

GAINING DESIGN INSIGHT THROUGH INTERACTION PROTOTYPING TOOLS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Björn Hartmann

September 2009

ii

© 2009 by Björn Hartmann

All Rights Reserved

iii

I certify that I have read this dissertation and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.

(Scott R. Klemmer) Principal Adviser

I certify that I have read this dissertation and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.

(Terry Winograd)

I certify that I have read this dissertation and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.

(Pat Hanrahan)

Approved for the University Committee on Graduate Studies:

iv

ABSTRACT

Prototyping is the fundamental activity that structures innovation in design. While

prototyping tools are now common for graphical user interfaces on personal computers,

prototyping interactions for ubiquitous computing systems remains out of reach for

designers. This dissertation contributes concepts and techniques, embodied in software and

hardware artifacts, to answer two research questions:

1) How can design tools enable a wider range of designers to create functional prototypes

of ubiquitous computing user interfaces?

2) How can design tools support the larger process of learning from these prototypes?

Fieldwork at professional design companies showed that design generalists lack the tools to

fluently experiment with interactions for sensor-based interfaces and information appliances.

The first contribution of this dissertation is a set of methods, embodied in authoring tools,

that lower the expertise threshold required to author such novel interfaces. These tools

enable more designers to author a wider range of interfaces, faster. Visual authoring of control

flow diagrams and plug-and-play hardware linked to software abstractions for hardware

components enable rapid authoring of interaction logic. This dissertation also introduces

programming by demonstration techniques for sensor-based interactions to derive high-level

events from continuous sensor data streams.

Enabling the construction of prototypes is an important function of design tools;

however, it should not be the only goal. Prototypes are just a means to an end — they are built

to elicit feedback about design choices. The second contribution of this thesis is a set of

systems that explicitly support the design practices of exploration and iteration. Exploration

is supported through enabling the creation of multiple, parallel user interface alternatives.

The design-test-analysis loop of iterative design is supported through techniques for rapid

review of user test data and techniques for revision of interaction diagrams. The presented

work is informed by interviews and collaborations with professional interaction designers.

The tools are evaluated through a combination of laboratory studies and deployments to

interaction design students at Stanford and in industry.

v

ACKNOWLEDGMENTS

I would like to thank my advisor, Scott Klemmer, for the freedom and support he gave me to

follow my interests and chart my own path over the last five years. Scott and I both arrived at

Stanford in the Fall of 2004, and he took me on as his first newly-admitted student. I thank

him for his trust, and the passion, commitment, and energy with which he led our research

group. His door was always open and his advice for navigating graduate school and the

research world prepared me well for my upcoming transition to faculty life. I also thank my

other reading committee members, Terry Winograd and Pat Hanrahan, for their feedback and

stimulating conversations over the years. I am grateful to Stu Card and John Haymaker, who

served on my orals committee. Bill Verplank has been a source of inspiration throughout my

time at Stanford. His course on building electronic musical instruments launched me in the

direction of this dissertation.

Much of the work in this dissertation was undertaken with the help of a fantastic group

of collaborators. I have had the privilege to supervise a group of talented and hard-working

undergraduate summer interns through Stanford‘s CURIS program, who have contributed to

every project presented here: Michael Bernstein, Loren Yu, Anthony Ricciardi, Timothy

Cardenas, Sean Follmer, and Daniel MacDougall. Many other collaborators have worked with

me on either the research presented in this dissertation, or the numerous other projects we

pursued together. I am deeply indebted to them. At Stanford, I worked with Leith Abdulla,

Abel Allison, Marcello Bastea-Forte, Joel Brandt, Jesse Cirimele, Kevin Collins, Scott Doorley,

Wendy Ju, Michel Krieger, Dan Maynes-Aminzade, Nirav Mehta, Manas Mittal, Merrie

Ringel Morris, Erica Robles, Leila Takayama, Leslie Wu, and Yeonsoo Yang. At Microsoft

Research, Merrie Morris, Andy Wilson, and Hrvoje Benko were fabulous mentors.

My research would not have been possible without the tireless work of system

administrator John Gerth and the lab administrative staff, Heather Gentner, Ada Glucksman,

Melissa Rivera and Monica Niemic. I would also like to thank the professional designers, who

shared their time and expertise with me; Arna Ionescu and Hans-Christoph Haenlein at IDEO

were especially generous with their time.

Finally, I would like to express my gratitude to my parents, Volker and Lieselotte

Hartmann, and my wife, Tania Treis. Your love and support has made this possible.

Thank you.

vi

I was supported by an Agilent School of Engineering Fellowship and a SAP Stanford

Graduate Fellowship during my five years at Stanford. The d.tools project was further

supported by a grant from the Stanford Office of Technology Licensing. Dai Nippon Printing,

through the Stanford MediaX organization, supported the development of Exemplar.

Juxtapose was partially funded through NSF grant IIS-0745320. Nokia and Intel donated

hardware for multiple projects.

