of subsections according to gestalt principles of 

proximity and similarity. However, increasing transition density makes maintaining and 

troubleshooting diagrams taxing, a limitation shared by other visual authoring environments.  
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Figure 4.10: Some applications built with d.tools in our research group. A: digital camera 

image navigation. B: sensor-enhanced smart PDA. C & D: tangible drawers for a multi-user 

interactive tabletop. E: proxemics-aware whiteboard. F: TiltType for orientation-based text 

entry. 
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In the tangible drawers project, the presence of multiple independent drawers prompted 

the need for multiple concurrently active states. This project as well as Range also required 

sensor data access from an existing Java application. d.tools can interact with existing 

applications in one of two ways: state change information and raw sensor data can be 

received by a 3rd party application using socket communication; or d.tools can inject mouse 

and keyboard events into the operating system event queue, a technique termed screen poking 

(similarly to Hudson‘s Thumbtacks project [127]). The first method was used to interface 

with the our other research project code bases; it raises the question which parts of the 

interaction should be authored in d.tools, and which parts in the external application‘s source 

code. Screen poking was used by the author to prototype accelerometer-based zoom and pan 

control for the Google Earth application in less than 30 minutes. However, screen poking is a 

brittle technique as d.tools is unaware of the internal state of the controlled application; it is 

therefore less useful for more complex prototypes. 

The first author also served as a physical prototyping consultant to a prominent design 

firm. Because of a focus on client presentation, the design team was primarily concerned with 

the polish of their prototype — hence, they asked for integration with Flash. From a research 

standpoint, this suggests — for ―shiny prototypes‖ — a tool integrating the visual richness of 

Flash with the computational representation and hardware abstractions of d.tools. 

4.1.5.3 Teaching Experiences — HCI Design Studio 

We deployed the d.tools hardware and software to student project teams in a master‘s level 

HCI design course at Stanford [150]. Students had the option of using d.tools (among other 

technologies) for their final project, the design of a tangible interface. Seven of twelve groups 

used d.tools. In the following year, d.tools was offered again to students in the class. In this 

real-world deployment, we provided technical assistance and tracked usability problems, bug 

reports, and feature requests. Figure 4.11 provides an overview of some projects built by 

students.  

SUCCESSES 

Students successfully built a range of innovative interfaces. Examples include a wearable 

watch that allows children to record and trade secret audio messages, a color mixing interface 

in which children can ―pour‖ color from tangible buckets onto an LCD screen, and an 

augmented clothes rack that offers product comparisons and recommendations via hanger 

sensors and built-in lights. 
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Figure 4.11: Some student projects built with d.tools. A: a tangible color mixing device 

where virtual color can be poured from physical paint buckets by tilting them over an LCD 

screen. B: a message recording system for children to exchange secrets. C: a smart 

clothes rack can detect which hangers are removed from the rack and display fashion 

advice on a nearby screen. D: a mobile shopping assistant can scan barcodes of grocery 

items and present sustainability information relating to the scanned item on its screen. E: 

a tangible audio mixer to produce cell phone ring tones. F: an accelerometer-equipped 

golf club used as a game controller.  
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Students were able to work with supplied components and extend d.tools with sensor 

input not in the included library. For example, the color mixing group integrated mechanical 

tilt switches and vibration motors into their project. 

SHORTCOMINGS DISCOVERED 

Remote control of third party applications (especially Flash) was a major concern for 

students — in fact, because d.tools did not have a graphical user interface editor in the 

supplied version, two student groups chose to develop their project with Phidgets [93], as it 

offers a Flash API. To address this need, we first released a Java API for the d.tools hardware 

with similar connectivity. We observed that student groups that used solely textual APIs 

ended up writing long-winded state machine representations using switch or nested 

conditional statements; the structure of their code could have been more concisely captured 

in our visual language. The need for direct control over GUI graphics also motivated the later 

addition of the d.tools graphical user interface editor.  

4.1.6 D.TOOLS MOBILE 

The d.tools architecture was designed to focus on prototypes that involve custom hardware. 

Might it also offer benefits for prototyping interfaces for commodity hardware, such as smart 

phones? To understand the utility of d.tools for mobile interaction design, we collaborated 

with Nokia to enable real-time input from and output to smart phones (Figure 4.12). 

 

Figure 4.12: A d.tools mobile prototype on a Nokia N93 smart 

phone, with the storyboard logic of the prototype in the 

background. 
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With the d.tools mobile system, designers author functionality in the standard visual 

environment. Designers do not need to create a device definition; they can load a pre-created 

model that matches layout of phone input keys and screen. For running and testing such 

prototypes, a custom d.tools client application is loaded onto a phone. This client intercepts 

all input events (i.e., key presses) and sends them over a wireless connection to the PC 

running d.tools, where they are used to trigger state transitions. Output commands resulting 

from state transitions are then sent to the phone to display graphics or play sounds (Figure 

4.13). In essence, the phone is turned into a terminal, while all application logic executes in 

the d.tools authoring environment. Our current implementation was written in Python for 

Nokia S60 phones. We are using a Wi-Fi connection for message passing. Messages are sent 

as OpenSoundControl packets over UDP. 

BENEFITS  

We have tested the d.tools mobile approach informally in our lab and with collaborators at 

Nokia. A primary benefit of our approach is that it sidesteps many of the pain points of 

developing and deploying prototypes on phones, since development and execution both 

remain on the PC. In addition, the state of the phone application can be monitored in d.tools. 

It is also possible to change the interaction logic in the middle of a test. d.tools mobile is 

especially suited for quick exploration of applications with relatively static individual screens 

— a storyboard can be assembled in a few minutes and tested on the target device. Because of 

the reliance on a common messaging protocol, OSC, it is also possible to add external sensors 

connected to a d.tools hardware interface and explore interactions that rely on sensor input 

not provided by the phone itself. 

 

Figure 4.13: The d.tools mobile system architecture uses 

socket communication over a wireless connection to receive 

input events and send output commands to a smart phone. 
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LIMITATIONS  

d.tools mobile also has multiple important limitations, some fundamental to its execution 

model, others merely due to its nature as research software. Fundamentally, interactivity is 

limited by the roundtrip latency of sending an event to d.tools, and receiving a message with 

output commands in return. Mobile devices have to trade off network latency and battery life, 

and as a result, we observed roundtrip latencies of 200-1000 milliseconds, with a large 

amount of jitter (the variation in latency). While fast enough for discrete control tasks such 

as navigating from screen to screen, d.tools mobile is not fast enough for continuous control 

tasks such as smooth panning or zooming. Latency and jitter will further increase if users try 

to take the device out of the lab and switch from a wireless Ethernet connection to a cellular 

data connection. This limits the applicability of d.tools mobile for testing outside the lab.  

An important pragmatic limitation of our implementation is that the d.tools scripting 

language has not been ported to d.tools mobile yet. Thus dynamic behaviors cannot yet be 

implemented. Adding script execution is not trivial as it requires deciding which commands 

should be executed on the phone itself, and which commands should be executed on the PC. 

For example, graphics commands such as translation, rotation, and scaling are best executed 

on the phone itself so large graphics files don‘t have to be transmitted. Also, only keyboard 

input is currently supported. Although processing data from built-in phone sensors is 

certainly possible, the appropriate modules exposing such data to the Python programming 

language were not available to us. 

To understand the relative benefits and limitations of d.tools mobile, we compare design 

decisions of d.tools mobile and important related work in Table 4.3. Ballagas‘ iStuff Mobile 

[42] is the most related system, as it also executes logic on a PC. iStuff mobile targets higher-

fidelity development of mobile applications where phones are one among multiple devices in a 

ubiquitous computing ecology, while d.tools mobile targets lower-fidelity UI walkthroughs. 
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4.1.7 LIMITATIONS & EXTENSIONS 

To conclude our discussion of the d.tools system, this final section points out important 

limitations of the current architecture and implementation, and suggests paths for extensions. 

4.1.7.1 Dynamic Graphics Require Scripting  

One important limitation of the current d.tools authoring environment is that achieving 

dynamic graphic output, e.g., continuous animations, is only possible through the built-in 

scripting API; it cannot be authored visually. This is partially a side-effect of choosing states 

as the first-level abstraction. Consequently, information architecture can be rapidly 

prototyped, but more detailed work on temporal aspects of the user interface is not well 

supported.  

Commercial tools [6,1] exist that focus on rapid creation of animated traditional, 

desktop-bound user interfaces. Flash Catalyst for instance also uses states as an abstraction 

principle, but lets designers specify explicitly how to animate transitions for individual 

graphical elements for each transition. Other research has looked into how to specify 

animations directly through stylus input [68,164]. However, it is likely insufficient to 

translate these techniques directly into the d.tools environment, as they do not offer support 

 d.tools mobile iStuff mobile Flash Lite Juxtapose 
mobile 

Authoring 
Environment 

Visual (d.tools 
state diagrams) 

Visual + Code 
(Quarts 
Composer + 
JavaScript) 

Visual + Code 
(Adobe Flash IDE 
+ ActionScript) 

Code 
(ActionScript) 

Where does 
computation 
happen? 

PC PC Phone Phone 

Supported Input Phone keyboard, 
external sensors 

Phone keyboard, 
external sensors 

Phone hardware 
only 

Phone hardware 
only 

Supported 
Output 

Phone screen, 
sound 

Phone screen, 
sound, external 
screens 

Phone screen, 
sound 

Phone screen, 
sound 

Can application 
be inspected 
while running? 

Yes No? No No 

Can application 
be modified 
while running? 

Yes No No Yes (Tuning + 
Alternatives) 

Table 4.3: Comparison of d.tools mobile and related mobile prototyping tools. 
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for binding animation to the variety of possible input devices and input events in d.tools. 

Promising directions for this problem are to either use a visual dataflow paradigm [129] to 

link input events to graphical objects or to author constraints by demonstration [164]. 

4.1.7.2 Hierarchical Diagrams Not Supported 

d.tools in its current version does not support hierarchical levels of abstraction for states. This 

limits the complexity of prototypes that can be built with d.tools. While we implemented 

parallel state machines (independent sub-graphs where one state is currently active in each 

sub-graph), we did not implement support for hierarchical abstraction. Abstraction has three 

primary benefits:  

1. expressing multi-level logic, e.g., events that should apply to a set of states  

2. enabling reuse of previously authored components  

3. preserving screen real estate by collapsing the visual representation of clusters  

Harel‘s original conception of statecharts [105] derives its visual economy from the notion of 

state clusters. Clustering also exists in dataflow languages such as Max/MSP [18]. One 

challenge with introducing a more powerful authoring abstraction is ensuring that this 

concept does not raise the expertise threshold required for novices to the tool. In informal 

testing, we found the notion of parallel states not well received by designers. One reason is 

that in parallel states, what will be shown to the user of a designed prototype is never 

completely visible in a single point in the diagram. Reasoning about program state now 

requires mentally combining the behavior of multiple active states. Similarly, reasoning about 

―what happens next‖ can be quite complex under multiple states active in parallel. 

4.1.7.3 Screen Real Estate Not Used Efficiently 

The current version of d.tools needlessly expends a large area of screen real estate by 

repeatedly displaying the device design, i.e., the set of input and output components arranged 

in a 2D layout, for every state in the state diagram. Having such a depiction of the device in 

each state enables the current authoring technique for creating transitions:  clicking on an 

input component, then dragging out an arrow and releasing over a different state. But most of 

the pixels dedicated to this state display are only needed during this transition authoring. At 

other times, they clutter the diagram and reduce overall legibility. Hiding the device design 

would free up more pixels which could either be used to show more complex diagrams, or to 

devote more screen real estate to showing the graphical output of each state, by making the 

states bigger. 
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One possible solution achieve space savings while keeping the current authoring 

technique would be a dynamic visualization where the device design is hidden by default and 

states only show output and transitions. On mouse-rollover or another explicit invocation 

mechanism, the full design is temporarily shown to allow easy transition authoring. The 

implementation of such a technique is straightforward for the standard GUI case, where there 

is only a single display. It is less clear how to automatically create a suitable state abstraction 

when multiple output components are defined. Two possible options are to  automatically 

rearrange the component layout; or to give the designer explicit control over how this second 

representation should look in the device designer. 

4.1.7.4 Lack of Support for Actuation 

While d.tools supports output to LEDs, DC motors, and servo motors, most of our effort has 

been concentrated on how to support sensor data input. We have not yet sufficiently 

explored the space of more complex actuation. In particular, output is controlled at the single 

output component level — one has to author behavior for each LED in each state individually. 

Such limitations are analogous to programming screen output by only writing single pixels. 

Many interactive projects employ arrays of displays or mechanical actuators (e.g.,Hansen and 

Rubin‘s Listening Post [104], or Rozin‘s Wooden Mirror [215]). Tools should therefore 

support output abstractions that address collections of output devices. Also, hardware and 

power supply design becomes a consideration when dealing with multiple outputs. The 

current hardware interface would need redesign to support a wider variety of actuators.  

Yet a different problem arises from the tethered nature of the d.tools kit: one can‘t currently 

explore interactions that rely on precise timing and low latency feedback loops, such as for 

haptic interactions. Haptic motor control routines require update rates near 1kHz. In the 

current d.tools architecture, control loops execute at less than 100Hz, because every message 

has to be relayed from the hardware interface to the PC and back.  

4.1.7.5 Prototypes Have to be Tethered to PC by Wire 

d.tools prototypes (other than d.tools for mobile phones) are currently restricted to be used 

inside the design studio because because of the required tether cable linking them to a PC. 

The tether has two functions: it is used for data exchange, since the interaction model itself 

lives on the PC, and it provides power for the hardware interface sensors (actuators may need 

additional, separate power). There are two general strategies for cutting this tether.  
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First, replacing the cable with a wireless data connection and operating the hardware 

platform with batteries. D.tools mobile follows this approach: mobile phones send input 

events to the PC over a WiFi connection, and receive output events in return. The advantage 

of this approach is that the designer can follow in real-time on the PC what state the 

prototype is in, and can make on-the-fly changes. The disadvantage is that one has to be 

within range of the wireless signal. 

A second approach is to execute interaction models directly on embedded hardware. 

This could be achieved by either a) running the d.tools Java state machine code on an 

embedded processor that can execute Java or b) by generating code for the target embedded 

platform separately. We have done preliminary work in the first direction by connecting 

components to an embedded Intel XScale platform that can execute interaction models. 

Stepping beyond 8-bit microcontrollers also enables on-board graphics. The advantage of this 

approach is that the created devices are completely standalone and do not require a PC 

anymore. The disadvantage is that prototype behavior can no longer be tracked and visualized 

on the PC. 
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4.2 EXEMPLAR: PROGRAMMING SENSOR-BASED INTERACTIONS 

BY DEMONSTRATION 

d.tools and other physical computing toolkits have lowered the threshold for connecting 

sensors and actuators to PCs [37,43,93,127,159], and for prototyping the application logic of 

systems that make use of sensors and actuators. Accessing sensor data from software has 

come within reach of designers and end users.  

However, our experience of deploying d.tools in the classroom showed that specifying 

the relationship between sensor input and application logic remains problematic for 

designers and students alike for three reasons. First, most current tools, such as Arduino 

[185], require using textual programming to author sensor-based behaviors. Representations 

are most effective when the constraints embedded in the problem are visually manifest in the 

representation [201]. Thus, numbers alone are a poor choice for making sense of continuous 

signals as the relationship between performed action and reported values is not visually 

apparent. Second, existing visual tools (e.g., LabView [15]) were created with the intent of 

helping engineers and scientists perform signal analysis; as such, they do not support 

straightforward authoring of interactions. This leaves users with a significant gulf of 

execution, the gap between their goals and the actions needed to attain those goals with the 

system [132]. Third, the large time and cognitive commitment implied by a lack of tools 

inhibits rapid iterative exploration. Creating interactive systems is not simply the activity of 

translating a pre-existing specification into code; there is significant value in the epistemic 

experience of exploring alternatives [145]. One of the contributions of direct manipulation 

and WYSIWYG design tools for graphical interfaces is that they enable this ‗thinking through 

doing‘ — the aim of our work is to provide a similarly beneficial experience for sensor-based 

interactions. 

This section contributes techniques for enabling a wider audience of designers and 

application programmers to turn raw sensor data into useful events for interaction design 

through programming by demonstration. It introduces a rapid prototyping tool, Exemplar 

(Figure 4.14), which embodies these ideas. The goal of Exemplar is to enable users to focus on 

design thinking (how the interaction should work) rather than algorithm tinkering (how the 

sensor signal processing works). Exemplar frames the design of sensor-based interactions as 

the activity of performing the actions that the sensor should recognize — we suggest this 

approach yields a considerably smaller gulf of execution than existing systems. With 

Exemplar, a designer first demonstrates a sensor-based interaction to the system (e.g., she 
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shakes an accelerometer). The system graphically displays the resulting sensor signals. She 

then edits that visual representation by marking it up, and reviews the result by performing 

the action again. Through iteration based on real-time feedback, the designer can refine the 

recognized action and, when satisfied, use the sensing pattern in d.tools or other prototyping 

applications. The primary contributions of this work are:  

1) A method of programming by demonstration for sensor-based interactions that 

emphasizes designer control of the generalization criteria for collected examples. 

2) Integration of direct manipulation and pattern recognition through a common visual 

editing metaphor.  

3) Support for rapid exploration of interaction techniques through the application of the 

design-test-analyze paradigm [109,148] on a much shorter timescale as the core 

operation of a design tool. 

Programming by demonstration as a technique was introduced in Chapter 3.5. The rest of this 

section is organized as follows: we first describe relevant characteristics of sensors and 

sensor-based interactions to position our work. We provide an overview of the design 

principles embodied in Exemplar, then describe the research system, its interaction 

techniques and implementation. We finally report on two evaluation methods we have 

employed to measure Exemplar‘s utility and usability. 

 

Figure 4.14: Iterative programming by demonstration for 

sensor-based interactions: A designer performs an action; 

annotates its recorded signal in Exemplar; tests the 

generated behavior; and exports it to d.tools. 
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4.2.1 SENSOR-BASED INTERACTIONS 

This section introduces an analysis of the space for sensor-based interactions from the 

designer‘s point of view. Prior work has successfully used design spaces as tools for thinking 

about task performance [57] and communicative aspects [46] of sensing systems. Here we 

apply this approach to describe the interaction designer‘s experience of working with 

sensors. This design space foregrounds three central concerns: the nature of the input signals, 

the types of transformations applied to continuous input, and techniques for specifying the 

correspondence between continuous signals and discrete application events. 