vii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION .. 1

1.1 Thesis Contributions .. 2

1.2 Dissertation Roadmap ..4

1.2.1 Background: Prototypes in the Design Process (Chapter 2)4

1.2.2 Related Work (Chapter 3) ..4

1.2.3 Authoring Sensor-Based Interactions (Chapter 4) ... 5

1.2.4 Creating Alternative Design Solutions (Chapter 5) ... 7

1.2.5 Gaining Insight Through Feedback (Chapter 6) ... 9

1.2.6 Conclusions & Future Work (Chapter 7) .. 10

1.2.7 Overview: Research Concerns & Projects ... 10

1.3 Statement on Multiple Authorship and Prior Publications .. 11

CHAPTER 2 BACKGROUND: PROTOTYPES IN THE DESIGN PROCESS 12

2.1 Design, Defined... 12

2.1.1 What Do We Mean By Design? .. 12

2.1.2 A Short History of Professional Design .. 14

2.1.3 How Do Designers Work? Models of the Design Process 14

2.2 Understanding Prototypes .. 15

2.2.1 Prototypes, Defined ... 16

2.2.2 Benefits of Prototyping ... 16

2.2.2.1 Quantifying the Value of Prototyping .. 17

2.2.2.2 Cognitive Benefits of Prototyping ... 17

2.2.2.3 Reflective Practice: The Value of Surprise .. 18

2.2.2.4 Prototyping as a Teaching Technique .. 19

2.2.3 The Purpose of Prototyping — Design Perspectives .. 19

2.2.3.1 What Do Prototypes Prototype? ... 19

2.2.3.2 Experience Prototyping .. 20

2.2.3.3 Inspiration, Evolution, Validation .. 21

2.2.3.4 Prototyping as Inquiry .. 22

2.2.3.5 Low-Fidelity Prototypes Might Be Preferable .. 22

2.2.4 The Purpose of Prototyping — Software Engineering Perspectives23

2.2.4.1 Exploration, Experimentation, Evolution ... 24

2.2.4.2 Prototypes as Immature Products .. 25

viii

2.2.4.3 Presentation Prototypes, Breadboards, and Pilot Systems 25

2.2.4.4 Capturing and Sharing Knowledge Gained from Prototypes 26

2.2.5 Synthesis of the Surveyed Material .. 26

CHAPTER 3 RELATED WORK ... 29

3.1 Status Quo: Tools & Industry Practices Today .. 29

3.1.1 Building Prototypes .. 29

3.1.1.1 Desktop-Based User Interfaces ... 29

3.1.1.2 Non-Traditional User Interfaces ... 31

3.1.2 Gaining Insight from Prototypes ... 33

3.1.2.1 Considering Alternatives ... 33

3.1.2.2 Annotating and Reviewing .. 34

3.1.2.3 Feedback from User Tests .. 34

3.2 UI Prototyping Tools .. 35

3.3 Tool Support for Physical Computing ... 41

3.4 Visual Authoring ... 46

3.4.1 Visual Formalisms ... 46

3.4.1.1 State Diagrams... 47

3.4.1.2 Statecharts .. 47

3.4.1.3 Flowcharts .. 48

3.4.1.4 Data Flow Diagrams .. 49

3.4.1.5 Unified Modeling Language .. 49

3.4.2 Visual Programming Proper ... 50

3.4.2.1 Control Flow Languages .. 50

3.4.2.2 Data Flow Languages .. 52

3.4.2.3 Control Flow and Data Flow in d.tools and Exemplar 53

3.4.3 Enhanced Editing Environments .. 54

3.4.3.1 Visual Editors .. 54

3.4.3.2 Structured Source Editors .. 55

3.4.3.3 Hybrid Environments .. 56

3.4.4 Analyzing Visual Languages with Cognitive Dimensions of Notation 56

3.5 Programming by Demonstration .. 58

3.5.1 PBD on the Desktop .. 58

3.5.2 PBD for Ubiquitous Computing.. 58

3.6 Designing Multiple Alternatives & Rapid Exploration .. 60

3.6.1 Tools for Working with Alternatives in Parallel .. 60

3.6.2 Rapid Sequential Modification ... 62

ix

3.7 Feedback from User Testing ... 63

3.7.1 Improving Work with Usability Videos ... 64

3.7.2 Integrating Design, Test & Analysis .. 65

3.8 Team Feedback & UI Revision ... 65

3.8.1 Annotation Tools ... 66

3.8.2 Difference Visualization Tools .. 66

3.8.3 Capturing Design History .. 67

CHAPTER 4 AUTHORING SENSOR-BASED INTERACTIONS .. 68

4.1 Authoring Physical User Interfaces with d.tools ... 68

4.1.1 Fieldwork .. 69

4.1.2 Design Principles .. 70

4.1.3 Prototyping with d.tools .. 71

4.1.3.1 Designing Physical Interactions with ‗Plug and Draw‘ 72

4.1.3.2 Authoring Interaction Models ... 73

4.1.3.3 Raising the Complexity Ceiling of Prototypes ... 74

4.1.4 Architecture and Implementation ... 76

4.1.4.1 Plug-and-Play Hardware ... 76

4.1.4.2 Hardware Extensibility ... 77

4.1.4.3 Software ... 79

4.1.5 Evaluation .. 82

4.1.5.1 Establishing Threshold with a First Use Study ... 82

4.1.5.2 Rebuilt Existing and Novel Devices .. 85

4.1.5.3 Teaching Experiences — HCI Design Studio .. 87

4.1.6 d.tools Mobile... 89

4.1.7 Limitations & Extensions ... 92

4.1.7.1 Dynamic Graphics Require Scripting ... 92

4.1.7.2 Hierarchical Diagrams Not Supported ... 93

4.1.7.3 Screen Real Estate Not Used Efficiently .. 93

4.1.7.4 Lack of Support for Actuation .. 94

4.1.7.5 Prototypes Have to be Tethered to PC by Wire .. 94

4.2 Exemplar: Programming Sensor-Based Interactions by Demonstration 96

4.2.1 Sensor-Based Interactions .. 98

4.2.1.1 Binary, Categorical, and Continuous Signals .. 98

4.2.1.2 Working with Continuous Signals ... 98

4.2.1.3 Generating Discrete Events ... 99

4.2.2 Design Principles ... 99

x

4.2.3 Designing with Exemplar .. 101

4.2.3.1 Peripheral Awareness ... 102

4.2.3.2 Drilling Down and Filtering ... 102

4.2.3.3 Demonstration and Mark-Up .. 103

4.2.3.4 Recognition and Generalization .. 103

4.2.3.5 Event Output .. 105

4.2.3.6 Many Sensors, Many Events ... 105

4.2.3.7 Demonstrate-Edit-Review .. 106

4.2.4 Implementation & Architecture .. 106

4.2.4.1 Signal Input, Output, and Display .. 106

4.2.4.2 Pattern Recognition .. 107

4.2.4.3 Extensibility .. 107

4.2.5 Evaluation ... 108

4.2.5.1 Cognitive Dimensions Usability Inspection .. 108

4.2.5.2 First-Use Study ... 111

4.2.5.3 Using Exemplar to Create Game Controllers ... 115

4.2.6 Limitations & Extensions .. 116

4.2.6.1 Lack of Support for Other Time Series Data .. 116

4.2.6.2 Matching Performance Degrades for Multi-Dimensional Data 117

4.2.6.3 Lack of Visualization Support for Multi-Dimensional Data 117

4.2.6.4 Lack of Support for Parameter Estimation .. 118

4.2.6.5 Difficult to Interpret Sensor Data History ... 118

CHAPTER 5 CREATING ALTERNATIVE DESIGN SOLUTIONS 120

5.1 Alternatives in Juxtapose .. 120

5.2 Formative Interviews .. 122

5.3 Exploring Options with Juxtapose ... 123

5.4 Architecture for Alternative Design ... 124

5.4.1 Parallel Editing .. 125

5.4.2 Parallel Execution and Tuning ... 126

5.4.3 Writing Tunable Code ... 131

5.4.3.1 Hardware Support ... 131

5.5 User Experiences with Juxtapose ... 132

5.5.1 Method .. 133

5.5.2 Results ... 134

5.6 Limitations & Extensions ... 136

5.6.1 Will Designers Really Benefit from Linked Sources? ... 137

xi

5.6.2 Is Tuning of Numbers and Booleans Sufficient? .. 138

5.6.3 Are Code Alternatives Enough? .. 138

5.6.4 Alternatives for Complex Code Bases .. 139

5.6.5 Support Exploration at the Language Level ... 139

5.6.6 Integrate With Testing ...140

5.7 Supporting Alternatives in Visual Programs ..140

CHAPTER 6 GAINING INSIGHT THROUGH FEEDBACK .. 143

6.1 Feedback in User Testing: Supporting Desing-Test-Analyze Cycles 143

6.1.1 Testing Prototypes .. 144

6.1.2 Analyzing Test Sessions ... 146

6.1.2.1 Single User Analysis ... 146

6.1.2.2 Group Analysis ... 148

6.1.3 Implementation .. 149

6.1.4 Limitations & Extensions .. 149

6.1.4.1 No Support for Quantitative Analysis ... 149

6.1.4.2 Limited Visibility of Application Behavior During Test 150

6.1.4.3 Cannot Compare Multiple Prototypes in Analysis Mode 150

6.1.4.4 Limited Query Language .. 151

6.1.4.5 Interaction Techniques Have Not Been Formally Evaluated............................ 151

6.2 Capturing Feedback from Other Designers: d.note ... 152

6.2.1 Revision Practices In Other Domains ... 153

6.2.2 A Visual Language for Revising Interactions .. 155

6.2.2.1 Revising Behavior .. 155

6.2.2.2 Revising Appearance .. 157

6.2.2.3 Revising Device Definition .. 157

6.2.2.4 Commenting ... 158

6.2.2.5 Proposing Alternatives ... 158

6.2.3 Scenario ... 158

6.2.4 The d.note Java Implementation .. 159

6.2.4.1 Specifying Actions Through Stylus Input ... 159

6.2.5 Evaluation: Comparing Interactive & Static Revisions ... 160

6.2.5.1 Study 1: Authoring Revisions ... 160

6.2.5.2 Study 2: Interpreting Revisions ... 165

6.2.6 Limitations & Extensions .. 167

6.2.6.1 Cannot Comment on Dynamic Behavior ... 168

6.2.6.2 Cannot Revise Dynamic Behavior ... 168

xii

6.2.6.3 How To Support Identified Revision Principles for Source Code? 169

CHAPTER 7 CONCLUSIONS AND FUTURE WORK .. 170

7.1 Restatement of Contributions ... 170

7.2 Future Work .. 171

7.2.1 Design Tools That Support Collaboration .. 172

7.2.2 Authoring by Example Modification .. 173

7.2.2.1 Finding Examples .. 174

7.2.2.2 Synthesizing Examples .. 174

7.2.2.3 Extracting Examples .. 175

7.2.2.4 Integrating Examples ... 175

7.2.3 Authoring Off the Desktop .. 176

7.2.3.1 Going Large: New Studio Spaces for Interaction Design 176

7.2.3.2 Going Small: Authoring on Handheld Devices .. 178

7.2.4 Designing Device Ecologies ... 179

7.3 Closing Remarks .. 180

REFERENCES .. 181

xiii

LIST OF FIGURES

Figure 1.1: The d.tools visual authoring environment enables rapid construction of UI

logic. ... 6

Figure 1.2: The d.tools hardware interface offers a plug-and-play architecture for

interface components. ... 6

Figure 1.3: Exemplar combines programming-by-demonstration with direct

manipulation to author sensor-based interactions. .. 7

Figure 1.4: This evaluation participant used Exemplar to control 2D aiming in a game

with an accelerometer, and shooting with the flick of a bend sensor. 7

Figure 1.5: Side-by-side execution in Juxtapose enables rapid comparison of

alternatives. .. 8

Figure 1.6: Juxtapose automatically generates control interfaces for program variables. 8