4.2.1.1 Binary, Categorical, and Continuous Signals 

As prior work points out [214], one principal distinction is whether sensing technologies 

report continuous or discrete data. Most technologies that directly sample physical 

phenomena (e.g., temperature, pressure, acceleration, magnetic field) output continuous data. 

For discrete sensors, because of different uses in interaction design, it is helpful to distinguish 

two sub-types: binary inputs such as buttons and switches are often used as general triggers; 

while categorical data inputs (multi-valued) such as RFID are principally used for 

identification. A similar division can be made for the outputs or actuators employed. 

Exemplar focuses on continuous input in one or more dimensions; it does not support 

working with categorical input data. 

4.2.1.2 Working with Continuous Signals 

Sensor input is nearly always transformed for use in an interactive application. Continuous 

transformation operations fall into three categories: signal conditioning, calibration, and 

mapping. Signal conditioning is about ‗tuning the dials‘ so the signal provides a good 

representation of the phenomenon of interest, thus maximizing the visual signal-to-noise 

ratio. Common steps in conditioning are de-noising a signal and adjusting its range through 

scaling and offsetting. Calibration relates input units to real-world units. In scientific 

applications, the exact value in real-world units of a measured phenomenon is of importance. 

However, for the majority of sensor-based interfaces, the units of measurement are not of 

intrinsic value. Mapping refers to a transformation from one parameter range into another. 

Specifying how sensor values are mapped to application parameters is a creative process, one 

in which design intent is expressed. Exemplar offers support for both conditioning sensor 

signals and for mapping their values into binary, discrete, or continuous sets. When 

calibration is needed, experts can use Exemplar‘s extensible filter model.  
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4.2.1.3 Generating Discrete Events 

A tool to derive discrete actions from sensor input has to choose both a detection algorithm 

and appropriate interaction techniques for controlling algorithm parameters. The 

computationally most straightforward approach is thresholding — comparing a single data 

point to fixed limits. However, without additional signal manipulations, e.g., smoothing and 

derivatives, thresholds are susceptible to noise and cannot characterize events that depend on 

change over time. Matching tasks such as gesture recognition require more complex pattern 

matching techniques. Exemplar offers both thresholding with filtering and pattern matching. 

Equally important is the user interface technique employed to control how the 

computation happens. Threshold limits can be effectively visualized and manipulated as 

horizontal lines overlaid on a signal graph. The parameters of more complex algorithms are 

less well understood in our experience. Exemplar thus frames threshold manipulation as the 

principal mechanism for authoring discrete events. Exemplar contributes an interaction 

technique to cast parameterization of the pattern matching algorithm as a threshold 

operation on matching error. Through this technique, Exemplar creates a consistent user 

experience for authoring with both thresholding and pattern matching. 

4.2.2 DESIGN PRINCIPLES 

The following four design principles were derived from our analysis of sensor-based 

interactions. 

FOCUS ON GENERATING DISCRETE EVENTS FROM CONTINUOUS SIGNALS 

What kind of output should Exemplar produce? The previous section has argued that many of 

the most interesting potential input sources are continuous, and that discrete events are an 

important output category. Discrete events can be used to trigger transitions in d.tools, which 

provided the original motivation for this project, as well is an in other rule-based authoring 

systems. Signal mapping and parameter estimation (extracting not only a discrete category 

but also continuous parameters from sensor data) are separate problems left for future work. 

LEVERAGE DEMONSTRATION TO PARTIALLY SPECIFY COMPUTATION;  

GIVE THE DESIGNER EXPLICIT CONTROL OF THE REMAINING STEPS  

The crucial step in the success of any Programming by Demonstration system is the 

generalization from a small set of examples to general rules that can be applied to new input 

(see Section 3.5). When authoring recognizers for sensor data traces generated from human 

action, one has to contend with the ambiguity inherent in any recognition-based system: 
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there will be both misses and false positives. Giving the designer an understanding of the 

performance of the authored interaction and a handle on improving recognition accuracy 

requires showing a representation of what was learned. Exemplar uses data visualization for 

this task. Importantly, these visualizations are interactive — they can be manipulated to 

change parameters of the recognition algorithm. 

PROVIDE REAL-TIME VISUAL FEEDBACK OF BOTH HARDWARE EVENTS AND  

APPLICATION-GENERATED EVENTS 

One primary challenge for a designer of sensor-based interactions is trying to make sense of 

both the data streams from sensors, as well as the interaction events that are generated as a 

result. To aid this sensemaking task, Exemplar provides real-time visualizations of both 

incoming sensor data and outgoing event data in a unified graph window. Combining the two 

types of information in the same display helps designers reason about why a particular action 

did (or did not) happen. 

PROVIDE ACCESS TO HISTORY OF COLLECTED SENSOR DATA 

When tuning parameters of recognition algorithms, it is important to determine how those 

changes affect not only new performances of an action that should be recognized, but also 

past performances that have served as demonstrations or tests. Exemplar therefore records 

the entire history incoming sensor data and can visualize how any of these previous actions 

would have been recognized (or not recognized) given the latest recognition parameters. 

Reviewing this history can act as a lightweight regression test, to ensure that actions that 

were correctly recognized in the past are still recognized after a parameter change.  

In the next section, we describe how the design principles outlined here are manifest in 

Exemplar‘s UI. 
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4.2.3 DESIGNING WITH EXEMPLAR 

Designers begin by connecting sensors to a compatible hardware interface, which in turn is 

connected to a PC running Exemplar (Figure 4.15). As sensors are connected, their data 

streams are shown inside Exemplar. The Exemplar UI is organized according to a horizontal 

data-flow metaphor: hardware sensor data arrives on the left-hand side of the screen, 

undergoes user-specified transformations in the middle, and arrives on the right-hand side as 

discrete or continuous events (Figure 4.16). The success of data-flow authoring languages 

such as Max/MSP attests to the accessibility of this paradigm to non-programmers. 

 

Figure 4.15: The Exemplar authoring environment offers visualization of live sensor data 

and direct manipulation techniques to interact with that data. 

 

 

Figure 4.16: Sensor data flows from left to right in the Exemplar UI. 
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4.2.3.1 Peripheral Awareness 

Live data from all connected sensors is shown in a small multiples configuration. Small 

multiples are side-by-side ‗graphical depictions of variable information that share context, 

but not content‘ [245]. The small multiples configuration gives a one-glance overview of the 

current state of all sensors and enables visual comparison (Figure 4.15A). Whenever a signal is 

‗interesting,‘ its preview window briefly highlights in red to attract the designer‘s attention, 

then fades back to white. In the current implementation, this occurs when the derivative of a 

sensor signal exceeds a preset value. Together, small multiple visualization and highlighting 

afford peripheral awareness of sensor data and a visual means of associating sensors with 

their signals. This tight integration between physical state and software representation 

encourages discovery and narrows the gulf of evaluation, the difficulty of determining a 

system‘s state from its observable output [132]. For example, to find out which output of a 

multi-axis accelerometer responds to a specific tilt action, a designer can connect all axes, tilt 

the accelerometer in the desired plane, and look for the highlighted thumbnail to identify the 

correct input channel. Constant view of all signals is also helpful in identifying defective 

cables and connections. 

4.2.3.2 Drilling Down and Filtering 

Designers can bring a sensor‘s data into focus in the large central canvas by selecting its 

preview thumbnail (Figure 4.15C). The thumbnails and the central canvas form an overview + 

detail visualization [227]. Designers can bring multiple sensor data streams into focus at once 

by control-clicking on thumbnails. Between the thumbnail view and the central canvas, 

Exemplar interposes a filter stack (Figure 4.15B). Filters transform sensor data interactively: 

the visualization always reflects the current set of filters and their parameter values. 

Exemplar maintains an independent filter stack for each input sensor. When multiple filters 

are active, they are applied in sequence from top to bottom; filters can be reordered. 

Exemplar‘s filter stack library comprises four operations for conditioning and mapping: 

1. Offset: adds a constant value 

2. Y-axis scaling:  multiplies the sensor value by a scalar, including signal inversion  

3. Smoothing: convolves the signal with one-dimensional Gaussian kernel to suppress high 

frequency noise 

4. Rate of change: takes the first derivative.  
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These four operations were chosen as the most important for gross signal conditioning and 

mapping; a later section addresses filter set extensibility. 

Interaction with the filtered signal in the central canvas is analogous to a waveform 

editor of audio recording software. By default, the canvas shows the latest available data 

streaming in, with the newest value on the right side. Designers can pause this streaming 

visualization, scroll through the data, and change how many samples are shown per screen. 

When fully zoomed out, all the data collected since the beginning of the session is shown.  

4.2.3.3 Demonstration and Mark-Up 

To begin authoring, the designer performs the action she wants the system to recognize. As an 

example, to create an interface that activates a light upon firm pressure, the designer may 

connect a force sensitive resistor (FSR) and press on it with varying degrees of force. In 

Exemplar, she then marks the resulting signal curve with her mouse. The marked region is 

highlighted graphically and analyzed as a training example. The designer can manipulate this 

example region by moving it to a different location through mouse dragging, or by resizing the 

left and right boundaries. Multiple examples can be provided by adding more regions. 

Examples can be removed by right-clicking on a region. 

In addition to post-demonstration markup, Exemplar also supports real-time annotation 

through a foot switch (chosen because it leaves the hands free for holding sensors). Using the 

switch, designers can mark regions at the same time they are working with sensors. Pressing 

the foot switch starts an example region; the region grows while the switch remains pressed, 

and concludes when the pedal is released. While this technique requires some amount of 

hand-foot coordination, it enables true real-time demonstration. 

4.2.3.4 Recognition and Generalization 

Recognition works as follows: interactively, as new data arrives for a given sensor, Exemplar 

analyzes if the data matches the set of given examples. When the system finds a match with a 

portion of the input signal, that portion is highlighted in the central canvas in a fainter shade 

of the color used to draw examples (Figure 4.15C). This region grows for the duration of the 

match, terminating when the signal diverges from the examples. 

Exemplar provides two types of matching calculations — thresholds and patterns — 

selectable as modes for each event (Figure 4.15D). With thresholding, the minimum and 

maximum values of the example regions are calculated. The calculation is applied to filtered 

signals, e.g., it is possible to look for maxima in the smoothed derivative of the input. 
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Incoming data matches if its filtered value falls in between the extrema. Pattern matching 

compares incoming data against the entire example sequence and calculates a distance metric 

(to what extent incoming data resembles the example). Input matches when the distance 

metric is closer than a user-specified value. 

Matching parameters can be graphically adjusted through direct manipulation. For 

threshold events, min and max values are shown as horizontal lines in the central canvas. 

These lines can be dragged with the mouse to change the threshold values (see Figure 2G). 

Parameters can be adjusted interactively: matched regions are automatically recalculated and 

repainted whenever parameters change. Thus, Exemplar always shows how the signal would 

have been classified. This affords rapid exploration of how changes affect the overall 

performance of the matching algorithm. 

Sensor noise can lead to undesirable oscillation between matching and non-matching 

states. Exemplar provides three mechanisms for addressing this problem. First, a smoothing 

filter can be applied to the signal. Second, the designer can apply hysteresis, or double 

thresholding. In double thresholding, a boundary is represented by two values which must 

both be traversed for a state change. Dragging the hysteresis field of a graphical threshold 

manipulator (indicated by ―H‖ in Figure 4.15G) splits a threshold into two boundary lines. 

The difference between boundary values is determined by the drag distance. Third, designers 

can drag a timeout bar from the right edge of the central canvas to indicate the minimum 

duration for a matching or non-matching state to be stable before an event is fired.  

For pattern matching, Exemplar introduces a direct manipulation technique that offers a 

visual thresholding solution to the problem of parameterizing the matching algorithm (Figure 

 

Figure 4.17: Exemplar shows output of the pattern matching 

algorithm on top of the sensor signal (in orange). When the 

graph falls below the threshold line, a match event is fired. 
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4.17). Exemplar overlays a graph plotting distance between the incoming data and the 

previously given example on the central signal canvas. The lower the distance, the better the 

match. Designers can then adjust a threshold line indicating the maximum distance for a 

positive match. When the distance graph falls below the threshold line, an event is fired. 

With this technique, the designer‘s authoring experience is consistent whether applying 

thresholds or pattern matching. In both cases, dragging horizontal threshold bars adjusts the 

specificity of the matching criteria. 

4.2.3.5 Event Output 

Exemplar supports the transformation from sensor-centric input into application-centric 

events. Exemplar generates two kinds of output events: continuous data streams that 

correspond to filtered input signals; and discrete events that are fired whenever a 

thresholding or pattern matching region is found. With these events in hand, the designer 

then needs to author some output, e.g., she needs to specify the application‘s response to the 

force sensor push. To integrate Exemplar with other design tools, events and data streams can 

be converted into operating system input events such as key clicks or mouse movements. 

Injecting OS events affords rapid control over third party applications (cf. [127]). However, 

injection is relatively brittle because it does not express association semantics (e.g., that the 

key ‗P‘ pauses playback in a video application). For tighter integration with application logic, 

Exemplar can also be linked to d.tools. Exemplar events are then used to trigger transitions in 

d.tools‘ interaction models. 

4.2.3.6 Many Sensors, Many Events 

Exemplar scales to more complex applications by providing mechanisms to author multiple 

events for a single sensor; to run multiple independent events for different sensors 

simultaneously; and to author events that combine multiple sensors‘ data to create a single 

event.  

To the right of the central canvas, Exemplar shows a list of event definitions for the 

currently active sensor(s) (Figure 4.15E). Designers can add new events and remove 

unwanted events in this view. Each event is given a unique color. A single event from this list 

is active for editing at a time, and regions drawn by the designer in the central canvas always 

apply to that active event. 

The authored events for all sensors are always evaluated, and corresponding output is 

fired, regardless of which sensor is in focus in the central canvas — this allows designers to 
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author multiple interactions simultaneously. To keep this additional state visible, a tree 

widget shows authored events for all sensors along with their example regions in the lower 

right corner of the UI (Figure 4.15F).  

Finally, Exemplar enables combining sensor data in Boolean AND fashion (e.g., ‗scroll the 

map only if the accelerometer is tilted to the left and the center button is pressed‘). When 

designers highlight multiple sensor thumbnails, their signals are shown stacked in the central 

canvas. Examples are now analyzed across all shown sensor signals and events are only 

generated when all involved sensors match their examples. Boolean OR between events is 

supported implicitly by creating multiple events. Together, AND/OR combinations enable 

flexibility in defining events. They reduce, but do not replace the need to author interaction 

logic separately. 

4.2.3.7 Demonstrate-Edit-Review 

The demonstrate-edit-review cycle embodied in Exemplar is an application of the design-test-

think paradigm for tools introduced in prior work [109,148]. This paradigm suggests that 

integrating support for evaluation and analysis into a design tool enables designers to gain 

more insight about their project, faster. Exemplar is the first system to apply design-test-

think to the domain of sensor data analysis. More importantly, Exemplar radically shortens 

the iteration times by an order of magnitude (from hours to minutes) by making 

demonstration, edit, and review actions the fundamental authoring operations in the user 

interface.  

4.2.4 IMPLEMENTATION & ARCHITECTURE 

Exemplar was written using the Java 5.0 SDK as a plug-in for the Eclipse IDE. Integration 

with Eclipse offers two important benefits: first, the ability to combine Exemplar with the 

d.tools prototyping tool to add visual authoring of interaction logic; second, extensibility for 

experts through an API that can be edited using Eclipse‘s Java tool chain. The graphical 

interface was implemented with the Eclipse Foundation‘s SWT toolkit [25]. 

4.2.4.1 Signal Input, Output, and Display 

Consistent with the d.tools architecture, our hardware communicates with Exemplar using 

OpenSoundControl (OSC) [256]. This enables Exemplar to connect to any sensor hardware 

that supports OSC. At the present time, three hardware interfaces boards are supported: the 

d.tools I/O board, and the Wiring [45] and Arduino [185] boards with OSC firmware. OSC 
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messages are also used to send events to other applications, e.g., d.tools, Max/MSP, or Flash 

(with the help of a relay program). Translation of Exemplar events into system key presses 

and mouse movements and clicks is realized through the Java Robots package. 

Exemplar visualizes up to eight inputs. This number is not an architectural limit; it was 

chosen based on availability of analog-to-digital ports on common hardware interfaces. 

Sensors are sampled at 50 Hz with 10-bit resolution and screen graphics are updated at 15-20 

Hz. These sampling and display rates have been sufficient for human motion sensing and 

interactive operation. However, we note that other forms of input, e.g., microphones, require 

higher sampling rates (8-40 kHz). Support for such devices is not yet included in the current 

library. 

4.2.4.2 Pattern Recognition 

We implemented a Dynamic Time Warping (DTW) algorithm to match demonstrated 

complex patterns with incoming sensor data. DTW was first used as a spoken word 

recognition algorithm [218], and has recently been used in HCI for gesture recognition from 

sensor data [186]. DTW compares two time-series data sets and computes a metric of the 

distortion distance required to fit one to the other. It is this distance metric that we visualize 

and threshold against in pattern mode. DTW was chosen because, contrary to many machine 

learning techniques, only one training example is required. The DTW technique used in this 

work is sufficiently effective to enable the interaction techniques we have introduced. 

However, we point out that — like related work utilizing machine learning in UI tools [70,75] 

— we do not claim optimality of this algorithm in particular. 

More broadly, this research — and that of related projects — suggests that significant 

user experience gains can be realized by integrating machine learning and pattern recognition 

with direct manipulation. From a developer‘s perspective, taking steps in this direction may 

be less daunting than it first appears. For example, Exemplar‘s DTW technique comprises 

only a small fraction of code size and development time. We have found that the primary 

challenge for HCI researchers is the design of appropriate interfaces for working with these 

techniques, so that users have sufficient control over their behavior without being 

overwhelmed by a large number of machine-centric ‗knobs.‘  

4.2.4.3 Extensibility 

While Exemplar‘s built-in filters are sufficient for a large number of applications, developers 

also have the option of writing their own filters, leveraging Eclipse‘s auto-compilation feature 
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for real-time integration. Developers derive from an abstract filter base class in their code and 

override functions for processing data. Users then specify a directory where Exemplar should 

search for compiled filter class files. Exemplar periodically scans that directory and adds 

successfully loaded extensions to the filter stack UI panel where they can be activated, 

deactivated and reordered like built-in filters. This architecture allows engineers on design 

teams to add to the filter arsenal and for users to download filters off the web. Exemplar‘s 

filter architecture was inspired by audio processing architectures such as Steinberg‘s VST 

[26], which defines a mechanism how plug-ins receive data from a host, process that stream, 

and return results. VST has dramatically expanded the utility of audio-editing programs by 

enabling third parties to extend the library of processing algorithms. 