Figure 1.7: d.note introduces stylus-driven revision of interaction diagrams. 9

Figure 1.8: The d.tools test & analysis functions link video clips of test sessions to

event traces of the tested prototype. ... 9

Figure 2.1: Design process stages according to Moggridge [189]. Diagram redrawn by

the author. .. 15

Figure 2.2: The Houde & Hill model distinguishes Role, Implementation, and Look and Feel

functions of prototypes. (Diagram redrawn by the author). 20

Figure 2.3: The IDEO three-stage model of prototyping: as a design project progresses,

the number of entertained ideas decreases, and prototypes turn from

inspiration tools to validation tools. Diagram redrawn by the author. 21

Figure 2.4: Why are prototypes constructed in design? .. 26

Figure 2.5: What aspects of a product can prototypes approximate? .. 27

Figure 2.6: What kind of functionality can prototypes exhibit? .. 27

Figure 3.1: Common tools used for UI prototyping as reported in Myers‘ survey of

interaction designers [195]. Figure redrawn by the author. 30

Figure 3.2: Pering‘s ―Buck‖ for testing PDA applications: PDA hardware is connected to

a laptop using a custom hardware interface. Application output is shown on

the laptop screen. ...32

Figure 3.3: IDEO interaction prototype for a digital camera UI. The handheld prototype

is driven by the desktop computer in the background. ...32

file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820289
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820289
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820290
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820290
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820291
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820291
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820292
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820292
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820293
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820293
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820294
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820295
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820296
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820296
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820297
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820297
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820298
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820298
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820299
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820299
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820299
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820300
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820301
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820302
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820303
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820303
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820304
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820304
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820304
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820305
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820305

xiv

Figure 3.4: Buxton‘s Doormouse [56] is an example of a ―hardware hack‖ that

repurposes a standard mouse. ... 33

Figure 3.5: Timeline of prototyping tools for graphical user interfaces. 37

Figure 3.6: Bailey‘s DEMAIS system introduced a visual language for sketching

multimedia applications [40]. ... 38

Figure 3.7: Li‘s Topiary system for prototyping location-aware mobile applications

[163]. ... 38

Figure 3.8: Timeline of selected physical computing toolkits. ... 42

Figure 3.9: A partial, hierarchical statechart for a wrist watch with alarm function;

redrawn from an example in Harel [105]. ... 47

Figure 3.10: Example of a flowchart, adapted from Glinert [87]. .. 48

Figure 3.11: Example of a Nassi-Shneiderman structogram, adapted from Glinert [87]. 48

Figure 3.12: Example of a data flow diagram, redrawn by the author from Yourdon [259:

p. 159] .. 49

Figure 3.13: Examples of commercial or open source data flow languages. A: Quartz

Composer; B: Pure Data; C: Yahoo Pipes .. 52

Figure 3.14: Example of hybrid authoring in Pure Data: a visual node contains an

algebraic expression. .. 56

Figure 3.15: SUEDE introduced techniques to unite design, test, and analysis of speech

user interfaces. ... 65

Figure 4.1: Overview of prototyping with d.tools: A designer interacts both with a

hardware prototype (left) and the authoring environment (right). 68

Figure 4.2: The d.tools authoring environment. A: device designer. B: storyboard editor.

C: GUI editor. D: asset library. E: property sheet .. 71

Figure 4.3: d.tools plug-and-play: inserting a physical component causes a

corresponding virtual component to appear in the d.tools device designer. 72

Figure 4.4: d.tools interaction techniques. A: creating new transitions through

dragging. B: adding a new condition to an existing transition. C: Visualizing

sensor signal input and thresholds in context. D: parallel active states. E:

editing code attached to a state. .. 74

Figure 4.5: The d.tools hardware interface (left). Individual smart components

(middle) are can be plugged into any bus connector (right).................................... 76

Figure 4.6: Schematic diagram of the d.tools hardware infrastructure. Smart

components are networked on an I2C bus. A master microcontroller

file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820306
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820306
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820307
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820308
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820308
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820309
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820309
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820310
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820311
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820311
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820312
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820313
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820314
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820314
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820315
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820315
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820316
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820316
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820317
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820317
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820318
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820318
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820319
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820319
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820320
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820320
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820321
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820321
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820321
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820321
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820322
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820322
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820323
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820323

xv

communicates over a serial-over-USB connection with the computer

running the d.tools authoring environment. ... 77

Figure 4.7: Code examples for the d.tools scripting API. .. 80

Figure 4.8: Task completion times, and prior experience and expertise of d.tools study

participants. Participants completed task 1 in an average of 9 minutes, and

task 2 in an average of 24 minutes. These times demonstrate that

prototyping with d.tools is fast enough to be appropriate for early-stage

design. .. 83

Figure 4.9: Post-test survey results from the d.tools user study. Participants provided

responses on Likert scales. .. 84

Figure 4.10: Some applications built with d.tools in our research group. A: digital

camera image navigation. B: sensor-enhanced smart PDA. C & D: tangible

drawers for a multi-user interactive tabletop. E: proxemics-aware

whiteboard. F: TiltType for orientation-based text entry. 86

Figure 4.11: Some student projects built with d.tools. A: a tangible color mixing device

where virtual color can be poured from physical paint buckets by tilting

them over an LCD screen. B: a message recording system for children to

exchange secrets. C: a smart clothes rack can detect which hangers are

removed from the rack and display fashion advice on a nearby screen. D: a

mobile shopping assistant can scan barcodes of grocery items and present

sustainability information relating to the scanned item on its screen. E: a

tangible audio mixer to produce cell phone ring tones. F: an accelerometer-

equipped golf club used as a game controller. ... 88

Figure 4.12: A d.tools mobile prototype on a Nokia N93 smart phone, with the

storyboard logic of the prototype in the background. .. 89

Figure 4.13: The d.tools mobile system architecture uses socket communication over a

wireless connection to receive input events and send output commands to a

smart phone. ... 90

Figure 4.14: Iterative programming by demonstration for sensor-based interactions: A