4.2.5 EVALUATION 

Our evaluation followed a three-pronged approach. First, we applied the Cognitive 

Dimensions of Notation framework to Exemplar to evaluate the design tradeoffs of Exemplar 

as a visual authoring environment. Second, we conducted a first-use study in our lab to 

determine threshold and utility for novices, as well as to find usability problems. Third, we 

used Exemplar in public demonstrations and interactive installations to measure real-world 

performance with a larger group of participants. 

4.2.5.1 Cognitive Dimensions Usability Inspection 

The Cognitive Dimension of Notation (CDN) framework offers a high-level inspection 

method to evaluate the usability of information artifacts [89,90]. In CDN, artifacts are 

analyzed as a combination of a notation they offer and an environment that allows certain 

manipulations of the notation. CDN is particularly suitable for analysis of visual programming 

languages. We conducted a CDN evaluation of Exemplar following Blackwell and Green‘s 

Cognitive Dimensions Questionnaire [47] to allow the reader to revisit Exemplar according to 

categories independently identified as relevant, and to facilitate comparison with future 

research systems. This analysis begins with an estimate of how time is spent within the 

authoring environment, and then proceeds to evaluate the software against the framework‘s 

cognitive dimensions. 

TIME SPENT 

Exemplar‘s main notation is a visual representation of sensor data with user-generated mark-

up. Lab use of Exemplar led us estimate that time is spend as follows: 
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30% Searching for information within the notation  

(browsing the signal, visually analyzing the signal) 

10% Translating amounts of information into the system (demonstration) 

20% Adding bits of information to an existing description  

(creating and editing mark up, filters) 

10% Reorganizing and restructuring descriptions  

(changing analysis types, redefining events) 

30% Playing around with new ideas in notation without being sure what will result 

(exploration) 

This overview highlights the importance of search, and the function of Exemplar as an 

exploratory tool.  

DIMENSIONS OF THE MAIN NOTATION 

We present a discussion of the most relevant CDN dimensions here.  

VISIBILITY AND JUXTAPOSABILITY (ABILITY TO VIEW COMPONENTS EASILY):  

All current sensor inputs are always visible simultaneously as thumbnail views, enabling 

visual comparison of input data. Viewing multiple signals in close-up is also possible; 

however, since such a view is exclusively associated with ‗AND‘ events combining the shown 

signals, it is not possible to view independent events at the same time. 

VISCOSITY (EASE OR DIFFICULTY OF EDITING PREVIOUS WORK): 

 Event definitions and filter settings in Exemplar are straightforward to edit through direct 

manipulation. The hardest change to make is improving the pattern recognition if it does not 

work as expected. Thresholding matching error only allows users to adjust a post-match 

metric as the internals (the ‗how‘ of the algorithm) are hidden. 

DIFFUSENESS (SUCCINCTNESS OF LANGUAGE):  

Exemplar‘s notation is brief, in that users only highlight relevant parts of a signal and define a 

small number of filter parameters through graphical interaction. The length of event 

descriptions is dependent on the Boolean complexity of the event expressed (how many 

ORs/ANDs of signal operations there are). 

HARD MENTAL OPERATIONS:  

Most mental effort is required to keep track of events that are defined and active, but not 

visible in the central canvas. To mitigate against this problem we introduced the overview list 

of all defined interactions (Figure 4.15F) which minimizes cost to switch between event 
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views. One important design goal was to make results of operations visible immediately in 

Exemplar. 

ERROR-PRONENESS (SYNTAX PROVOKES SLIPS):  

One slip occurred repeatedly in our use of Exemplar: resizing example regions by dragging 

their boundaries. This was problematic because no visual feedback was given on what the 

valid screen area was to initiate resizing. Lack of feedback resulted in duplicate regions being 

drawn, with an accompanying undesired recalculation of thresholds or patterns. Improved 

mouse manipulators on regions can alleviate this problem. 

CLOSENESS OF MAPPING:  

The sensor signals are the primitives users are operating on. This direct presentation of the 

signal facilitates consistency between the user‘s mental model and the system‘s internal 

representation. 

ROLE-EXPRESSIVENESS (PURPOSE OF A COMPONENT IS READILY INFERRED):  

Problems with role-expressiveness often arise when compatibility with legacy systems is 

required. Since Exemplar was designed from scratch for the express purpose of viewing, 

manipulating and marking up signals, this is not a problem. While the result of applying 

operations is always visible, the implementation ―meaning‖ of filters and pattern recognition 

is hidden. 

SECONDARY NOTATIONS:  

Currently, Exemplar permits users to label events, but not filter settings or regions of the 

signal. If deemed important, this is an area for future work. 

PROGRESSIVE EVALUATION:  

Real-time visual feedback enables evaluation of the state of an interaction design at any point. 

Furthermore, Exemplar sessions can be saved and retrieved through serialization to disk.  

In summary, Exemplar performs well with respect to visibility, closeness of mapping, 

and progressive evaluation. Many of the identified challenges stem from the difficulties of 

displaying multiple sensor visualizations simultaneously. These can be addressed through 

interface improvements — they are not inherent to the approach. 
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4.2.5.2 First-Use Study 

We conducted a controlled study of Exemplar in our laboratory to assess the ease of use and 

felicity of our tool for design prototyping. The study group comprised twelve participants. 

Ten were graduate students or alumni of our university; two were undergraduates. While all 

participants had some prior HCI design experience, they came from a variety of educational 

backgrounds: four from Computer Science/HCI, four from other Engineering fields, two from 

Education, and two from the Humanities. Participants‘ ages ranged from 19 to 31; five were 

male, seven female. Two female participants served as pilot testers. Eight participants had had 

some prior exposure to sensor programming, but none reported to be experts (Figure 4.19). 

STUDY PROTOCOL 

Participants were seated at a dual-screen workstation with a d.tools hardware interface. The 

Exemplar software was shown on one screen, a help document on sensors was shown on the 

other. Participants were asked to author interactions that controlled graphics on a large 

projection display (Figure 4.18). We chose this large display to encourage participants to 

think beyond the desk(top) in their designs. We chose graphical instead of physical output 

since our study focused on authoring responses to sensor input only, not on actuation.  

Individual study sessions lasted two hours. Sessions started with a demonstration of 

Exemplar. We also introduced the set of available sensors, which comprised buttons, 

 

Figure 4.18: Exemplar study setup: participants were seated 

at a dual monitor workstation in front of a large wall display. 

 

 

Figure 4.19: Self-reported prior experience of Exemplar study 

participants. 
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switches, capacitive touch sensors, light sensors, infrared distance rangers, resistive position 

sensors, force sensitive resistors (FSRs), load cells, bend sensors, 2D joysticks and 3D 

accelerometers. Participants were given three design tasks. For each task, we provided a 

mapping of triggers available in Exemplar to output behaviors in the instructions (e.g., 

sending an event called ―hello‖ activated the display of the hello graphic in the first task). 

The first task was a simple ―Hello World‖ application. Subjects were asked to display a 

hello graphic (by issuing the ―hello‖ event) when a FSR was pressed (through thresholding) 

while independently showing a world graphic when a second FSR was pressed three times in 

a row (through pattern recognition). 

The second task required participants to augment a provided bicycle helmet with 

automatic blinkers such that tilting the helmet left or right causes the associated blinkers to 

signal. This task was inspired by Selker et al.‘s Smart Helmet [225]. While blinking output 

was simulated on a ―mirror‖ on the projection display, participants had to attach sensors to 

the real helmet. 

Our last task was an open-ended design exercise to author new motion-based controls 

for at least one of two computer games. The first game was version of Lunar Lander in which 

the player has to keep a spaceship aloft, collect points and safely land using three discrete 

events to fire thrusters (up, left, and right). The second game was a shooting game with 

continuous x/y control used to aim and a discrete trigger to shoot moving targets. 

STUDY RESULTS 

In our post-test survey, participants ranked Exemplar highly for decreasing the time required 

to build prototypes compared to their prior practice (mean=4.8, median=5 on a 5-point Likert 

scale, σ=0.42); for facilitating rapid modification (mean=4.7, median=5, σ=0.48); for enabling 

them to experiment more (mean=4.7, median=5, σ=0.48); and for helping them understand user 

experience (mean=4.3, median=4; σ=0.48). Responses were less conclusive on how use of 

Exemplar would affect the number of prototypes built, and whether it helped focus or 

distracted from design details (σ > 1.0 in each case). Detailed results are shown in Figure 4.20. 
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Figure 4.20: Exemplar post-experiment questionnaire results. 

Error bars indicate ½ standard deviation in each direction. 

 

 

Figure 4.21: Interaction designs from the Exemplar user 

study. A: turning on blinkers by detecting head tilt with bend 

sensors; B: accelerometer used as continuous 2D head 

mouse; C: aiming and shooting with accelerometer and bend 

sensor; D: navigation through full body movement; E: bi-pedal 

navigation through force sensitive resistors; F: navigation by 

hitting the walls of a booth. 
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SUCCESSES 

All participants successfully completed the two first two tasks and built at least one game 

controller. The game controller designs spanned a wide range of solutions (Figure 4.21). Once 

familiar with the basic authoring techniques, many participants spent the majority of their 

time sketching and brainstorming design solutions, and testing and refining their design. This 

rapid iteration cycle allowed participants to try out up to four different control schemes for a 

game (Figure 4.22). We see this as a success of enabling epistemic activity: participants spent 

their time design thinking rather than implementation tinkering. 

Exemplar was used for exploration: given an unfamiliar sensor, participants were able to 

figure out how to employ it for their purposes. For example, real-time feedback enabled 

participants to find out which axes of a multi-axis accelerometer were pertinent for their 

design. Participants also tried multiple sensors for a given interaction idea to explore the fit 

between design intent and available technologies.  

Interestingly, performance of beginners and experts under Exemplar was comparable in 

terms of task completion time and breadth of ideation. Two possible explanations for this 

situation are that either Exemplar was successful in lowering the threshold to entry for the 

types of scenarios tested; or that it encumbered experts from expressing their knowledge. The 

 

Figure 4.22: Example of one study participant’s exploration: 

the participant created two different navigation schemes and 

two iterations on a trigger control; he tested his design on a 

target game three times within 16 minutes. 
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absence of complaints by experts in the post-test surveys provides some support for the first 

hypothesis. 

SHORTCOMINGS DISCOVERED 

Participants identified two key areas for improvement. One recurring theme in our feedback 

was the need for visualization of Exemplar‘s hidden state. At the time of the study, 

participants could only see events authored for the sensor in focus. While other events were 

still active, there was no comprehensive way of listing them. Also, highlighted regions 

corresponding to training examples were hard to retrieve after more data was collected, as the 

regions were pushed farther into the history of the signal. To address these difficulties, 

Exemplar now displays a full list of active events, along with the corresponding example 

regions. Selecting those regions jumps to the time of their definition in the central canvas.  

Expert users expressed a need for finer control over hysteresis parameters for 

thresholding and a visualization of time and value units on the axes of the signal display. In 

response to these requests, we added direct manipulation of hysteresis and timeout 

parameters to threshold events.  

The importance of displaying quantitative data in addition to visualization to aid the 

designer‘s mental model of events deserves further study. Participants also requested ways to 

provide negative examples, techniques for displaying multiple large sensor visualizations 

simultaneously, and finer control over the timing for pattern matching (both in terms of 

latency and duration).  

4.2.5.3 Using Exemplar to Create Game Controllers 

To gain real-world experience with a larger number of users we exhibited Exemplar at the 

2007 San Mateo Maker Faire, and created a motion-controlled game for the Interactivity 

exhibit at the 2007 CHI conference (Figure 4.23). 

The Maker Faire is a large annual gathering of amateurs interested in electronics, crafts 

and do-it-yourself projects. We exhibited Exemplar under the theme ―Build your own game 

controller.‖ We supplied the set of sensors and games used in the Exemplar lab study, as well 

as a collection of household items such as garden gloves, staplers, and frying pans to attach 

sensors to. Interested visitors were invited to come up with their own game control scheme 

and implement it in Exemplar with the help of one of the researchers. Several hundred visitors 

took part over the course of two days. Preparing for this installation sensitized us to the 

limitations of the Java Robot event injection technique to control closed-source 3rd party 
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applications: because generated keyboard and mouse events cannot be targeted to a specific 

application, it is easy for novices to inadvertently direct keyboard and mouse input back into 

Exemplar itself, which is certainly not intended. A workable but expensive solution is to use 

two computers: one to run Exemplar, and another to run the game. The game computer then 

also requires a helper application that receives socket messages from Exemplar and translates 

them into system keyboard and mouse events.  

For the CHI conference exhibition, we used Exemplar as the back end for a wireless 

gaming system [261]. The game, based on Zhang‘s Control Freaks concept [260], featured a 

portable, wireless 3D accelerometer mounted to a clamp (disguised as a plush cartoon 

character) that could be attached to clothing or other objects to turn those objects into game 

controllers (Figure 4.23, right). For example, people could attach the clamp to their shoes to 

detect running and jumping, or to a chair to detect swiveling the chair left and right. Using 

Exemplar for this installation sensitized us to the limits of pattern recognition for fast-paced 

game play — pattern recognition incurs a compulsory latency cost a pattern can only be 

detected after it has happened. Thresholds can detect the onset of an action but may require 

additional application logic to suppress spurious matches beyond timeouts and hysteresis. 

4.2.6 LIMITATIONS & EXTENSIONS 

Exemplar currently focuses on recognizing discrete actions in low-frequency continuous 

sensor signals. This assumption limits the applicability of Exemplar in the following ways. 

4.2.6.1 Lack of Support for Other Time Series Data  

Much human motion can be adequately sampled at 50-100Hz (Winter for example reports 

   

Figure 4.23: Exemplar was used for public gaming installations at the San Mateo Maker 

Faire and at CHI 2007. For the CHI installation, wireless accelerometers were disguised as 

plush characters; the characters could be attached to clothing or objects in the 

environment. Characters and game concept were developed by Haiyan Zhang. 
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that many gait analyses can be performed at 24Hz [252:Ch. 2]). However, there are 

applications and types of sensors for which this rate is insufficient. Audio input, for example 

for recognizing the scratching of fingernails on a surface [106], is commonly sampled at rates 

of 10-96kHz. Such higher frequency signals need different real-time visualization algorithms 

(which we could borrow from audio editing). We have not yet investigated to what extent 

dynamic time warping can be run in realtime on many parallel audio signals, or if it would 

offer comparative recognition performance. 

4.2.6.2 Matching Performance Degrades for Multi-Dimensional Data 

The employed dynamic time warping algorithm was created to compare one-dimensional 

time series data. The sequence alignment algorithm does not extend in a straightforward 

manner to matching in multiple dimensions. Exemplar uses the following generalization to 

make matching in multiple dimensions possible: An example for an event spanning multiple 

input dimensions for a given time interval is defined as individual examples ex1, ex2, …, exn in 

each input dimension. For new input data in1, in2, …, inn, a set of n DTW algorithms is then run 

in parallel, one for each dimension. Each outputs a binary match/no-match decision, based on 

individual thresholds on matching distance. Only if all dimensions independently report a 

match is the multi-dimensional event fired: 

𝑑𝑡𝑤_𝑚𝑎𝑡𝑐ℎ  𝑒𝑥1 ,… , 𝑒𝑥𝑛 , (𝑖𝑛1 ,… , 𝑖𝑛𝑛) =  𝑑𝑡𝑤_𝑚𝑎𝑡𝑐ℎ(𝑒𝑥𝑘 , 𝑖𝑛𝑘)

𝑛

𝑘=1

 

This approach ignores the fact that the data dimensions are interdependent and may distort 

different dimensions differently.  

4.2.6.3 Lack of Visualization Support for Multi-Dimensional Data 

Exemplar relies on the designer to make decisions about recognition algorithms and 

parameters based on a visualization of live sensor data. It is therefore important that the 

designer can interpret the visualization and make sense of it. While we found straightforward 

timeline visualization to be sufficient for one-dimensional sensors, this is not true for more 

complex sensors that return multi-dimensional data. For example, a resistive touch screen 

will return an (x,y) position; a three-dimensional accelerometer will return (x,y,z) acceleration 

data. The inherent structure of such signal spaces cannot currently be shown in Exemplar. 

Future work should investigate to what extent different visualizations can be used to give a 
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designer greater leverage. One challenge will be how to visualize time in higher-dimensional 

time-series data.  

As an example, take the (x,y) position task: instead of two independent timelines, it may 

be advantageous to enable the designer to see a 2D space and to define thresholds as regions 

within that space (Figure 4.24). The 2D space could be shown as stacked, rotated slices 

through which the signal then describes a 3D trajectory. Events would be fired whenever the 

signal moves within the threshold region. A recent survey of possible visualization techniques 

that can inform future development can be found in [33]. 

4.2.6.4 Lack of Support for Parameter Estimation 

Exemplar‘s recognizers only make binary decisions, e.g., they recognize that a tennis swing 

has occurred from accelerometer data. They do not yet offer parameter estimation, e.g., 

detecting how fast the racket was swung. A new demonstration technique would be needed 

that elicits examples for different parameter values from a designer. In addition, new 

algorithms would be needed that, given multiple examples with parameter values and new 

input data, can output parameter estimates. Note that it is already possible to author 

categorical recognizers by defining multiple events on a given signal dimension — the 

recognizers are then run in parallel and the single best match wins. But generalizing to the 

continuous case is not possible. 

4.2.6.5 Difficult to Interpret Sensor Data History 

Whenever the parameters of an event recognizer are changed by the designer, e.g., by moving 

a threshold line in the user interface, Exemplar recomputes how past data would have been 

classified given the new definition and updates its event visualization accordingly. However, 

it is hard to match the highlighted sensor signal traces back to the specific actions that 

produced these traces. A promising way to give the designer a better handle on understanding 

 

Figure 4.24: A possible visualization for 2D thresholding in 

Exemplar. 
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how actions affect past demonstrations would be to also record live video of the 

demonstration and replay it inside the authoring environment as the designer reviews the 

history of collected data. The technique resembles interaction with the d.tools video editor 

(see Section 6.1), but with a much more focused role: instead of reviewing the usability of an 

entire prototype, the video is used to review examples used to define interaction events that 

are used within that prototype. 

 



120 

CHAPTER 5 CREATING ALTERNATIVE DESIGN SOLUTIONS 

5.1 ALTERNATIVES IN JUXTAPOSE 

Design frequently alternates between divergent stages, where multiple different options are 

explored, and convergent stages, where ideas are selected and refined [55,66,135] (Figure 5.1). 

When designers create multiple distinct prototypes prior to committing to a final direction, 

several important benefits arise. First, alternatives provide designers with a more complete 

understanding of a design space [83]. Second, developing different ―what if‖ scenarios enables 

more effective, efficient decision making within organizations [222]. Third, discussing 

multiple prototypes helps project stakeholders better communicate their requirements [157]. 

Finally, presenting multiple alternatives in user studies facilitates participants‘ ability to 

understand design tradeoffs and offer critical feedback [243]. 

Placing ―enlightened trial and error‖ at the core of design raises the research question, 

how might authoring environments support designers in creating and managing design options? 

Traditionally, design tools have focused on creating single artifacts [240]. Research in 

subjunctive interfaces [177] pioneered techniques for parallel exploration of multiple 

scenarios during information exploration. Set-based interaction techniques have also been 

introduced for graphic design [241,242] and 3D rendering [181]. Providing alternative-aware 

tools for interaction design adds the challenge of working with two distinct representations: 

 

Figure 5.1: Design alternates between divergent and convergent stages. Diagram due to 

Buxton [55], redrawn by the author. 
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source code, where changes are authored; and the running program, where changes are 

observed.  

This chapter suggests that interaction design tools can successfully scaffold exploration 

by managing alternatives across source and execution environments, and introduces 

Juxtapose, an authoring tool manifesting this idea (Figure 5.2). Juxtapose makes two 

fundamental contributions to design tool research. 

First, it introduces a programming environment in which interaction designers create 

and run multiple program alternatives in parallel (Figure 5.3 left). Juxtapose extends linked 

editing [244], a technique to selectively modify source duplicates simultaneously, by turning 

source alternatives into a set of programs that are executed in parallel. The Juxtapose runtime 

environment enables interacting with these parallel alternatives. 

 

Figure 5.2: Interaction designers explore options in Juxtapose through a source code 

editor that supports alternative code documents (left), a runtime interface that offers 

parallel execution and tuning of application parameters (center), and an external 

controller for spatially multiplexed input (right). 

 

Figure 5.3: In the Juxtapose source editor (left), users work with code alternatives in 

tabs. Users control whether modifications affect all alternatives or just the presently active 

alternative through linked editing. In the runtime interface (right), alternatives are 

executed in parallel. Designers tune application parameters with automatically generated 

control widgets. 
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Second, Juxtapose introduces ―tuning‖ of interface parameters at runtime by 

automatically generating a control interface for application parameters through source code 

analysis and language reflection (Figure 5.3 right). We hypothesize that runtime controls 

encourage real-time improvisation and exploration of the application‘s parameter space. 

Designers can save parameter settings in presets that Juxtapose maintains across alternatives 

and executions. To facilitate simultaneous control over multiple tuning parameters, a 

physical, spatially-multiplexed control surface is supported.  

This chapter first introduces findings from formative interviews that motivate our work. 

We then describe the key interaction techniques for creating, executing, and modifying 

alternatives with Juxtapose. We describe implementations for desktop, mobile, and tangible 

applications. Next, we present evaluation results and conclude by discussing tradeoffs and 

limitations of our approach. 

5.2 FORMATIVE INTERVIEWS 

To augment our intuitions from our own teaching and practice, we conducted three 

interviews with interaction designers. Here, we briefly summarize the insights gained. 

First, arriving at a satisfying user experience requires simultaneous adjustment of multiple 

interrelated parameters. For example, a museum installation developer shared that getting an 

interactive simulation to ―feel right‖ required time-intensive experimentation with parameter 

settings. Similarly, an instructor for a course on computer-vision input in HCI reported that 

students found adjusting recognition algorithm parameters to be a lengthy trial-and-error 

process. 

Second, creating alternatives of program logic is a complementary practice to parameter 

tuning. In one participant‘s code, we saw multiple alternative code strategies living side-by-

side inside a single function (Figure 5.4). To try out these different approaches in succession, 

this interviewee would change which alternative was uncommented (i.e., active), recompile, 

and execute. 

Lastly, all interviewees reported writing custom control interfaces for internal program 

variables when they were unsure how to find good values. These tuning interfaces are not 

actually part of the functionality of the application — they function exclusively as 

exploratory development tools.  

Across the three concerns, interviewees resorted to ad-hoc practices that allowed for 

some degree of exploration despite a lack of tool support. The following scenario illustrates 
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how Juxtapose can improve such exploration by explicitly addressing parameter variation, 

alternative creation and control interface generation. 

5.3 EXPLORING OPTIONS WITH JUXTAPOSE 

Tina is designing the graphical interface for a new handheld GPS device that both pedestrians 

and bicyclists will use. She imagines pedestrians will pan the map by tilting the device, and 

use buttons for zooming. Bicyclists mount the device in a fixed position on their handlebars, 

so they will need buttons to pan and zoom.  

To try out navigation options, Tina loads her existing map prototype and clicks the Add 

Alternative button (Figure 5.5A); this duplicates her code in a new tab. With the Linked Edit 

box checked, she adds a function to respond to button input. This code change propagates to 

both alternatives. She clears the Linked Edit checkbox so that she can write distinct input 

handlers in the function body of each alternative (Figure 5.5B). In unlinked mode, edits only 

apply to the active tab. A colored background highlights code that differs between 

alternatives (Figure 5.5C).  

Tina executes her designs. Juxtapose‘s runtime interface shows the application output of 

each code alternative side-by-side (Figure 5.5D). One alternative is active, indicated by a red 

outline. Global Number and Boolean-typed variables of this alternative are displayed in a 

variable panel to the right of the running applications. Tina expands the entries for layer 

visibility, panning speed and zoom step size to reveal tuning widgets that allow her to change 

values of each variable interactively (Figure 5.5E). Tina uses the tuning widgets to arrive at 

fluid pan and zoom animations. 

 

Figure 5.4: Example code from our inquiry: two behaviors co-exist in the same function 

body. The participant would switch between alternatives by changing which lines were 

commented. 



124 

Tina also hypothesizes that bicyclists will value velocity-contingent visual and 

typographic levels of detail. To adjust the text sizes of multiple road types simultaneously, she 

moves her non-dominant hand to an external physical control board (Figure 5.5F). She places 

one finger on each slider, and quickly moves multiple sliders simultaneously to visually 

understand the gestalt design tradeoffs, such as legibility and clutter. To focus in on the 

details of one alternative, she toggles between viewing alternatives side-by-side, and viewing 

just one alternative (Figure 5.5G).  

Tina finds several promising parameter combinations for showing levels of detail and 

uses the snapshot panel to save them (Figure 5.5H). Back in the code editor, she introduces a 

speed variable to simulate sensed traveling velocity, and adds code to load different snapshots 

from the Juxtapose environment when the speed variable changes. To constrain tuning to 

useful values, she adds range annotation comments, e.g., indicating that speed should vary 

between 1 and 30 mph (Figure 5.5I). She runs her design again and selects speed for tuning. 

Moving the associated slider now switches between the snapshot values she previously saved. 

She checks the Linked Tuning box to propagate changes in simulated speed to all alternatives 

in parallel (Figure 5.5J). 

5.4 ARCHITECTURE FOR ALTERNATIVE DESIGN 

This section outlines fundamental requirements for parallel editing, execution, and tuning, 

and describes how the Juxtapose implementation supports these techniques.  

 

Figure 5.5: UI vignettes for the Juxtapose Scenario. 
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5.4.1 PARALLEL EDITING 

To make working with multiple code alternatives feasible, an authoring environment must 

keep track of code differences across alternatives, make this structure visually apparent to the 

user, and offer efficient interaction techniques for manipulating content across alternatives. 

To support these three requirements, Juxtapose extends Toomim et al.‘s linked editing 

technique [244]: alternatives are accessible through document tabs; source differences 

between tabs are highlighted with a shaded background; and edits can be either local to one 

alternative or global to all alternatives. Toomim‘s work focused on sharing code snippets 

across different locations within a project. Juxtapose instead targets creation of sets of 

applications based on a core of shared code. To enable interactive editing across multiple 

documents, Juxtapose replaces Toomim‘s algorithm with incremental correspondence 

tracking during editing and slower content differencing during compilation. The efficiency 

gains thus realized enable Juxtapose to run comparisons after each key press. Average times 

for single character replacement operations were under 1 ms with up to 5 alternatives on a 2 

GHz PC running Windows Vista.  

Juxtapose tracks correspondences between alternatives by partitioning all source 

alternatives into corresponding blocks. In linked editing, the block structure stays fixed and 

block content is modified in all alternatives. In unlinked editing, code blocks are subdivided 

and alternatives store different content in their sub-blocks (Figure 5.6). When inserting text 

while unlinked, Juxtapose‘s data structure splits the code into pre- and post-insertion blocks 

and creates a new code block for the inserted text. Juxtapose splits all alternatives, inserting 

an empty element into the unmodified alternatives. Deletions also split code blocks. Here, the 

active document represents the deletion with an empty element; the corresponding elements 

in the other alternatives contain the deleted text. Code modifications are expressed as 

deletions followed by insertions. Blocks are never merged during editing.  

INSERTION      DELETION 

 

Figure 5.6: Juxtapose’s implementation of linked editing is 

based on maintaining block correspondences between  

alternatives across document modifications. 

 

A top of page text box for a figure or table 



126 

Incremental structure tracking performs differently than content-based matching if a 

user types identical code into corresponding locations in two distinct documents: content-

based approaches will mark this as a match; structure-based approaches will not. To obtain 

both interactive performance and content matching, Juxtapose optimizes global block 

structure with a slower longest common subsequence algorithm at convenient times (i.e., 

when compilation is started).  

5.4.2 PARALLEL EXECUTION AND TUNING 

Executing a set of related interaction designs raises two principal questions: Should 

alternatives be presented in series or in parallel? And should users interact with these 

alternatives one-at-a-time or simultaneously? To investigate how different target devices offer 

unique opportunities for parallel input and output, we implemented versions of the Juxtapose 

environment for three domains: desktop interactions written in ActionScript for Adobe Flash; 

mobile phone interactions for Flash Lite; and physical interactions based on the Arduino 

microcontroller platform. The three implementations share a common editor but differ in 

their runtime environment. We discuss each in turn. 

DESKTOP 

Desktop PCs offer sufficient screen resolution to run alternative interactions side-by-side, 

analogous to application windows. In our implementation, alternatives are authored in 

ActionScript 2, from which Juxtapose generates a set of Flash movie files using the MTASC 

compiler [27]. The generated files are then embedded into the Juxtapose Java runtime 

interface using a Windows-native wrapper library [28]. For consistency with the temporally 

multiplexed input of windowed operating systems, only one active alternative receives 

keyboard and mouse input events by default. However, Juxtapose offers the option to 

replicate user input across alternatives through event echoing [176]. By using a provided 

custom mouse class, mouse events can be intercepted in the active alternative and injected 

into all other alternatives, which then show a ghost cursor. This parallelism only operates at 

the low level of mouse move and click events, which is useful when both application logic and 

visual layout are similar across alternatives. However, in the absence of a model that 

translates abstract events in one application into equivalent events in another, users cannot 

usefully interact with different application logic simultaneously. While development of an 

abstract input model that provides such a mapping is certainly possible, it is unlikely to occur 

during prototyping, when the application specification is still largely in flux.  
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To accomplish runtime variable tuning, bi-directional data exchange between the user‘s 

application and the tuning interface is required. On startup, the application transmits 

variable names, types, and values to Juxtapose (Figure 5.7). The tuning interface in turn sends 

value updates for variables to the application whenever its widgets are used. Loading 

snapshots defined in the tuning interface from code is initiated by a request from the user 

application, followed by a response from Juxtapose. To accomplish this communication, the 

user adds a Juxtapose library module to their code. In our implementation, communication 

between the Flash application and the hosting Java environment takes place through a 

message-passing protocol and synchronous remote procedure call interface built on top of the 

Flash Player API.  

MOBILE PHONE 

For smart phones, the most useful unit of abstraction for parallel execution might not be an 

application window on a handset, but rather the entire handset itself. The small form factor 

and comparatively lower cost make it attractive to leverage multiple physical devices in 

parallel (Figure 5.8). In Juxtapose mobile, developers still compose and compile applications 

on a PC. At runtime, the tuning interface resides on the PC, and the alternatives run on 

different handsets. A designer can rapidly switch between alternatives by putting one phone 

down and picking another one up. To target tuning events to an application running on a 

particular phone, Juxtapose offers alternative selection buttons in the runtime interface. 

  

 

Figure 5.7: Runtime tuning is achieved through bi-directional 

communication between a library added to the user’s 

application and the Juxtapose runtime user interface.  
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Our Juxtapose mobile prototype generates binaries which run on the Flash Lite 2.0 

player on Nokia N93 smart phones. The desktop tuning interface and the smart phone 

communicate through network sockets. When designers run an application on the mobile 

phone, it opens a persistent TCP socket connection to the Juxtapose runtime interface on the 

PC. Our prototype uses Wi-Fi for simplicity. Informally, we found that the phone receives 

variable updates at approximately 5 Hz, much slower than on the PC, but still sufficient for 

interactive tuning. Response rates are slower because mobile devices trade off increased 

battery life for slower network throughput and increased latency. A limitation of the current 

 

Figure 5.8: When using Juxtapose mobile, code alternatives 

are executed on different phones in parallel. Variable tuning is 

accomplished through wireless communication. 

 

Figure 5.9: Two prototypes built with Juxtapose mobile. Left: A map navigation 

application explored use of variable tuning. Right: Two alternatives of a fisheye menu 

navigation technique running on two separate phones. 
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Juxtapose mobile implementation is that users must manually upload compiled files to the 

phones and launch them within the Flash Lite player. This is due to restrictions of the phone‘s 

security architecture. We have explored the utility of Juxtapose mobile with several UI 

prototypes, including map navigation and fisheye menus (Figure 5.9). While the latency of 

tuning messages made the external MIDI controller less useful in our tests (it generates too 

many events which queue up over time), the ability to modify the application running on the 

phone while another user is interacting with that phone appeared to be especially useful.  

PHYSICAL INTERACTIONS 

Many interaction designers work with microcontrollers when developing new physical 

interfaces because they offer access to sensors and actuators. The primary difference to both 

desktop and mobile development is that novel physical interaction design involves building 

custom hardware, which is resource intensive. Consequently, designers are likely to embed 

multiple different opportunities for interaction into the same physical prototype. 

Juxtapose supports developing for the Arduino [185] platform and language, a 

combination popular with interaction designers and artists. Code for all alternatives is cross-

compiled with the AVR-GCC compiler suite. Juxtapose for Arduino uploads and runs only 

one code alternative on one attached Arduino board at a time. When the designer switches 

between alternatives, Juxtapose transparently replaces the binary running on the 

microcontroller through a bootloader (Figure 5.10).  

 

Figure 5.10: For microcontroller applications, Juxtapose 

transparently swaps out binary alternatives using a 

bootloader. Tuning is accomplished through code wrapping. 
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Real-time tuning of variables requires a mapping from variable names to types and 

storage locations, which is not available in the C language that Arduino uses. Juxtapose 

constructs this map using a preprocessing step that transforms a user‘s program before 

compilation (Figure 5.11). The user‘s source code is parsed to build a table of global variable 

names, types, and pointers to their memory locations. The source is then wrapped in 

Juxtapose-specific initialization code, into which the variable table is emitted as C code. 

When a variable is tuned (Figure 5.12), the embedded wrapper code uses this table to find a 

pointer to the correct runtime variable from its name and changes the value of the memory 

location. The wrapper code also contains communication functions to exchange information 

between microcontroller and PC through a serial port. Some price must be paid for this added 

flexibility. The developer has to relinquish control of a hardware serial port, and application 

state is lost whenever alternatives are switched. Snapshots provide a way to save and restore 

values across such changes.  

 

 

Figure 5.11: The pre-compilation processing step extracts 

variable declarations and emits them back into source code 

as a symbol table. 

 

 

Figure 5.12: Example application demonstrating live tuning of 

color parameters of a smart multicolor LED through the 

Juxtapose runtime user interface. 
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5.4.3 WRITING TUNABLE CODE 

Ideally, programmers should be able to leverage tuning and alternatives in their project 

without changing their source. In practice, tuning is invisible unless modified parameter 

values have some observable effect on program execution. In other words, the changed 

variable has to be read again and some action has to be taken based on its value after it was 

modified at runtime. Thus programmers may have to write additional code that is solely 

concerned with making their application tunable.  

To help programmers express the logic for runtime updates, callback functions provide a 

lightweight harness: whenever a variable is tuned at runtime, the application is notified of the 

parameter name and its updated value. In ActionScript, this callback facility is already 

provided on the language level by the Object.watch() method. The following example calls 

a redraw routine whenever the variable tunable is updated by the Juxtapose tuning UI: 

01  var tunable = 5; //@RANGE 0..100 

02  var counter; //@IGNORE 

03  var callback= function(varName,oldVal,newVal){ 

04    redraw(); 

05    return newVal; 

06  } 

07  this.watch(′tunable′,callback); 

Beyond callbacks, protocols to communicate information from the source code to the runtime 

interface enable designers to initialize the runtime UI programmatically. Programmers can 

specify minimum and maximum values for Number variables through comment annotations 

(line 1). They can also hide variables for which tuning is not useful, e.g., counters, from the 

variable list (line 2). Code annotations have been used in other projects as a source of meta-

information, e.g., for labeling different experimental conditions for user testing [180]. 

Juxtapose currently uses code comments to capture annotations; this functionality could 

become part of the language definition in an alternative-aware programming language. 