designer performs an action; annotates its recorded signal in Exemplar; tests

the generated behavior; and exports it to d.tools. ... 97

Figure 4.15: The Exemplar authoring environment offers visualization of live sensor data

and direct manipulation techniques to interact with that data. 101

Figure 4.16: Sensor data flows from left to right in the Exemplar UI. .. 101

file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820324
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820325
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820325
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820325
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820325
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820325
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820326
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820326
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820327
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820327
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820327
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820327
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820328
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820328
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820328
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820328
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820328
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820328
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820328
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820328
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820328
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820329
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820329
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820330
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820330
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820330
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820331
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820331
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820331
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820332
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820332
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820333

xvi

Figure 4.17: Exemplar shows output of the pattern matching algorithm on top of the

sensor signal (in orange). When the graph falls below the threshold line, a

match event is fired. ...104

Figure 4.18: Exemplar study setup: participants were seated at a dual monitor

workstation in front of a large wall display. .. 111

Figure 4.19: Self-reported prior experience of Exemplar study participants. 111

Figure 4.20: Exemplar post-experiment questionnaire results. Error bars indicate ½

standard deviation in each direction. ... 113

Figure 4.21: Interaction designs from the Exemplar user study. A: turning on blinkers by

detecting head tilt with bend sensors; B: accelerometer used as continuous

2D head mouse; C: aiming and shooting with accelerometer and bend

sensor; D: navigation through full body movement; E: bi-pedal navigation

through force sensitive resistors; F: navigation by hitting the walls of a

booth. .. 113

Figure 4.22: Example of one study participant‘s exploration: the participant created two

different navigation schemes and two iterations on a trigger control; he

tested his design on a target game three times within 16 minutes. 114

Figure 4.23: Exemplar was used for public gaming installations at the San Mateo Maker

Faire and at CHI 2007. For the CHI installation, wireless accelerometers

were disguised as plush characters; the characters could be attached to

clothing or objects in the environment. Characters and game concept were

developed by Haiyan Zhang. ... 116

Figure 4.24: A possible visualization for 2D thresholding in Exemplar. 118

Figure 5.1: Design alternates between divergent and convergent stages. Diagram due to

Buxton [55], redrawn by the author. .. 120

Figure 5.2: Interaction designers explore options in Juxtapose through a source code

editor that supports alternative code documents (left), a runtime interface

that offers parallel execution and tuning of application parameters (center),

and an external controller for spatially multiplexed input (right). 121

Figure 5.3: In the Juxtapose source editor (left), users work with code alternatives in

tabs. Users control whether modifications affect all alternatives or just the

presently active alternative through linked editing. In the runtime interface

(right), alternatives are executed in parallel. Designers tune application

parameters with automatically generated control widgets. 121

file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820334
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820334
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820334
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820335
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820335
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820336
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820337
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820337
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820338
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820338
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820338
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820338
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820338
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820338
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820339
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820339
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820339
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820340
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820340
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820340
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820340
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820340
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820341
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820342
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820342
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820343
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820343
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820343
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820343
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820344
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820344
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820344
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820344
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820344

xvii

Figure 5.4: Example code from our inquiry: two behaviors co-exist in the same function

body. The participant would switch between alternatives by changing

which lines were commented. .. 123

Figure 5.5: UI vignettes for the Juxtapose Scenario. .. 124

Figure 5.6: Juxtapose‘s implementation of linked editing is based on maintaining block

correspondences between alternatives across document modifications. 125

Figure 5.7: Runtime tuning is achieved through bi-directional communication between

a library added to the user‘s application and the Juxtapose runtime user

interface. ... 127

Figure 5.8: When using Juxtapose mobile, code alternatives are executed on different

phones in parallel. Variable tuning is accomplished through wireless

communication. .. 128

Figure 5.9: Two prototypes built with Juxtapose mobile. Left: A map navigation

application explored use of variable tuning. Right: Two alternatives of a

fisheye menu navigation technique running on two separate phones. 128

Figure 5.10: For microcontroller applications, Juxtapose transparently swaps out binary

alternatives using a bootloader. Tuning is accomplished through code

wrapping. .. 129

Figure 5.11: The pre-compilation processing step extracts variable declarations and

emits them back into source code as a symbol table. ... 130

Figure 5.12: Example application demonstrating live tuning of color parameters of a

smart multicolor LED through the Juxtapose runtime user interface. 130

Figure 5.13: An external controller enables rapid surveying of multidimensional spaces.

Variables names are projected on top of assigned controls to facilitate

mapping. ... 132

Figure 5.14: Study participants were given a code example that generates images of

trees. They were asked to then match the four tree images shown above. 133

Figure 5.15: Study participants were faster in completing the tree matching task with

Juxtapose than without. ... 134

Figure 5.16: Study participants performed many more design parameter changes per

minute with Juxtapose than without. .. 134

Figure 5.17: A design space for exploring program alternatives. Choices implemented by

Juxtapose are shown with a shaded background. ... 137

file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820345
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820345
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820345
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820346
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820347
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820347
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820348
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820348
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820348
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820349
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820349
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820349
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820350
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820350
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820350
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820351
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820351
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820351
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820352
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820352
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820353
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820353
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820354
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820354
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820354
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820355
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820355
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820356
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820356
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820357
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820357
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820358
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820358

xviii

Figure 5.18: Schematic of state alternatives in d.tools: alternatives are encapsulated in a

common container. One alternative is active at a time. Alternatives have

different output and different outgoing transitions. .. 141

Figure 5.19: Screenshot of a d.tools container with two state alternatives. In the right

alternative, screen graphics have been revised. .. 141

Figure 6.1: d.tools supports design, test & analysis stages through integration with a

video editor. ... 143

Figure 6.2: Testing a prototype built with d.tools: A camera (A) is aimed at the tester