5.4.3.1 Hardware Support 

Three important benefits can be realized by using a dedicated external controller instead of 

mouse and keyboard input for parameter control. First, spatially multiplexed input enables 

users to modify multiple parameters simultaneously. Second, with mouse control, tuning is 

mainly a hand-eye coordination task — with a dedicated control board, it turns into a motor 

task that leaves the eyes free to focus on the application being tuned. Third, moving the 

tuning UI to a dedicated controller allows for tuning of interactions that require mouse and 
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keyboard input, e.g., adjusting the rate at which mouse wheel movement magnifies a 

document.  

Our implementation supports a commercially available USB MIDI device [29] with 16 

buttons with LED status indicators, 8 rotary encoders (presently not used) and 8 motorized 

faders (Figure 5.13). The controller transmits input events as MIDI control change messages 

and receives similar control change messages to actuate sliders and toggle LED feedback. 

Actuation of the hardware controller is essential for saving and restoring parameter snapshots 

— without actuation it is impossible to recall saved parameter values and edit them 

incrementally. To facilitate locating a particular variable‘s control, the mixer was augmented 

with a small top-mounted projector which displays parameter names next to the appropriate 

controls, a technique inspired by Crider et al. [65]. While a projector setup is unwieldy in 

practice, controllers with embedded text LCDs that can offer the same functionality are 

commercially available. 

5.5 USER EXPERIENCES WITH JUXTAPOSE 

To evaluate the authoring approach embodied in Juxtapose, we built example prototypes 

using the tool and conducted a summary usability study of Juxtapose for desktop 

applications. We recruited 18 participants, twelve male, six female. Participants were 

undergraduate and graduate students with HCI experience. Their ages ranged from 20 to 32 

 

Figure 5.13: An external controller enables rapid surveying of multidimensional spaces. 

Variables names are projected on top of assigned controls to facilitate mapping. 
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years. All but one participant had at least working knowledge of procedural programming 

and all had at least some expertise in interaction design. 

5.5.1 METHOD 

Evaluation sessions lasted approximately 75 minutes. Participants were seated at a 

workstation with mouse, keyboard and MIDI controller. After a demonstration of Juxtapose, 

participants were given three tasks. The first task was a warm-up exercise to modify a grid 

animation reacting to mouse movement, adapted from the book Flash Math Creativity [206]. 

Participants were asked to make changes that required both code alternatives and tuning. 

The second task was a within-subject comparison that asked participants to adjust four 

parameters of a recursive tree-drawing routine to match four specific tree shapes (Figure 

5.14). The provided code was also adapted from Flash Math. For two trees, this was 

accomplished using the full Juxtapose interface. For the other two, participants were given 

the same editor without the possibility of creating alternatives or tuning. Order of assignment 

between Juxtapose and control conditions was counterbalanced and a random tree order was 

generated for each participant.  

The third task asked participants to work on the mapping scenario introduced earlier. 

They were provided with a working ActionScript program that loaded a map containing 28 

different layers of information (e.g., land areas, parks, local streets, local street names, 

highways). Participants were given 30 minutes to create two map navigation alternatives. 

They were then asked to present their maps to a researcher. Documentation contained 

examples for how to programmatically change visibility of layers, color and brightness, text 

size and formatting, and mouse interactions. Participants had to modify and add to these 

examples to either hardcode design decisions or to set up tunable parameters through 

callback functions in the source code. 

 

Figure 5.14: Study participants were given a code example 

that generates images of trees. They were asked to then 

match the four tree images shown above. 
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5.5.2 RESULTS 

In all tasks, all participants properly applied linked and unlinked editing and tuning, with no 

apparent confusion. Participants commented positively on the ease of adjusting numerical 

parameters through tuning and the reduced iteration time this permitted. One participant 

commented that the explicit management of alternative documents improved on their 

existing practice of ―half-hearted attempts to name saved [configurations] with memorable 

names.‖ Today, designers commonly use layer sets as a technique for composing alternatives 

in graphics. A participant commented that Juxtapose brings this pattern to interaction 

design. 

TUNING ENABLES MORE PARAMETER EXPERIMENTATION, FASTER 

In the tree matching task, participants took an average of 258 seconds (σ: 133 s) to complete 

the matching in the control condition, and an average of 161 seconds (σ: 82 s) to complete the 

task with Juxtapose. This difference was significant (one-tailed, paired Student‘s t-test; p < 

 

 

Figure 5.15: Study participants were faster in completing the 

tree matching task with Juxtapose than without. 

 

Figure 5.16: Study participants performed many more design 

parameter changes per minute with Juxtapose than without. 
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0.01). When looking at completion times by tree (Figure 5.15), a large discrepancy for trees 

three and four becomes apparent. For these trees, participants quickly narrowed in on the 

approximate shape but frequently had trouble minimizing the remaining visual disparity 

when they could no longer reason about how to proceed toward the goal. Participants then 

often broadened their search in parameter space and diverged from the solution while looking 

for the right parameters to adjust. We believe that Juxtapose outperformed the control 

condition here because the penalty for an uncertain, diverging move was much smaller — the 

result could immediately be observed and corrected.  

To quantify the cost of making a change, we investigated how many parameter 

combinations participants explored. In the control condition, on average, participants tested 

2.60 parameter combinations per minute to arrive at matches (σ: 0.93; we counted each 

execution after changing source as one combination). In contrast, using Juxtapose, 

participants executed the Flash file only once, and generated parameter changes through the 

tuning interface. Here participants explored 64 combinations on average (σ: 80; we counted 

each variable change sent to Flash as a tuning event). The external MIDI controller generated 

many input events and one might contend that our definition of parameter change over-

estimates the number of perceptually different states explored by users. We note that 

participants adopted a wide range of tuning strategies — some exclusively typing in numbers 

in the tuning interface, others using multiple sliders simultaneously. This resulted in a wide 

spread of parameter changes per minute for Juxtapose (Figure 5.16), but even participants at 

the lower end of the histogram explored an order of magnitude more states than participants 

in the control condition. 

ALTERNATIVES & TUNING PROVIDE VALUE, AT A PRICE 

In our mapping task, many participants began by adding instrumentation code to the 

provided framework to make map attributes tunable at runtime. While hard-coding design 

choices into source code would have been easier from a programming perspective, 

participants spent extra effort to make variables tunable so they could experiment at runtime. 

Two participants mixed strategies, making some parameters tunable while setting others in 

code in different alternatives when they were sure about their desired values. For example, 

one participant hard-coded a higher initial magnification factor in the pedestrian map 

interface. 

Most participants preferred to set the ranges for Number variables in source code, not in 

the runtime interface. Only one participant used the runtime interface for this purpose. A 
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possible explanation is that reasoning about ranges has to do with how a variable is used in 

the source so participants were more inclined to express ranges there. 

SUGGESTIONS FOR IMPROVEMENT 

The map task also uncovered a number of usability shortcomings. In multiple instances, 

participants closed the runtime window to change a line of code and recompile, discovering 

that their runtime parameter settings from the last execution were gone. To address this, 

Juxtapose could automatically save the last parameter values in a snapshot when the runtime 

window is closed. 

Participants also wished for a larger range of variables to access — for the study, only 

variables declared in the main application class and variables of the root object of the visual 

hierarchy were accessible for tuning. Participants thus had to introduce intermediate 

variables to influence other graphical objects. It would be preferable to have a ―tuning mode‖ 

for direct manipulation of all graphical objects, extending ideas introduced in SUIT [203].  

Many participants expressed frustration at the lack of search and undo in the source 

editor. Both could clearly be added. Multiple participants also felt that it was overly onerous 

to properly write the application callbacks that make a design tunable. This can be addressed 

in two ways. Directly modifying object fields can be handled by making all fields tunable, not 

just global variables. More complex parameter mappings however will still require callbacks: 

producing these callbacks can be supported through a code generation wizard. 

5.6 LIMITATIONS & EXTENSIONS 

Juxtapose focused on exploring alternatives of user interfaces that were programmatically 

defined within a single file of source code. The design choices made during the development 

of Juxtapose represent one particular point in a larger space of tools for explorative 

programming. In this section, we discuss assumptions made in our current design and 

highlight limitations of our implementation. Following Fitzmaurice‘s design space for 

graspable interfaces [78], we summarize the most salient design decisions in Figure 5.17. This 

design space is not meant to be exhaustive — it covers the decision points encountered 

during prototyping and development. Nevertheless, the table suggests additional techniques, 

such as automatic generation of alternatives, which may be a fruitful area for future work.  
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5.6.1 WILL DESIGNERS REALLY BENEFIT FROM LINKED SOURCES? 

The efficacy of linked editing in Juxtapose rests on the assumption that interaction designers 

create multiple alternatives of a common code document, where individual alternatives only 

differ in parameter settings and small sections of code. Experimenting with code in this 

manner only covers part of the solution space for a given problem. Different solution 

approaches may be based on distinct implementations. Alternatives as discussed in this paper 

explore options within one particular solution strategy. Are alternative designs related 

enough in practice to benefit from linked editing and tuning?  

 

Figure 5.17: A design space for exploring program 

alternatives. Choices implemented by Juxtapose are shown 

with a shaded background. 
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Beyond evidence from our formative interviews, the book Flash Math Creativity [206] 

provides detailed examples of source code experimentation by professionals: 15 Flash 

designers share how they create computational designs in 56 projects. Each project starts 

from a single idea, e.g., animating geometric grid structures. The designers then show how 

they modified the initial source to explore the design space. 12 of 15 designers showed 

multiple alternatives for their projects (mean: 10.2 alternatives per project; range: 3 to 23). The 

difference between these alternatives is usually small: a change to a line of code to load 

different graphics, alterations to parameter values, or substitutions of function calls.  

5.6.2 IS TUNING OF NUMBERS AND BOOLEANS SUFFICIENT? 

Juxtapose‘s runtime tuning focuses on direct manipulation of Boolean and Number types. 

Would designers benefit from more expressive abstractions and additional functionality in 

the tuning interface? 

An underlying assumption in this work is that developers both produce the application 

and tune it. If they desire a more complex mapping, e.g., a logarithmic parameter scale, they 

may express this mapping in the source. Locating additional functionality in the source itself 

may be more useful since logic expressed in the tuning UI is not available when the 

application is run outside Juxtapose. This assessment changes if alternatives and tuning 

options are used by a third party, e.g., during participatory design sessions. In this case it 

would make sense to imbue the runtime interface with more flexibility to let users express a 

more complete set of modifications without editing the program source, e.g., by providing 

rich widgets for commonly used complex data types such as colors or coordinates. 

5.6.3 ARE CODE ALTERNATIVES ENOUGH? 

Perhaps the most important limitation is that Juxtapose does not offer support for managing 

multiple alternatives of graphical assets. Interface design is concerned with both look and feel 

— graphics and behavior. Many popular user interface authoring tools today follow a hybrid 

authoring approach, where graphical appearance is edited through visual direct manipulation, 

while behavior is specified in source code (e.g., Flash [1], Director [6]). We believe Juxtapose 

is a first step towards an integrated authoring environment that offers management of 

alternatives across graphics and code. Future research should investigate to what extent it is 

possible to offer a coherent method of exploring alternatives for both, in a single tool. The 

most relevant prior work for exploring graphical alternatives is Terry‘s work on embedding 

alternatives for graphics manipulations into a single canvas [242], and research on editable 
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graphical histories [153,236]. However, a naive crossproduct of Juxtapose‘s linked editing and 

graphical alternative or history techniques is unlikely to work, because it would likely 

overburden the user with too many inconsistent methods of making choices. The goal of 

future research should be to find a single, ―simple-enough‖ mental model. 

5.6.4 ALTERNATIVES FOR COMPLEX CODE BASES 

Another open question is how an alternative-aware editor could be extended to handle large 

software projects. Juxtapose targeted UI prototypes, for which interaction logic is frequently 

authored in a single source file today. If the goal is not the design of a new UI, but the 

augmentation of an existing program, designers may have to contend with large existing code 

bases. For example, a software engineer at Adobe reported that to try alternatives for a new 

feature in a large authoring tool, he would have to check out several thousand files into 

independent workspaces, and manage any changes between alternatives manually [94]. 

As an interaction technique, we have envisioned the use of hierarchical tabs where the 

top level identifies the alternative, and a lower level identifies the file within the 

alternative.The primary challenge will be to reduce the potential complexity stemming from 

dealing with multiple alternatives in the authoring interface. As an implementation strategy, 

it would be interesting to consider to what extent virtualization technology can be harnessed 

to quickly create independent copies of complex applications and system configurations that 

are adequately isolated from each other. 

5.6.5 SUPPORT EXPLORATION AT THE LANGUAGE LEVEL 

Juxtapose chose to implement support for runtime tuning at the library level — the source 

language, ActionScript in the case of Juxtapose, remained unchanged. Juxtapose shares this 

approach with prior work like Amulet [190]. Operating as a library has the advantage that 

Juxtapose can target a widely used language; it has the drawback that the program has to be 

explicitly changed to include library support. More importantly, the library has limited 

control over program execution at runtime. For example, when running multiple alternatives 

side by side, it is not possible to pause execution of one application as it loses focus — all 

applications run in parallel, even if interaction with them is sequential.There are two possible 

ways for future research to extend the reach of runtime exploration:  

1) augment an existing programming language with additional language constructs 

2) develop a new language to provide explicit developer control over alternatives and 

variable parameter spaces. 
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Terry‘s Partials project [239: Appendix B] was an exploration of the first option. He 

augmented the Java language with the keywoard ―partial‖ which could be used to decorate 

variable definitions to gain runtime control over those variable values. It is worthwile to 

explore what benefits an entirely new language targeted at exploration could provide. 

5.6.6 INTEGRATE WITH TESTING 

A final direction worth pursuing in future work is to extend parallel editing and tuning to 

support user testing of alternatives. A particularly promising application domain would be 

the authoring of user interfaces for web applications, since online deployment could provide a 

way to rapidly gather empirical data on user preferences for different alternatives. Large web 

sites already routinely test alternatives of new features by running controlled bucket 

experiments: a small percentage of site visitors are exposed to a new proposed feature or 

layout, and results (time spent on site, purchases made) are compared with the control 

condition [16]. An interesting an as-of-yet unexplored research question is to what extent 

such comparative testing with remote users is possible during earlier prototyping stages.  

5.7 SUPPORTING ALTERNATIVES IN VISUAL PROGRAMS 

How might support for alternative behavior transfer from the textual programming domain of 

Juxtapose into visual authoring environments such as d.tools? Following our implementation 

of Juxtapose, we examined to what extent the advantages of defining and editing multiple 

alternatives can be realized within d.tools. We have not yet investigated how to transfer 

variable tuning; partially because variables play a less prominent role within d.tools projects. 

Because d.tools focuses on user interfaces with custom hardware, parallel execution of 

alternatives is less likely to be useful. We therefore focused on expressing and managing 

alternatives in the editor, but only support executing one alternative at a time. 

What level of abstraction should alternatives operate on? Juxtapose manages alternatives 

at the file level. For visual diagrams, this choice is also possible, but less compelling. A 

prototype implementation of file alternatives in d.tools suggested that making sense of the 

differences between alternative files is harder for visual programs than for textual ones. 

Specifically, changes in the visual gestalt of the diagram are not necessarily related to changes 

in the functionality expressed by the diagram. Rearranging states in a d.tools diagram changes 

appearance but not logic. We therefore sought ways to express alternatives within a single 

diagram, at the state level. 
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Designers can introduce state alternatives in d.tools to define both appearance and 

application logic. An alternative container (Figure 5.18, Figure 5.19) encapsulates two or more 

states. State alternatives are created in a manner analogous to the Juxtapose editor: designers 

select a state and choose ―Add Alternative‖ from its right-click context menu. The original 

state (with all defined output such as screen graphics) is duplicated and both states are 

placed into an alternative contained. To express that the incoming transitions remain the 

same, regardless of which alternative is active, the original state‘s incoming connections are 

rerouted to point to the encapsulating container. To define which of the alternative states 

should become active when control transfers to an alternative container, the container shows 

 

Figure 5.18: Schematic of state alternatives in d.tools: 

alternatives are encapsulated in a common container. One 

alternative is active at a time. Alternatives have different 

output and different outgoing transitions. 

 

 

Figure 5.19: Screenshot of a d.tools container with two state 

alternatives. In the right alternative, screen graphics have 

been revised. 
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radio buttons, one above each contained state. Outgoing transitions are not shared between 

alternatives: each state can thus define its own set of target states and transition events. To 

reduce visual clutter, only outgoing transitions of the active alternative are shown; other 

outgoing transitions are hidden until that state is activated. 

State alternatives support more localized changes than Juxtapose‘s code alternatives. If 

alternatives are defined for more than one state, managing correspondences between the 

different alternatives is currently cumbersome. Support to combine different alternatives into 

coherent alternative sets is needed and should be addressed in future work. State alternatives 

have been evaluated in laboratory studies as part of the d.note project on revising d.tools 

diagrams, which will be described in the next chapter. 
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CHAPTER 6 GAINING INSIGHT THROUGH FEEDBACK 

Iterative design proceeds in cycles of creating prototypes, testing what was created, and 

analyzing the obtained feedback to drive the next design. The ultimate purpose of a prototype 

is thus to elicit feedback that can inform future designs. If iteration based on feedback is a 

central activity of design, then tools should include functionality to explicitly support 

capturing, organizing, and analyzing feedback obtained from a particular prototype. This 

chapter presents two approaches to make prototyping tools feedback-aware: capturing and 

organizing video data from prototype test sessions, and managing revisions and change 

suggestions in visual storyboard diagrams. 

6.1 FEEDBACK IN USER TESTING: SUPPORTING DESING-TEST-

ANALYZE CYCLES 

Video recordings of prototypes in use can provide critical usability insights and aid in 

communicating these insights to other team members, but working with usability video can 

be prohibitively time consuming [179]. Our fieldwork indicated that, even though video 

recording of user sessions is common in design studios, resource limits often preclude later 

analysis of this data. Video is recorded, but rarely used after the fact. This section introduces 

techniques that radically shorten the time required to review usability test data of physical 

prototypes to unlock some of the latent value of usability videos for design teams. The d.tools 

 

Figure 6.1: d.tools supports design, test & analysis 

stages through integration with a video editor. 
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video suite integrates support for design, test, and analysis of prototypes in a single tool 

(Figure 6.1). The guiding insight is that timestamp correlation between recorded video and execution 

event traces of the prototype can provide access from the video to the model, and vice versa.  

The d.tools video suite adds two usage modes to the d.tools environment: test mode, 

which records live video and an event trace of the test; and analysis mode, which provides 

access to the recorded data from one or more test sessions and introduces interaction and 

visualization techniques that enable rapid video querying. The following sections describe 

each mode in turn. 

6.1.1 TESTING PROTOTYPES 

After completing construction of a prototype, when seeking to gather feedback from others, 

designers switch to test mode. In test mode, d.tools records live video and audio of user 

interactions with the prototype — important for understanding ergonomics, capturing user 

quotes, and finding usability problems (Figure 6.2). During a test, a video camera (Figure 

6.2A) is aimed at the tester and the prototype (Figure 6.2B). The interaction logic of the 

prototype is defined by a particular storyboard (Figure 6.2C). As in design mode, input from 

the prototype causes state transitions in the storyboard and corresponding output defined in 

states is shown on the prototype. In addition to this normal functionality, all device events 

and state transitions are saved in a time stamped log for video synchronization. Live video 

from the camera is recorded in a video editor (Figure 6.2D & E). The live video stream is 

augmented with event and state transition metadata in real-time. As events and transitions 

 

Figure 6.2: Testing a prototype built with d.tools: A camera (A) is aimed at the tester and 

the physical prototype (B), which is driven by a storyboard (C) in d.tools. Live video of the 

test is recorded in the video editor (D) and annotated with events and state changes (E). 

Designers can add additional events to the record with a control console (F). 
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occur during a test, they are visualized in several annotation tracks in a timeline display 

(Figure 6.3).  

One row of the timeline corresponds to the active state of the storyboard at any given 

point in time (Figure 6.3A). To clarify correspondence between storyboard states and video 

segments, state outlines in the editor are color coded, and the same color scheme is used for 

timeline segments. A second row in the timeline displays hardware input events. Three types 

of hardware events are displayed. Instantaneous events, such as a switch changing from on to 

off, appear as short slices on the timeline. Events with duration, such as the press and release 

of a button, show up as block segments (Figure 6.3B). Lastly, continuous events, such as 

slider movements, are drawn as small line graphs of that event‘s value over time (Figure 6.3C).  

In addition to automatically generated timeline events, the designer can also explicitly 

add markers during a test session on an attached video control console (Figure 6.2F). The 

console enables designers to quickly mark sections for later review (e.g., interesting quotes or 

usability problems). The experimenter‘s annotations are displayed in the video view as a 

separate row on the timeline.  

 

Figure 6.3: The video recording interface in test mode. A: Active states at any point in 

time are encoded in a timeline view. B: Discrete input events show up as instantaneous 

events or press/release pairs. C: Continuous input data is visualized in-situ as a small 

graph in the timeline. 
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6.1.2 ANALYZING TEST SESSIONS 

Analyze mode allows the designer to review the data from one or more user test sessions. The 

video view and storyboard editor function in tandem as a multiple view interface [41] into the 

test data to aid understanding of the relationship between the user experience and the 

underlying interaction model (Figure 6.4). d.tools supports both single user analysis and 

group analysis, which enables designers to compare data across multiple users.  

6.1.2.1 Single User Analysis 

Single user mode provides playback control of a single test session video. The timeline 

visualization of collected metadata shows the flow of UI state and data throughout that 

session. d.tools speeds up video analysis by enabling designers to access interaction models 

through the corresponding video segments and to access video segments from the interaction 

model, facilitating analysis within the original design context. In addition to this dynamic 

search and exploration, the storyboard also shows an aggregation of all user interactions that 

occurred during the test: the line thicknesses of state transitions are modified to indicate how 

often they were traversed (Figure 6.5). This macro-level visualization shows which 

transitions were most heavily used and which ones were never reached. 

 

Figure 6.4: In analysis mode, a dual-screen workstation 

enables simultaneous view of state model and video editor. 
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VIDEO TO STORYBOARD 

During video playback, a dynamic visualization of transition history is displayed in the d.tools 

storyboard. The state that was active at the current point in time of the video is highlighted. 

d.tools also animates moving trail along the state transitions, indicating which state a user 

 

Figure 6.5: Line thickness in analysis mode shows how many 

times a given transition was taken. 
 

 

Figure 6.6: Two query techniques link storyboard and video. 

A: Selecting a video segment highlights the state that was 

active at that time. B: Selecting a state in analyze mode 

highlights the corresponding video segment(s). 
 

 

Figure 6.7: Designers can query by demonstration: 

Generating input events in analyze mode filters recorded 

video so that only those sections where similar events were 

received are shown. 
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was coming from, and which state will become active next. This window into the chronology 

of interactions provides a visual reminder of context. Selecting any state segment in the 

timeline moves the play head to that segment and, as a result, highlights the corresponding 

state in the storyboard (Figure 6.6A) 

STORYBOARD TO VIDEO 

To query video using the interaction model, the designer can select a state in the storyboard 

— the recorded video is then filtered such that only segments where the user was in the 

corresponding state are highlighted in the timeline view and played (Figure 6.6B). In addition 

to querying by selecting states, designers can query for video segments in which certain input 

components were used through a query-by-demonstration technique: manipulating a hardware 

component on the physical prototype (e.g., pushing a button or moving a slider) causes the 

corresponding input event category to be selected in the video view (Figure 6.7). Designers 

can also select multiple categories by manipulating multiple hardware components within a 

small time window. Thus, the designer can effectively search for a particular interaction 

pattern within the video data by reenacting the interaction on the prototype itself. 

6.1.2.2 Group Analysis 

Group mode collects data from multiple test sessions of a given storyboard (Figure 6.8). The 

timeline now aggregates flows for each user. The video window displays an n × m table of 

 

Figure 6.8: Group analysis mode aggregates video and event data of multiple user 

sessions into one view. 
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videos, with the rows corresponding to the n users, and the columns corresponding to m 

categories (comprised of states, hardware events, and annotations). Thus, a cell in the table 

contains the set of clips in a given category for a given user. Any set of these clips may be 

selected and played concurrently. Selecting an entire row plays all clips for a particular user; 

selecting an entire column plays all clips of a particular category. As each clip is played, an 

indicator tracks its progress on the corresponding timeline. 

6.1.3 IMPLEMENTATION 

The d.tools video editor is implemented as an extension to the VACA video analysis tool [54]. 

The video viewer is implemented in C# and uses Microsoft DirectShow technology for video 

recording and playback. Synchronization between the storyboard and video views is 

accomplished by passing XML fragments over UDP sockets between the two applications. As 

video recording and playback is CPU-intensive, this separation also allows authoring 

environment and video editor to run on different machines. DirectShow was chosen because 

it allows synchronized playback of multiple video streams, which is needed for group analysis 

mode. The use of Microsoft APIs for video processing limits use of d.tools testing and analysis 

modes to Windows PCs.  

6.1.4 LIMITATIONS & EXTENSIONS 

The d.tools video suite introduces ways to integrate the prototype authoring environment 

and a video review tool for analyzing user test sessions. The focus on rapid review of test 

sessions of a single prototype limits the utility of d.tools video functions in some important 

areas, which we review in this section. 

6.1.4.1 No Support for Quantitative Analysis 

Analysis in formal user testing often involves quantifying observations and computing 

statistics for those observations. In d.tools, video analysis so far is restricted to accessing and 

reviewing video segments. The introduced interaction techniques shorten the time required 

to access the right parts of the video. We hypothesize that tools could further aid designers 

by extracting relevant statistics for the test automatically. 

Two complementary strategies to support more quantitative analysis suggest 

themselves: the first is to automatically extract data from the recorded test (e.g., state dwell 

statistics — how long did users spend in each state, which states were never reached). The 

second is to provide the reviewer with better tools to conduct such analyses manually. An 
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example of a more fine-grained analysis approach is Experiscope [97], a tool for analyzing user 

tests of mouse- or stylus-based interaction techniques. Experiscope can both visualize input 

event data well as produce aggregate reports of event frequency and duration. As an initial 

step into this direction, d.tools visualizes how many times a transition was taken by changing 

transition line thickness in the diagram. However, it is not currently possible to extract the 

precise number of times the transition was taken, or to derive a similar figure for the number 

of times a state was active during a test. 

6.1.4.2 Limited Visibility of Application Behavior During Test 

d.tools video records a single stream of live video from a digital camera. Recording how a 

device was handled is especially important for devices with new form factors, as ergonomics 

and questions about device control layout may be part of the test. This focus on embodied use 

of a device during a test comes at a price: it is not always possible to see what happened on 

the screen(s) of the tested prototypes in live video. Linking the video to the state diagram 

enables the tester to see which state the device was in at any given time. However, states 

present only a static view of the application. Dynamic animations scripted in d.tools are not 

visible — reviewing these may be important as well. One possible solution suggested by 

commercial GUI testing applications such as Silverback [4] is to record multiple video 

streams of both live video and screen output and to then composite those streams into a 

single video feed. 

6.1.4.3 Cannot Compare Multiple Prototypes in Analysis Mode  

The video spreadsheet view enables comparison of multiple test sessions by multiple users, 

but only for a single prototype. As the previous chapter has argued, exploration of design 

alternatives is an important practice and should therefore be supported in analysis tools as 

well. We see two separate opportunities for further research: 1) enabling comparative testing 

of multiple, simultaneously developed alternatives; 2) supporting comparison of prototypes 

across different design iterations. 

Tohidi and Buxton [243] note that testing multiple prototypes is preferable to testing a 

single prototype, since users will feel less pressured to be ―nice‖ to experimenters and can 

draw comparisons between prototypes. In addition, if prototypes are more refined and the 

designer has concrete hypotheses in mind, formal comparative testing is required to support 

or reject these hypotheses. For traditional GUI interactions, tools that support such 

comparative analysis of alternatives exist. Experiscope [97] enables testers to visually 
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compare event traces of multiple treatment conditions side-by-side. However, existing tools 

such as Experiscope do not link the recorded trace back to the source of the application being 

tested. It is an open question how tools can show video, event traces, and software models for 

multiple alternative designs simultaneously without overwhelming the designer with 

complexity. 

A separate question is how one might support the comparison of different iterations of a 

given project over time. In the iterative design-test-analyze paradigm, subsequent iterations 

are informed by what was learned before. Testing tools should offer support for checking 

whether the feedback collected during prior iterations was properly acted on in later 

iterations and if identified issues were in fact resolved. 

6.1.4.4 Limited Query Language 

An additional limitation of d.tools video analysis is that the query language over states and 

events is rather primitive at the present time. The queries that can be executed select 

segments from single video files based on states or input events. A natural extension would be 

to enable testers to specify more complex, and thus more useful, queries. Badre suggests using 

regular expressions to filter user events [39]. We are skeptical whether regular expressions 

are accessible to our target audience. An alternative approach  would be to use a textual query 

language, such as SQL, and then building GUI tools for specifying queries in that language. 

Interactive query builders are common for expressing SQL queries in database applications. 

6.1.4.5 Interaction Techniques Have Not Been Formally Evaluated 

The introduced interactions have not been evaluated in a formal user study. Their efficacy in 

real design contexts has not been established, although the rapid video query techniques have 

received positive comments from professional designers in informal conversations and at 

presentations to professional design conference attendees.  
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6.2 CAPTURING FEEDBACK FROM OTHER DESIGNERS: D.NOTE 

Interaction design in teams oscillates between individual work and team reviews and 

discussions. Team reviews of user interface prototypes provide valuable critique and suggest 

avenues forward [189:pp. 374-5]. However, changes proposed by others can rarely be realized 

immediately: often the proposer lacks the implementation knowledge, the changes are too 

complex, or the ideas are not sufficiently resolved.  

In many areas of design, annotations layered on top of existing drawings and images, or 

―sketches on top of sketches‖ [55], are the preferred way of capturing proposed changes. They 

are rapid to construct, they enable designers to handle different levels of abstraction and 

ambiguity simultaneously [66], and they serve as common ground for members with different 

expertise and toolsets [205]. Individual designers later incorporate the proposed changes into 

the next prototype. This annotate-review-incorporate cycle is similar to revising and 

commenting on drafts of written documents [198]. While word processors offer specialized 

revision tools for these tasks, such tools don‘t yet exist for the domain of interaction design. 

This section demonstrates how three primary text revision techniques can be applied to 

interaction design: commenting, tracking changes, and visualizing those changes. It also 

 

Figure 6.9: d.note enables interaction designers to revise 

and test functional prototypes of information appliances using 

a stylus-driven interface to d.tools. 
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introduces revision tools unique to interaction design: immediate testing of revisions and 

proposing alternatives. The novel revision techniques are embodied in d.note (Figure 6.9), an 

extension to d.tools. The d.note notation supports modification, commenting, and proposal of 

alternatives (see Section 5.7, p. 140) for both appearance and behavior of information 

appliance prototypes. Concrete modifications to behavior can be tested while a prototype is 

running. Such modifications can exist alongside more abstract, high-level comments and 

annotations. 

This section also contributes a characterization of the benefits and tradeoffs of digital 

revision tools such as d.note through two user studies. We show that the choice of revision 

tool affects both what kind of revisions are expressed, as well as the ability of others to interpret 

those revisions later on. Participants who used d.note to express revisions focused more on 

the interaction architecture of the design, marked more elements for deletion, and wrote 

fewer text comments than participants without d.note. Participants who interpreted d.note 

diagrams asked for fewer clarifications than participants that interpreted freeform 

annotations, but had more trouble discerning the reviser‘s intent. 

In the remainder of this section, we first describe revision principles from related 

domains. Current practices of UI designers were described in Section 3.1.2.2. We then 

introduce d.note and its implementation. We present results from two studies of revision 

expression and interpretation, and conclude by discussing the design space of revision tools. 

6.2.1 REVISION PRACTICES IN OTHER DOMAINS 

Interaction designers are concerned with both look and feel of applications [189]. Absent a 

current, complete solution for both aspects, we can draw on important insights from revising 

textual documents, source code, and movie production.  

  

 

 

Figure 6.10: Interlinear revision tracking and comment 

visualization in word processing. 



154 

TEXT DOCUMENTS  

The fundamental actions in written document revision are history-preserving modification 

(insertion, deletion) and commenting. Each operation has two components: visual syntax and 

semantics. For example, in word processing, a common interlinear syntax to express deletion 

is striking through the deleted text (Figure 6.10); the semantics are to remove the stricken 

text from the next version of the document, should the revision be accepted. Original and 

modification are visible simultaneously, to communicate the nature of a change. Furthermore, 

edits are visually distinguished from the base version so the recipient can rapidly identify 

them. When editing documents collaboratively, different social roles of co-author, 

commenter, and reader exist [198]. Offering ways to modify the underlying text as well as 

adding meta-content that suggests further modification serves these different roles. 

SOURCE CODE DOCUMENTS 

Source code revision tools, such as visual difference editors, enable users to compare two 

versions of source files side-by-side [115] (Figure 6.11). In contrast to document revision tools, 

changes are generally not tracked incrementally, but computed and visualized after the fact. 

Comments in source code differ from comments in text documents as they are part of the 

 

 

Figure 6.11: Source code comparison tools show two versions 

of a file side-by-side. 
 

 

Figure 6.12: Video game designers draw annotations directly 

on rendered still images (from [55:p. 179]). 
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source document itself. Meta comments (comments about changes) are generally only 

available for an entire set of changes. 

VISUAL MEDIA 

WYSIWYG document editors do not distinguish between source and final document; 

authors revise a single, shared representation. For program source code, there is no way to 

comment directly on the output of the program, only the source. In contrast, movie producers 

and video game developers convey revisions by drawing directly on output, i.e., rendered 

video frames (Figure 6.12). Because the revisions address changes in appearance, sketching is 

the preferred method of expression. Working in the output domain is a compelling approach, 

but has thus far been limited to static content [55]. 

DESIGN PRINCIPLES 

Comparing these three existing domains leads to the formulation of four design principles. UI 

revision tools should support the following workflows: 

1) History-preserving incremental modification of the source representation 

2) Commenting outside the underlying source language 

3) Sketching as an input modality for graphical content 

4) Revising the output, i.e., the resulting user interface screens, not just the source. 

6.2.2 A VISUAL LANGUAGE FOR REVISING INTERACTIONS 

Guided by our assessment of current practice and tools available in other domains, we 

developed d.note, a revision notation for user interface prototypes. d.note extends the d.tools 

authoring environment. In text, the atomic unit of modification is a character. Because visual 

program diagrams have a larger set of primitives, the set of possible revision actions is more 

complex as well. In d.tools, the primitives are states, transitions, the device definition, and 

graphical screens. With each primitive, d.note defines both syntax and semantics of 

modification. This section will provide an overview of each modification operation. Concrete 

examples of these operations in d.note are provided in Figure 6.13 – Figure 6.17. 

6.2.2.1 Revising Behavior 

d.note uses color to distinguish base content from elements added and removed during 

revision. In d.note and in the following diagrams, states and transitions rendered with a black 

outline are elements existing in the base version; added elements are shown with a blue 

outline; deleted elements in red.  
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In revision mode, users can add states and transitions as they normally would; these states 

and transitions are rendered in blue to indicate their addition (Figure 6.13, Figure 6.14). 

Semantically, these states and transitions behave like their regular counterparts.  

When users remove states from the base version, the state is rendered as inactive in red. 

To visually communicate that a state can no longer be entered or exited, all incoming and 

outgoing transitions are rendered as inactive with dashed lines (Figure 6.15). At runtime, 

incoming transitions to such states are not taken, making the states unreachable. Individual 

transitions can also be directly selected and deleted. Deleted transitions are shown with a 

dashed red line as well as a red cross, to distinguish them from transitions that are inactive as 

a result of a state deletion (Figure 6.16). As with many source code and word processing tools, 

deleting states or transitions that were added in revision mode completely removes the 

objects from the diagram. 

 

Figure 6.13: States added 

during revision are 

rendered in blue. 

 

Figure 6.14: New screen 

graphics can be sketched in 

states.  

 

Figure 6.15: State 

deletions are rendered in 

red. Connections are 

marked as inactive. 

 

 

Figure 6.16: Transition 

deletions are marked with 

a red cross and dashed 

red lines. 

 

Figure 6.17: Comments can 

be attached to any state.  