and the physical prototype (B), which is driven by a storyboard (C) in

d.tools. Live video of the test is recorded in the video editor (D) and

annotated with events and state changes (E). Designers can add additional

events to the record with a control console (F). ... 144

Figure 6.3: The video recording interface in test mode. A: Active states at any point in

time are encoded in a timeline view. B: Discrete input events show up as

instantaneous events or press/release pairs. C: Continuous input data is

visualized in-situ as a small graph in the timeline. ... 145

Figure 6.4: In analysis mode, a dual-screen workstation enables simultaneous view of

state model and video editor. .. 146

Figure 6.5: Line thickness in analysis mode shows how many times a given transition

was taken. ... 147

Figure 6.6: Two query techniques link storyboard and video. A: Selecting a video

segment highlights the state that was active at that time. B: Selecting a state

in analyze mode highlights the corresponding video segment(s). 147

Figure 6.7: Designers can query by demonstration: Generating input events in analyze

mode filters recorded video so that only those sections where similar events

were received are shown. ... 147

Figure 6.8: Group analysis mode aggregates video and event data of multiple user

sessions into one view. .. 148

Figure 6.9: d.note enables interaction designers to revise and test functional prototypes

of information appliances using a stylus-driven interface to d.tools. 152

Figure 6.10: Interlinear revision tracking and comment visualization in word processing. . 153

Figure 6.11: Source code comparison tools show two versions of a file side-by-side. 154

Figure 6.12: Video game designers draw annotations directly on rendered still images

(from [55:p. 179]). ... 154

file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820359
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820359
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820359
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820360
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820360
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820361
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820361
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820362
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820362
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820362
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820362
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820362
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820363
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820363
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820363
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820363
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820364
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820364
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820365
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820365
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820366
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820366
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820366
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820367
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820367
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820367
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820368
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820368
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820369
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820369
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820370
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820371
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820372
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820372

xix

Figure 6.13: States added during revision are rendered in blue. ... 156

Figure 6.14: New screen graphics can be sketched in states. .. 156

Figure 6.15: State deletions are rendered in red. Connections are marked as inactive. 156

Figure 6.16: Transition deletions are marked with a red cross and dashed red lines. 156

Figure 6.17: Comments can be attached to any state. ... 156

Figure 6.18: Alternative containers express different options for a state. 156

Figure 6.19: Sketched updates to screen content are immediately visible on attached

hardware. .. 157

Figure 6.20: Changes to the device configuration are propagated to all states. Here, one

button was deleted while two others were sketched in. ... 157

Figure 6.21: The d.note gesture set for stylus operation. Any stroke not interpreted as

one of the first four actions is treated as a comment. ... 159

Figure 6.22: Participants were given a prototype device with a color display and button

input. They were asked to revise designs for a keychain display and a digital

camera, both running on the provided device. ... 161

Figure 6.23: Participants in study 1 revised d.tools designs on a large tablet display. 161

Figure 6.24: Two pairs of revision diagrams produced by our study participants.

Diagrams produced with Sketchbook Pro in the control condition are

shown on the left; diagrams produced with d.note are shown on the right. 163

Figure 6.25: A design space of user interface revision tools. The sub-space d.note

explored is highlighted in green. .. 168

Figure 7.1: HelpMeOut offers asynchronous collaboration to suggest corrections to

programming errors. 1: IDE instrumentation extracts bug fixes from

programming sessions to a remote database. 2: Other programmers query

the database when they encounter errors. 3: Suggested fixes are shown

inside their IDE. .. 175

Figure 7.2: The Pictionaire table supports co-located design team work through multi-

touch, multi-device input and overhead image capture. ... 177

file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820373
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820374
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820375
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820376
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820377
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820378
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820379
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820379
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820380
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820380
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820381
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820381
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820382
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820382
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820382
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820383
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820384
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820384
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820384
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820385
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820385
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820386
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820386
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820386
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820386
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820386
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820387
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820387

xx

LIST OF TABLES

Table 1.1: An overview how research concerns map onto the concrete systems

presented in this dissertation.. 10

Table 2.1: Three purposes of prototypes according to Floyd [79] (table redrawn from

Schneider‘s summary [220].) .. 24

Table 3.1: Comparison of prior research in UI prototyping tools. ... 36

Table 3.2: Comparison of prior research in physical computing tools. 42

Table 3.3: The main dimensions of the Cognitive Dimensions of Notation inspection

method (from [90: p.11]). .. 57

Table 3.4: Differences between Design Galleries, set-based interaction, and Juxtapose

are based on requirements of real-time input, method of alternative

generation, and the source of input-output mapping. ... 61

Table 4.1: The d.tools Java API allows designers to extend visual states with source

code. The listed functions serve as the interface between designers‘ code

and the d.tools runtime system. Standard Java classes are also accessible. 79

Table 4.2: The d.tools scripting API provides both global and object-oriented

functions to interact with hardware, and a concise object-oriented set of

function for manipulating GUI elements... 81

Table 4.3: Comparison of d.tools mobile and related mobile prototyping tools. 92

Table 6.1: Content analysis of d.tools diagrams reveals different revision patterns:

with d.note, participants wrote less and deleted more. ... 162

Table 6.2: Most frequently mentioned advantages and disadvantages of using d.note to

express revisions. .. 162

Table 6.3: How well could study 2 participants interpret the revisions created by

others? Each vertical bar is one instance. ... 166

Table 6.4: Perceived advantages and disadvantages of using d.note to interpret revisions

as reported by study participants. ... 166

file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820388
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820388
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820389
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820389
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820390
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820391
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820392
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820392
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820393
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820393
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820393
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820394
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820394
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820394
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820395
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820395
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820395
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820396
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820397
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820397
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820398
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820398
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820399
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820399
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820400
file:///C:/Users/bjoern/Documents/My%20Dropbox/dissertation/word/text/NewMasterWithSections02.docx%23_Toc240820400

1

CHAPTER 1 INTRODUCTION

A decade and half after Weiser‘s call to integrate computation into the fabric of our lives

[248], the design and evaluation of ubiquitous computing systems remains challenging.