 

Figure 6.18: Alternative 

containers express 

different options for a 

state. 
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6.2.2.2 Revising Appearance 

Designers can modify graphics by sketching directly on top of them with a pen tool within 

the d.tools graphics editor (Figure 6.19). Sketched changes are then rendered on top of the 

existing graphics in a state at runtime. In addition to sketching changes to appearance, users 

may also rearrange or otherwise modify the different graphical components that make up the 

screen output of a state. d.note indicates the presence of such changes by rendering the screen 

outline in the state editor in a different color, as showing modification side-by-side with the 

original graphics would interfere with the intended layout. The changes are thus not 

visualized on the level of an individual graphical widget, but in aggregate. 

6.2.2.3 Revising Device Definition 

Thus far, we have described changes to the information architecture and graphic output of 

prototypes. When prototyping products with custom form factors such as medical devices, 

 

Figure 6.19: Sketched updates to screen content are 

immediately visible on attached hardware.  

 

 

Figure 6.20: Changes to the device configuration are 

propagated to all states. Here, one button was deleted while 

two others were sketched in. 
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the set of I/O components used on the device may also be subject to change and discussion. 

When revising designs in d.note, users can introduce new input elements by sketching them 

in the device editor (Figure 6.20). Prior to binding the new component to an actual piece of 

hardware, designers can simulate its input during testing using the d.tools simulation tool 

(see Section 4.1.3). Currently, the d.note implementation does not support adding output 

devices through sketching; we believe adding output within this paradigm would be fairly 

straightforward. 

6.2.2.4 Commenting  

In addition to functional revision commands, users can sketch comments on the canvas of 

device, graphics, and storyboard editors (Figure 6.17). Any stroke that is not recognized as a 

revision command is rendered as ink. This allows tentative or ambiguous change proposals to 

coexist with concrete changes. Inked comments are bound to the closest state so they 

automatically move with that state when the user rearranges the diagram. 

6.2.2.5 Proposing Alternatives 

As covered in Section 5.7 (p. 140), users can introduce alternatives for appearance and 

application logic. We summarize the functionality of alternative containers again briefly: 

d.tools represents the alternative by duplicating the original state and visually encapsulating 

both original and alternative (Figure 6.18). The original state‘s incoming connections are 

rerouted to point to the encapsulating container. Each state maintains its own set of outgoing 

transitions. To define which of the alternative states should become active when control 

transfers to an alternative set, the set container shows radio buttons, one above each 

contained state. To reduce visual clutter, only outgoing transitions of the active alternative 

are shown; other outgoing transitions are hidden until that alternative is activated.  

6.2.3 SCENARIO 

The following scenario summarizes the benefits d.note provides to interaction design teams. 

Adam is designing a user interface for a new digital camera with on-camera image editing 

functions. To get feedback, he drops his latest prototype off in Betty‘s office. Betty picks up 

the camera prototype, and tries to crop, pan and color balance one of the pictures that Adam 

preloaded on the prototype. She notices that exiting to the top level menu is handled 

inconsistently in different screens. She opens up the d.tools diagram for the prototype and, 

with d.note enabled, changes the transitions from those screens to the menu state. She next 
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notices that the image delete functionality is lacking a confirmation screen – images are 

deleted right away. To highlight this omission, Betty creates a new state and sketches a 

rudimentary confirmation dialog, which she connects to the rest of the diagram with new 

transitions so she can immediately test the new control flow. Betty is not convinced that the 

mapping of available buttons to crop an image region is optimal. She selects the crop state and 

creates an alternative for it. In the alternative, she redirects button input and adds a comment 

for Adam to compare the two implementations. She also thinks that the current interface for 

balancing colors via RGB sliders is cumbersome. Since she does not have time to change the 

implementation, she circles the corresponding states and leaves a note to consider using an 

alternative color space instead. 

6.2.4 THE D.NOTE JAVA IMPLEMENTATION 

d.note was implemented as an extension to d.tools. As such, it was written in Java 5 and 

makes use of the Eclipse platform, specifically the Graphical Editing Framework (GEF) [24]. 

d.note runs on both Windows and Mac OS X operating systems.  

6.2.4.1 Specifying Actions Through Stylus Input 

Because much of early design relies on sketches as a visual communication medium [55], 

d.note‘s revision interface can be either operated through mouse and keyboard commands, or 

it can be entirely stylus-driven. Stylus input allows for free mixing of commands and non-

command sketches. When using the stylus, strokes are sent through a recognizer (the Paper 

Toolkit [258] implementation of Wobbrock et al.‘s $1 recognizer [253]) to check if they 

represent a command. Command gestures to create states and alternatives use a pigtail 

delimiter [120], to reduce the chance of misinterpretation of other rectangular strokes (Figure 

6.21). Gesture recognition takes into account what existing diagram element (if any) a gesture 

was executed above. The gesture set contains commands to delete the graphical element 

 

Figure 6.21: The d.note gesture set for stylus operation. Any 

stroke not interpreted as one of the first four actions is 

treated as a comment. 
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underneath the gesture, and to create new states, transitions and alternatives. All other 

strokes are interpreted as comments. In addition to providing drawing and gesture 

recognition, d.note extends the d.tools runtime system to correctly handle the interaction 

logic semantics of its notation, e.g., ignore states marked for deletion.  

6.2.5 EVALUATION: COMPARING INTERACTIVE & STATIC REVISIONS 

To understand the user experience of the interactive revision techniques manifest in d.note, 

we conducted two studies: the first compared authoring of revisions with and without d.note; 

the second compared interpretation of revisions with and without d.note. We recruited 

product design and HCI students at our university. Because the required expertise in creating 

UIs limited recruitment, we opted for a within-subjects design, with counterbalancing and 

randomization where appropriate. 

6.2.5.1 Study 1: Authoring Revisions 

In the domain of word processing, Wojahn [254] found that the functionality provided by a 

revision interface influenced the number and type of problems discussed. Do users revise 

interaction designs differently with a structured, interactive tool than by making freeform, 

static annotations on a diagram? 

METHOD 

We recruited twelve participants. Participants each completed two revision tasks: one 

without d.note and one with. The non-d.note condition was always assigned first to prevent 

exposure to d.note notation from influencing freeform annotation patterns. Each revision task 

asked participants to critique one of two information appliance prototypes, one for a 

keychain photo viewer, and one for the navigation and management of images on a digital still 

camera (Figure 6.22). The tasks were inspired by student exercises in Sharp et al.‘s 

interaction design textbook [226]. We counterbalanced task assignment to the conditions. 

Participants were seated in front of a Mac OS X workstation with an interactive 21‖, 

1600×1200 pixel tablet display (Figure 6.23). Participants could control this workstation with 

stylus as well as keyboard and mouse. We first demonstrated d.tools to participants and had 

them complete a warm-up menu navigation design (taken from the d.tools evaluation in 

Section 4.1.5.1) to become familiar with the visual authoring language. In the condition with 

d.note, students were given a demonstration of its revision features, and five minutes to 

become familiar with the commands using the warm-up project they completed earlier. 
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Participants were then given a working prototype, run by d.tools and d.note, and were asked 

to take 15 minutes to revise the prototype directly in the application using d.note‘s 

commenting and revision features.  

In the non-d.note condition, participants were given a working prototype along with a 

static image of the d.tools state diagram for the prototype. The image was loaded in Alias 

Sketchbook Pro [30], a tablet PC drawing application, and participants were given 15 minutes 

to draw modifications and comments on top of that image.  

The caveat of our design is that ordering of conditions may have affected usage. For 

example, participants may have become more comfortable, or more fatigued, for the second 

condition. However, we judged this risk to be lower than the potential learning effect of 

becoming familiar with the d.note annotation language and then applying it in the non-d.note 

 

Figure 6.22: Participants were given a prototype device with a 

color display and button input. They were asked to revise 

designs for a keychain display and a digital camera, both 

running on the provided device. 

 

 

Figure 6.23: Participants in study 1 revised d.tools designs on 

a large tablet display. 
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condition. After the design reviews, participants completed a survey that elicited high-level 

summative feedback in free response format.  

RESULTS 

We categorized all marks participants made; Table 6.1 summarizes the results. Figure 6.24 

shows four examples of diagrams; two for each condition. Most notably, participants wrote 

significantly more text comments without d.note than with it. In contrast, deletions were rare 

without d.note (4 occurrences); but common with d.note (34 occurrences; 8 out of 12 

participants). Finally, revisions with d.note focused on changes to the information 

 

Table 6.1: Content analysis of d.tools diagrams reveals 

different revision patterns: with d.note, participants wrote less 

and deleted more. 
 

 

Table 6.2: Most frequently mentioned advantages and 

disadvantages of using d.note to express revisions. 
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architecture, while freeform revisions often critiqued the prototype on a more abstract level. 

Our results thus corroborate Wojahn‘s finding that the choice of revision tool affects the 

number and type of revision actions [254]. 

The post-test survey asked participants to compare the relative merits of Sketchbook 

and d.note. We categorized their freeform written answers (Table 6.2). The two most 

frequently cited advantages of d.note were the ability to make functional changes (6 of 12 

participants), and to then test proposed changes right away (7 of 12 participants). Three 

participants suggested that commenting was more difficult with d.note; two wrote that the 

tool had a steeper learning curve. Two participants with a product design background wrote 

that using d.note led them to focus too much on the details of the design. In their view, the 

lack of functionality in the Sketchbook condition encouraged more holistic thinking. 

DISCUSSION 

Why did participants write less with d.note? One possibility is that that users wrote more with 

Sketchbook because it was easier to do so (Sketchbook is a polished product, d.note a 

research prototype). To the extent this is true, it provides impetus to refine the d.note 

 

Figure 6.24: Two pairs of revision diagrams produced by our study participants. Diagrams 

produced with Sketchbook Pro in the control condition are shown on the left; diagrams 

produced with d.note are shown on the right. 



164 

implementation, but tells us little about the relative efficacy of a static and dynamic approach 

to design revision. 

More fundamentally, d.note may enable users to capture intended changes in a more 

succinct form than text comments. Four participants explicitly wrote that d.note reduced the 

need for long, explanatory text comments in their survey responses: ―[with d.note] making a 

new state is a lot shorter than writing a comment explaining a new state‖; ―[without d.note] I 

felt I had to explain my sketches.‖ d.note‘s rich semantics enable a user‘s input to be more 

economical: an added or deleted transition is unambiguously visualized as such. In d.note, 

users can implement concrete changes interactively; only abstract or complex changes require 

comments. Without d.note, both these functions have to be performed through the same 

notation (drawing), and participants explained their graphic marks with additional text 

because of the ambiguity. In our data, inked transition arrows drawn without d.note (44 

drawn transitions) were replaced with functional transitions with d.note (78 functional 

transitions added; only 3 drawn as comments). 

Though participants could have disregarded the revision tools and only commented with 

ink, the mere option of having functional revision tools available had an effect on their 

activity. This tendency has been noted in other work [55,156] as well. 

Why did participants delete more with d.note? While participants created new states and 

transitions in both conditions, deletions were rare without d.note. Deletions may have been 

implied, e.g., drawing a new transition to replace a previously existing one, but these 

substitutions were rarely noted explicitly. We suggest that deletions with d.note were 

encouraged by the ability to immediately test concrete changes. Quick revise-test cycles 

exposed areas in which diagrams had ambiguous control structure (more than one transition 

exiting a state on the same event).  

Why were more changes to information architecture made with d.note? The majority of revision 

actions with d.note concerned the flow of control: adding and deleting transitions and states. 

In the Sketchbook condition, participants also revised the information architecture, but 

frequently focused on more abstract changes (Example comment: ―Make [feedback] messages 

more apparent‖). The scarcity of such comments with d.note is somewhat surprising, as 

freeform commenting was equally available. One possible explanation is that participants 

focused on revising information architecture because more powerful techniques were at hand 

to do so. Each tool embodies a preferred method of use; even if other styles of work remain 

possible, users are driven to favor the style for which the tool offers the most leverage.  
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6.2.5.2 Study 2: Interpreting Revisions 

The first study uncovered differences in expressing revisions. Are there similar characteristic 

differences in interpreting revisions created with the two tools?  

METHOD 

Eight (different) participants interpreted the revisions created by participants of the first 

study. After a demonstration and warm-up task (as in study 1), participants were shown the 

two working prototypes (camera and key chain) and given time to explore. Next, participants 

were shown screenshots of annotated diagrams from the first study (Figure 6.24) on a second 

display. Participants were asked to prepare two lists in a word processor: one that 

enumerated all revision suggestions that were clear and understandable to them; and a second 

list with questions for clarification about suggestions they did not understand. Participants 

completed this task four times: one d.note and one freeform diagram were chosen at random 

for each of the two prototypes.  

RESULTS 

The cumulative count of clear and unclear revision suggestions for all participants are shown 

in Table 6.3. Participants, on average, requested 1.3 fewer clarifications on revisions when 

using d.note than when sketching on static images (two-sample t(29)=1.90, p=0.03). 

The post-test survey asked participants to compare the relative merits of interpreting 

diagrams revised with d.note and Sketchbook. The most frequently mentioned benefits arose 

from having a notation with specified semantics (Table 6.4): revisions were more concrete, 

specific, and actionable. Frequently mentioned drawbacks were visual complexity and 

problems discerning high-level motivation in d.note diagrams.  

DISCUSSION 

Why did participants ask for fewer clarifications with d.note? When interpreting revised diagrams, 

participants are faced with three questions: First, what is the proposed change? Second, why 

was this change proposed? Third, how would I realize that change? The structure of the 

second user study asked participants to explicitly answer the first question by transcribing 

all proposed changes. We suggest that the formal notation in d.note decreased the need for 

clarification for two reasons. First, the presence of a formal notation resulted in a smaller 

number of handwritten comments, and hence fewer problems with legibility (Example 

without d.note: ―Change 6 — unreadable‖). Second, because of the ad-hoc nature of 

handwritten annotation schemes in absence of a formal system, even if comments were 
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legible, participants frequently had trouble tying the comments to concrete items in the 

interface (Example: ―I have no idea what it means to ‗make it clear that there is a manual 

mode from the hierarchy‘. What particular hierarchy are we talking about?‖)  

In the survey, participants commented on the remaining questions of why changes were 

proposed and how one might implement those changes. We next discuss mitigation 

strategies for managing visual complexity and the reported problems discerning high-level 

motivation in d.note diagrams.  

Visual complexity of annotated diagrams: Visual programs become harder to read as the node 

& link density increases. Showing added and deleted states and transitions simultaneously in 

the diagram sometimes yielded ―visual spaghetti‖: a high density of transition lines made 

 

Table 6.3: How well could study 2 participants 

interpret the revisions created by others? Each 

vertical bar is one instance. 

 

 

Table 6.4: Perceived advantages and disadvantages 

of using d.note to interpret revisions as reported by 

study participants. 
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distinguishing and following individual lines hard. The connection density problem becomes 

worse when state alternatives are introduced because each alternative for a state has an 

independent set of outbound transitions.  

In response, we already modified the drawing algorithm for state alternatives to only 

show outgoing connections for the currently active alternative within an alternative 

container. Additional simplification techniques are needed though. One option to selectively 

lower transition density in the diagram while preserving relevant context would be to only 

render direct incoming and outgoing transitions for a highlighted state and hide all other 

transitions on demand. 

Capturing the motivation for changes: While many handwritten comments focused on high-

level goals without specifying implementations, tracked changes make the opposite tradeoff: 

the implementation is obvious since it is already specified, but the motivation behind the 

change can remain opaque. We see two possible avenues to address this challenge. First, 

when using change tracking, multiple individual changes may be semantically related. For 

example, deleting one state and adding a new state in its stead are two actions that express a 

desired single intent of replacement. The authoring tool should detect such related actions 

automatically or at least enable users to specify groups of related changes manually. Second, 

even though freeform commenting was available in d.note, it was not used frequently. 

Therefore, techniques that proactively encourage users to capture the rationale for changes 

may be useful.  

6.2.6 LIMITATIONS & EXTENSIONS 

The d.note project introduced a notation and interaction techniques for managing revisions of 

user interface designs expressed as state diagrams. Diagrams can be modified and annotated.  

The particular implementation of revision techniques in d.note represents only one point 

solution in a larger design space of possible user interface revision tools. The main salient 

dimensions we considered during our work are summarized in Figure 6.25. This table reveals 

limitations and additional areas of exploration we have not touched upon so far. 
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6.2.6.1 Cannot Comment on Dynamic Behavior 

The stylus-driven annotation makes it easy to add comments to both layout and information 

architecture. It is not feasible to efficiently comment on dynamic behaviors, as there is no 

visual record of these behaviors in the interaction diagram. Recording and annotating video of 

an application‘s runtime output is one promising avenue to enable comments on behavior. 

d.tools can already record live video of interaction with a built prototype. If this video capture 

were augmented with a second stream of screen captures, then designers could sketch 

directly onto those video frames. To make such sketches useful for others, they have to be 

retrievable from the editing environment. Future work should examine how to associate such 

video annotations with the state diagrams and other static source views.  

6.2.6.2 Cannot Revise Dynamic Behavior 

d.note currently enables designers to express functional changes to the information 

architecture of the user interface, and to the screen content of a given state within that larger 

architecture. However, changes to scripts are not well supported in that there are no 

visualizations to show in detail what has changed, and no interaction techniques to accept or 

undo such changes.  

 

Figure 6.25: A design space of user interface revision tools. 

The sub-space d.note explored is highlighted in green. 
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6.2.6.3 How To Support Identified Revision Principles for Source Code? 

The presented design space finally raises the question how one might offer the benefits of a 

revision tool such as d.note for user interfaces specified entirely in source code. The particular 

revision techniques of d.note are based on a visual language that shows both user interface 

content and information architecture in the same environment. The techniques should 

therefore transfer to other visual control-flow tools such as DENIM [171] or SUEDE [148]. But 

what about user interfaces that are not programmed visually? Existing source revision 

techniques for non-visual programs do not permit designers to comment or revise the output 

of their application. Future research should investigate if sketch-based input and annotation 

in the output domain of a program can be transferred to such applications. 

 

 



170 

CHAPTER 7 CONCLUSIONS AND FUTURE WORK 

This dissertation has shown how to support creation, exploration, and iteration of user 

interface prototypes for ubiquitous computing applications. This final chapter recapitulates 

the contributions made by the presented systems, and concludes with an outlook on future 

work. 