Difficulties arise partially because of a lack of appropriate design tools: the progress of any

creative discipline changes significantly with the quality of the tools available

[51,167,228,229]. As the creation of ubiquitous computing devices moves from research labs

into design consultancies and product teams, better tools that support user experience

professionals are needed. My fieldwork at professional design companies showed that design

generalists currently lack the tools to fluently experiment with interactions for sensor-based

interfaces and information appliances.

Prototyping is the pivotal activity that structures innovation, collaboration, and

creativity in professional design. Design studios pride themselves on their prototype-driven

culture; it is through the creation of prototypes that designers learn about the problem they

are trying to solve. Effective prototyping tools aid and improve design space exploration,

design team communication, and ultimately, lead to better products. The goal of this

dissertation is to develop principles and authoring methods that guide the creation of more

appropriate prototyping tools for interaction design. This dissertation contributes to the

advancement of prototyping tools by considering two different research questions:

1) How can design tools enable a wider range of designers to create functional prototypes

of ubiquitous computing user interfaces?

2) How can design tools support the larger process of learning from these prototypes?

Our exploration of the first question is concerned with improving prototyping methods—

finding new ways to model and structure the authoring task. Two complementary methods

for authoring sensor-based interactions are introduced: a control-flow-based visual authoring

environment for interaction logic that is based on existing storyboard practices; and a

programming-by-demonstration environment that helps designers extract useful high-level

interaction events from continuous sensor data. These methods lower the expertise threshold

required to author sensor-based interfaces. The tools enable more designers to author a wider

range of interfaces, faster.

2

The second question concerns the function a prototype plays in the larger design

process. Prototyping is not primarily about the artifacts that get built: it is about eliciting

feedback (from the situation, from users, team members & clients). Prototypes embody

design hypotheses and enable designers to test these hypotheses. Prototyping tools can thus

become more valuable to designers when they explicitly offer support for eliciting and

managing feedback. Today, software prototyping tools are mostly agnostic to this role. This

dissertation contributes techniques for creating and managing multiple alternative design

solutions, and for managing feedback from both external testers and design team members. A

brief overview of the contributions and the contents of this dissertation follows.

1.1 THESIS CONTRIBUTIONS

This dissertation contributes principles and systems for prototyping user interfaces that span

physical and digital interactions. The technical contributions are based on evidence collected

through interviews with designers and online surveys. This evidence suggests that interaction

designers lack tools to create interfaces that leverage sensor input; to explore alternative

interface behaviors; to efficiently review interface test videos; and to effectively communicate

interface revisions.

The dissertation makes the following technical contributions in three areas:

1) Techniques for authoring user interfaces with non-traditional input/output

configurations.

a. Rapid authoring of interaction logic through a novel combination of storyboard

diagrams for information architecture with procedural programming for interactive

behaviors.

b. Demonstration-based definition of discrete input events from continuous sensor data streams

enabled by a combination of pattern recognition with a direct manipulation

interface for the generalization criteria of the recognition algorithms.

c. Management of input/output component configurations for interface prototypes through an

editable virtual representation of the physical device being built. This

representation reduces cognitive friction by collapsing levels of abstraction; it is

enabled by a custom hardware interface with a plug-and-play component

architecture.

3

2) Principles and techniques for exploring multiple user interface alternatives.

a. Techniques for efficiently defining and managing multiple alternatives of user interfaces in

procedural source code and visual control flow diagrams.

b. User-directed generation of control interfaces to modify relevant variables of user

interfaces at runtime.

c. Support for sequential and parallel comparison of user interface alternatives through parallel

execution, selectively parallel user input, and management of parameter

configurations across executions.

d. Implementations of the runtime techniques for three different platforms: desktop PCs, mobile

phones, and microcontrollers.

3) Techniques for capturing feedback from users and design team members on user

interface prototypes, and for integrating that feedback into the design environment.

a. Timestamp correlation between live video, software states, and input events generated during

a usability test of a prototype to enable rapid semantic access of that video during

later analysis.

b. Novel query techniques to access such video recordings: query by state selection where

users access video segments by selecting states in a visual storyboard; and query by

input demonstration where sections of usability video are retrieved through

demonstrating, on a physical device prototype, the kind of input that should

occur in the video.

c. A visual notation and a stylus-controlled gestural command set for revising user interfaces

expressed as control flow diagrams.

This dissertation also provides evidence, through laboratory studies and class deployments,

that the introduced techniques are successful. In particular, the dissertation contributes:

1) Evidence that the introduced authoring methods for sensor-based interaction are

accessible and expressive through two laboratory evaluations and two class deployments.

2) Evidence from a laboratory study that the techniques for managing interface alternatives

enable designers to explore a wider range of design options, faster.

3) Evidence from two laboratory studies that an interactive revision notation for interfaces

leads to more concrete and actionable revisions.

4

1.2 DISSERTATION ROADMAP

This section presents a brief overview of the structure of this dissertation by chapters.

1.2.1 BACKGROUND: PROTOTYPES IN THE DESIGN PROCESS (CHAPTER 2)

The terms design, prototyping, and sketching have many meanings for different audiences.

Drawing on literature in design research, this chapter stakes out a perspective on design

practice and how prototyping activities occur throughout the design process. We briefly

discuss the history of industrial design as a discipline grounded in the development of

material goods and the later transfer of principles from industrial design to software [251].