7.1 RESTATEMENT OF CONTRIBUTIONS 

We introduced principles and systems for prototyping user interfaces that span physical and 

digital interactions. Three areas of technical contributions can be distinguished: 

1) Techniques for authoring user interfaces with non-traditional input/output 

configurations. This dissertation contributed: 

a. Rapid authoring of interaction logic through a novel combination of storyboard 

diagrams for information architecture with imperative programming for interactive 

behaviors.  

b. Demonstration-based definition of discrete input events from continuous sensor data 

streams enabled by a combination of pattern recognition with a direct 

manipulation interface for the generalization criteria of the recognition 

algorithms.  

c. Management of input/output component configurations for interface prototypes through 

an editable virtual representation of the physical device being built. This 

representation reduces cognitive friction by collapsing levels of abstraction; it 

is enabled by a custom hardware interface with a plug-and-play component 

architecture. 

2) Principles and techniques for exploring multiple user interface alternatives. The 

dissertation contributed: 

a. Techniques for efficiently defining and managing multiple alternatives of user interfaces in 

procedural source code and visual control flow diagrams. 

b. User-directed generation of control interfaces to modify relevant variables of user 

interfaces at runtime. 
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c. Support for sequential and parallel comparison of user interface alternatives through 

parallel execution, selectively parallel user input, and management of 

parameter configurations across executions. 

d. Implementations of the runtime techniques for three different platforms: desktop PCs, 

mobile phones, and microcontrollers.  

3) Techniques for capturing feedback from users and design team members on user 

interface prototypes, and integrating that feedback into the design environment. The 

dissertation contributed: 

a. Timestamp correlation between live video, software states, and input events during a 

usability test of a prototype to enable rapid semantic access of video during 

later analysis. 

b. Novel video query techniques: query by state selection where users access video 

segments by selecting states in a visual storyboard; and query by input 

demonstration where sections of usability video are retrieved through 

demonstrating, on a physical device prototype, the kind of input that should 

occur in the video. 

c. A visual notation and stylus-controlled gestural command set for revising user interfaces 

expressed as control flow diagrams. 

The dissertation also provided evidence, through laboratory studies and class deployments, 

that the introduced techniques are successful. In particular, the dissertation contributed: 

1) Evidence that the introduced authoring methods for sensor-based interaction are 

accessible and expressive through two laboratory evaluations and two class 

deployments. 

2) Evidence from a laboratory study that the techniques for managing interface alternatives 

enable designers to explore a wider range of design options, faster. 

3) Evidence from two laboratory studies that an interactive revision notation for interfaces 

leads to more concrete and actionable revisions. 

7.2 FUTURE WORK 

Future work in the space of design tools outlined by this dissertation falls into two general 

categories. First, additional research can extend the introduced systems and techniques, to 

overcome present limitations or to take logical next steps that enhance expressivity and 

utility. Second, reconsidering the assumptions underlying the systems described in this thesis 
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yields additional opportunities for different types of tools that can support a broader range of 

authoring tasks. Important limitations and possible extensions were discussed at the 

conclusion of each preceding chapter, in Sections 4.1.7 (d.tools, p. 92), 4.2.6 (Exemplar, p. 

116), 5.6 (Juxtapose, p. 136), 6.1.4 (d.tools video analysis, p. 149), and 6.2.6 (d.note, p. 167). This 

chapter briefly discusses some larger future research directions. 

In retrospect, most of the work presented in this dissertation implicitly shares a set of 

assumptions: that an individual designer creates one or more alternative designs for a single device, 

starting from scratch, through a desktop-based graphical user interface tool. Changing any of these 

four core assumptions yields areas of future work that suggest different types of design tools. 

We review each of these four areas in turn.  

7.2.1 DESIGN TOOLS THAT SUPPORT COLLABORATION 

Most existing authoring tools for user interfaces, the ones proposed in this dissertation 

included, focus on the work of a single creative individual. Future research should broaden 

this scope to integrate support for collaboration and sharing directly into authoring 

environments. Two reasons for making such a shift are the predominance of team-based 

design in industry, and the rise of open, amateur design communities online. 

PROFESSIONAL DESIGN TAKES PLACE IN TEAMS 

Professional work on complex user interfaces takes place in design teams; and an increasing 

number of such teams are geographically distributed. Office suite applications such as word 

processors and spreadsheets now routinely offer support for asynchronous review and 

annotation; some web-based applications also support synchronous collaborative editing. 

Outside the realm of office applications, support for distributed work is still lacking. In this 

dissertation, the d.note project for revising interaction design diagrams considered the 

importance of asynchronous communication about such diagrams between team members. 

But the presented work has not yet addressed synchronous collaboration. How can 

technology help teams jointly construct, discuss, and test user interface prototypes? In this 

chapter, Section 7.2.3.1 proposes a concrete project to redesign the interaction design studio 

itself to better support team activities. 

SUPPORTING AMATEUR DESIGN COMMUNITIES 

Beyond the professional, corporate context, social production of both information and 

software is becoming increasingly important. Successful online environments for 

collaborative information production (e.g., Wikipedia, ‗view source‘ on Web 1.0 HTML 
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pages) are built around open access to modify, copy, and reuse content. For interaction design 

beyond HTML pages, and programming in general, most social exchanges today happen 

outside the authoring environments, through plain text in online forums and blogs. We 

believe that there is significant additional latent value in integrating collaborative aspects of 

design and development directly into our authoring tools, where richer ways for collecting, 

presenting, and interacting with authored media are available.  

As a first step, some programming IDEs have begun to integrate support for publishing 

projects online. Scratch [13], the multimedia programming environment for children 

developed at the MIT Media Lab, has a function to share one‘s program on the Scratch 

website. Resnick recently reported that 30% of projects on the Scratch website are based on 

other projects; and that some projects have been ―remixed‖ (copied, modified, and shared 

again) up to 29 different times [76]. We believe that sharing the authoring process in addition 

to the end result can significantly aid designers and developers in gaining expertise, 

integrating pre-existing pieces of functionality into their project, and understanding and 

correcting problems. The following section on authoring by example modification introduces 

some concrete research projects along these lines. 

7.2.2 AUTHORING BY EXAMPLE MODIFICATION 

Most existing authoring tools implicitly assume that creators start with a clean slate, and 

then create their design, e.g., a user interface, a layout of a brochure, or a personal website, 

from scratch. However, less design happens tabula rasa than one might surmise. In practice, 

much creative work starts with finding relevant existing examples and modifying those to fit 

a new context.  

Examples play at least two fundamental roles in the design and programming of user 

interfaces: they can provide inspiration by providing anchors for analogical thinking [85], and 

they can provide concrete functionality that can shortcut the time required for implementation. 

For inspiration, designers like to immerse themselves in the domain of their current project by 

collecting a large and diverse set of examples [118]. These examples can be competing 

products, swatches of materials, color schemes (e.g., ‗mood boards‘), or clever mechanisms 

(e.g., the IDEO Tech Box [141:pp. 143-145] ). In fact, ―shopping for functionality‖ was reported 

as an important early design activity in our study of interaction, web, and hardware designers 

[108]. Examples provide an experiential feel for the space of existing solutions and allow 

identification of desirable traits, both concrete (―knob should be self-centering with detents‖) 
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and abstract (―product should feel warm and welcoming‖). These traits are then transferred 

to the product being designed by analogy. 

Many designers and programmers also rely on examples to provide working 

implementations of desired functionality. Integrating existing examples may be faster, more 

economical, or may enable designers to leverage functionality they could not create 

themselves. In the software domain, programming by example modification [196] is especially 

useful for learning how to integrate existing libraries into one‘s own project. Brandt et al. 

found programming by example modification to be pervasive [50]. In a lab study where 

subjects had to implement a chat room application, all participants extensively copied code 

found on web sites: 1/3 of the final code in participants‘ projects came from pre-existing 

examples.. 

If use of examples is pervasive in design and programming, what are the implications for 

future design tools? We see four aspects deserving of future work: New tools can help users 

find relevant examples, synthesize new examples if none exist, extract examples from larger 

projects, and facilitate integration of found examples into projects. The following sections 

review three of these areas in some additional detail.  

7.2.2.1 Finding Examples 

For programmers, code search engines like Assieme [122] and Mica [235] provide support for 

finding relevant source examples. Brandt‘s Blueprint system integrates search for example 

code snippets directly into the Adobe Flex development environment [49]. Going beyond 

source code, it is not immediately clear how searches for examples should be specified. For 

visual material, hierarchical browsing interfaces [181], faceted metadata browsing [257], and 

image search by sketching [223] have been proposed, but we are not aware of studies about 

the efficacy of such techniques for design. It is even less clear how designers might search for 

interactive behaviors. 

7.2.2.2 Synthesizing Examples 

Our d.mix project [113] explored how to automatically synthesize new examples of web 

service API calls by enabling developers to point to elements on web pages that they would 

like to access programmatically. The Design Galleries system [181] generates a space-spanning 

set of examples based on algorithms evaluating alternatives. For any system that 

automatically generates examples, designers somehow have to steer and control the synthesis 
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process. Whether the right interfaces for doing so can be general or have to be domain-

specific remains to be determined.  

7.2.2.3 Extracting Examples 

Useful examples for programmers are short, minimal, self-sufficient, and have explanatory 

documentation. These attributes are entirely different from the characteristic of source code 

found in open repositories, where projects are large, complex, and rife with 

interdependencies. One possible area of future research is therefore how to give developers 

the right tools to make it easier (or automatic) to publish relevant, small examples from their 

larger codebases. 

Our recently started HelpMeOut project [110] suggests that IDE instrumentation can be 

used to automatically collect histories of problems and problem fixes during programming 

sessions. A database of such fixes can then be used as a source of examples for other 

programmers who are experiencing similar problems (Figure 7.1).  

7.2.2.4 Integrating Examples 

Once relevant examples have been found, how can designers integrate parts of those examples 

into their projects? The Adaptive iDEAS project [158] introduced limited support for copying 

font and color attributes of web pages these exemplars into one‘s own page designs. Kumar 

and Kim [152] are expanding on the motivation of this work by enabling designers to reuse 

the layout structure of existing web pages, but substitute one‘s own content. 

 

Figure 7.1: HelpMeOut offers asynchronous collaboration to 

suggest corrections to programming errors. 1: IDE 

instrumentation extracts bug fixes from programming 

sessions to a remote database. 2: Other programmers query 

the database when they encounter errors. 3: Suggested fixes 

are shown inside their IDE. 

A top of page text box for a figure or table 
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Kelleher‘s Looking Glass project [138] aims to enable users of the Alice virtual world 

authoring system to ―steal‖ behaviors from other users. Since these behaviors are represented 

in code in a structured editor, key challenges are how to find the right scope of code to copy, 

and how to adapt the found code to fit, e.g., by remapping object identifiers. How to aid 

similar integration for arbitrary code remains an open question. It would also be valuable to 

have a more concrete understanding which kind of examples are most frequently consulted 

and appropriated for different kinds of design projects by studying example use in real-world 

scenarios. 

7.2.3 AUTHORING OFF THE DESKTOP 

The tools introduced in this dissertation focused predominantly on prototyping user 

interfaces that aim beyond the standard desktop paradigm. However, the tools proposed for 

doing so were desktop applications themselves. What benefits can be realized by moving the 

authoring environment off the desktop? We propose two possible research directions: going 

large to create new design studio spaces, and going small by researching authoring tools for 

mobile computing devices.  

7.2.3.1 Going Large: New Studio Spaces for Interaction Design 

As noted in section 7.2.1, professional design is a team activity. Creative work alternates 

between phases of individual production and team discussion, ideation, and review. Based on 

insight into design team work patterns, what should the computing infrastructure in the 

interaction design studio of the future look like? To what extent can designers benefit from 

interactive spaces that are tailored to their design process, as opposed to generic meeting 

support? Three different ―form factors‖ have been proposed in prior work to support team 

collaboration: large interactive wall displays, interactive tables, and entire augmented rooms 

that combine interactive walls, tables, and other computing devices. 

WALLS 

A number of prior systems have focused on supporting design teams with interactive display 

walls. Notable systems include PostBrainstorm [98], a large high-resolution projected mural 

for enhancing and capturing brainstorming sessions, TEAM STORM [101] a brainstorm 

support system that uses individual tablet displays and a shared wall display; and the 

Designers‘ Outpost [147], a wall display that integrates digital capture and projection, and 

physical post-it notes to create information architecture diagrams for web sites. While wall 
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displays offer the benefit of a shared focal point, arm fatigue limits their use for extended 

work sessions [95:p. 1322].   

TABLES 

Interactive tables have unique benefits that may make them suitable for interaction design 

and product design. Discussion in these domains is almost always tied to concrete artifacts: 

designers use sketches, photographs, physical prototypes, and other products to structure 

conversation and creativity. As a result, design meetings, whether they focus on planning, 

brainstorming, or reviewing, draw on a wide variety of ―stuff.‖ Creative thought moves freely 

across digital and physical boundaries. We hypothesize that interactive tables are particularly 

suited to support and enhance group design work when they enable co-habitation of digital 

and physical artifacts on the table surface. In our own recent work, we have developed 

Pictionaire (Figure 7.2), a large, multi-user, standing height interactive table that supports 

physical to digital transition techniques through overhead image capture [111]. Pictionaire 

was expressly created for team meetings of user interface designers; its software supports the 

creation of linear interface walkthroughs from sketches and photographs. The next logical 

step is to move beyond sketching straightforward walkthroughs into higher-fidelity 

prototyping of interfaces on the table.  

There are additional reasons for moving away from desktop UIs, even for individual 

design work: in the domain of 3D modeling and animation, repetitive strain injuries (RSI) are 

a serious problem for professional artists. Research on leveraging multi-touch authoring 

techniques for animation professionals, e.g., at Pixar, is ongoing [142]. Large interactive tables 

 

Figure 7.2: The Pictionaire table supports co-located design 

team work through multi-touch, multi-device input and 

overhead image capture. 
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that offer high-resolution pen-input for digital drawing are also an active area of research 

[102]. 

To truly gauge the potential of table form factors and to find the right fit with 

professional practice, longer deployments outside research labs are needed. It would therefore 

be valuable to study use of a large interactive table such as our Pictionaire system with a local 

professional design company. 

ROOMWARE 

Streitz‘ iLand [234] and the Stanford iRoom [134] investigated how collections of many 

different computing form factors can support team work in a single room. The results, at least 

for the Stanford iRoom, have been mixed. Distinct benefits of a room-scale infrastructure 

include the ability to migrate applications between multiple displays and retarget interaction 

based on the best available input device at the time. However, the complexity of room-scale 

systems also creates maintenance and challenges that may outweigh the offered benefits. It is 

telling that one particular interactive wall display was replaced with a traditional, non-

interactive whiteboard after it fell into disuse. The experience with roomware then should 

serve as reminder not to blindly accept a vision of an all-digital future. More realistically, 

future research will have to find solutions that tread a careful line between keeping 

appropriate physical processes physical while adding digital flexibility where it is beneficial. 

7.2.3.2 Going Small: Authoring on Handheld Devices 

As a counterpoint to large, complex team design environments, we may also ask what kind of 

authoring is possible on very small devices such as smart phones or PDAs. This question is 

reasonable to consider because of two trends: 

1) At the cutting edge of technology, smart phones today offer the processing power found 

on desktop computers only a few years ago. Video and still image capture, location 

sensing, and 3D graphics acceleration are becoming common place. The latest version for 

Apple‘s iPhone now includes an application for video cutting and editing on the phone. 

2) On the other end of the spectrum, for the majority of the world‘s population, access to 

computation happens through cheap, low-powered cell phones. The mobile phone may 

be the only computing device millions of people will ever have access to. 

These two trends raise the following research questions: Fundamentally, what kind of 

content will users want to author on mobile devices in the future? What kind of content can be 

authored on such devices? The technical challenges are plentiful. The limited input/output 
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affordances of mobile devices are an immediate, obvious hurdle. While mobile authoring is 

unlikely to replace the desktop paradigm, these questions are deserving of future study. 

7.2.4 DESIGNING DEVICE ECOLOGIES 

d.tools, Exemplar, and Juxtapose all assumed that a single, standalone device or software 

interface was being designed. Increasingly, this assumption is no longer sufficient, as a 

growing number of smart products offer their value through device or application ecologies 

with multiple, connected components. An important, if overused, example of such an ecology 

is the Apple iPod + iTunes system. The iPod is a portable digital music player; iTunes is an 

application to play and manage one‘s digital media library on a desktop computer, linked to 

an online store for browsing and purchasing new music. The overall user experience arises 

out of the tight integration between the components. As another example, personal fitness 

devices such as heart rate monitors are starting to include web interfaces for analyzing and 

sharing the collected data [224].  

Sensor networks — collections of small, programmable, self-powered computing nodes 

that communicate with each other over ad-hoc wireless networks, are another area where 

behavior for multiple interconnected components has to be authored. While early sensor 

networks were used for unattended data collection, for example in conflict areas or for 

environmental monitoring, future applications, e.g., controlling energy usage in smart 

buildings, will likely require end-user interfaces. Merrill‘s Siftables project [187] explicitly 

realizes the potential of sensor networks as user interfaces. Each node has a small color 

display and can sense neighboring nodes as well as acceleration. While existing research has 

introduced hardware and software tools for programming sensor network applications (e.g., 

tinyOS [160]), and multi-display applications (e.g., Vigo [151]), such tools are aimed at 

researchers and technology experts. Support for prototyping and end-user authoring of multi-

display or multi-device applications is still lacking and worthy of future research. 
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7.3 CLOSING REMARKS 

The desktop computing paradigm has largely ossified around a common set of input devices 

and interaction techniques. With the rise of mobile and ubiquitous computing, it has also 

already eclipsed its zenith. While desktop computing still has an important role to play, a 

wider variety of different computing devices are quickly populating our lives. Beyond bringing 

new technologies for novel interfaces within the reach of interaction designers, this 

dissertation advocated that tools should also explicitly support fundamental design process 

steps. By encouraging exploration of alternatives, informed by feedback, design tools can help 

designers create interfaces that truly fit their intended users, contexts, and tasks, while being 

delightful to use. The research presented in this dissertation empowers designers to better 

envision and realize a broader range of such alternative futures for the post-desktop 

computing age.  
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