While there are many different conceptions of the design process, models tend to agree

on two core characteristics. First, design is exploratory and emergent — the structure of the

design problem itself has to be uncovered and this uncovering happens through generating

concrete design proposals and evaluating them. Designers think with, and communicate

through artifacts and models [66]. These artifacts are prototypes. Second, generation and

evaluation of solution proposals exemplifies a recurrent, fundamental interplay between

divergent and convergent stages in design: first a range of different potential solutions is

generated, then desirable solutions are selected from that set of alternatives. This cycle

repeats as the focus shifts from design concepts to implementation strategies.

The chapter concludes with a survey of literature about the role that prototypes play in

design and software engineering. This survey leads to a classification of prototypes according

to three questions: What purpose do prototypes serve? What aspects of a design do they

address? And what level of functionality should they offer?

1.2.2 RELATED WORK (CHAPTER 3)

How are existing tools supporting prototyping activity? What needs are still unmet? We

describe the state of the art in professional practice and present an overview of research in

prototyping tools. Our discussion of related research addresses the following concerns in

separate sections:

USER INTERFACE PROTOTYPING TOOLS

Prior research has introduced environments for graphical user interfaces [155], web site

information architecture design [171], and context-aware applications [219], among others.

We review tools that focus on storyboard-based authoring, direct manipulation UI layout,

and Wizard of Oz simulation [140] of interface functionality.

5

TOOLS SUPPORT FOR PHYSICAL COMPUTING

Physical computing combines physical and digital interactions. Consequently, tools in this

area often focus on the interdependence of hardware and software. We review research into

hardware toolkits and programming models for working with sensors and actuators

[93,178,185].

VISUAL AUTHORING

 Visual authoring or visual programming is thought to offer a lower threshold than textual

programming. The reality is more nuanced. We provide an overview of visual formalisms and

visual programming languages. We distinguish between control flow environments [87], data

flow environments [209], augmented source editors [238], and hybrid environments [1].

PROGRAMMING BY DEMONSTRATION

Programming by demonstration promises to lower the barrier of specifying complex logic or

behavior by demonstrating that behavior to a computer. The crucial step in the success of

failure of programming by demonstration lies in the generalization step that transforms

observed examples to general rules. We discuss how previous systems have addressed this

challenge for programming [67] and computer vision applications [75].

DESIGNING MULTIPLES

 If design indeed oscillates between generating multiple alternatives and then selecting

between these alternatives, design tools should explicitly support working with sets of

potential designs. We survey existing work in image processing [161,239], rendering [181] and

information querying [177] that address this challenge.

CAPTURING & MANAGING FEEDBACK

How can design tools capture user test data or team feedback on prototypes? We review

work in document annotation [198] and usability video structuring through event logs

[39,179].

1.2.3 AUTHORING SENSOR-BASED INTERACTIONS (CHAPTER 4)

This chapter presents two novel prototyping methods that enable faster creation of functional

interaction designs for sensor-based user interfaces. Myers et al. introduced the terms

threshold and ceiling to describe use properties of a tool: the threshold is the difficulty of

learning and using a system, while the ceiling captures the complexity of what can be built

using the system [191]. d.tools and Exemplar help designers construct functional prototypes

6

by lowering the threshold of required expertise. The goal of both systems is to enable users to

focus on design thinking (how an interaction should work) rather than implementation

tinkering (how hardware and sensor signal processing work).

d.tools is a software and hardware toolkit that embodies an iterative-design-centered

approach to prototyping information appliances. d.tools enables non-programmers to work

with the bits and the atoms of physical user interfaces in concert. Supporting early-stage

prototyping through a visual, statechart-based approach, d.tools extends designers‘ existing

storyboarding practices (Figure 1.1). As designers move from early-stage prototypes to higher

fidelity prototypes, d.tools augments visual authoring with scripting. A hardware platform

based on smart components that communicate on a shared bus offers plug-and-play use of

sensors and actuators (Figure 1.2). The architecture exposes extension points for experts to

grow the library of supported electronic components.

d.tools provides software abstractions for hardware and offers rapid authoring of

interaction logic. An additional barrier for practitioners became apparent when we deployed

d.tools to an HCI class: students often struggled to transform raw, noisy sensor data into

useful high-level events for interaction design. Exemplar, an extension to d.tools, bridges the

conceptual gap between conceiving of a sensor-based interaction and formally specifying that

interaction through programming-by-demonstration. With Exemplar, a designer first

demonstrates a sensor-based interaction to the system (e.g., she shakes an accelerometer —

Figure 1.3). The system graphically displays the resulting sensor signals. The designer then

marks up the part of the visualization that corresponds to the action — Exemplar learns

Figure 1.1: The d.tools visual authoring

environment enables rapid construction

of UI logic.

Figure 1.2: The d.tools hardware

interface offers a plug-and-play

architecture for interface components.

7

appropriate recognizers from these markups. The designer can review the learned actions

through real-time visual feedback and modify recognition parameters through direct

manipulation of the visualization.

Both d.tools and Exemplar have been evaluated through individual laboratory studies

and deployment to interaction design courses and to industry. In a first-use evaluation of

Exemplar, participants with little or no prior experience with sensing systems were able to

design new motion-based controllers for games in less than 30 minutes (Figure 1.4). In our

collaboration with educational toy company Leapfrog, we provided d.tools hardware

schematics and software to Leapfrog‘s advanced development group. In return, Leapfrog

manufactured a complete set of hardware toolkits for us to distribute to a second year of

Stanford HCI students. In collaboration with Nokia, we also extended d.tools to author

prototype interfaces for mobile devices.

1.2.4 CREATING ALTERNATIVE DESIGN SOLUTIONS (CHAPTER 5)

Creating multiple prototypes facilitates comparative reasoning, grounds team discussion, and

enables situated exploration. However, current interface design tools focus on creating single

artifacts. How might interaction design tools explicitly support creation and management of

multiple user interface alternatives? This chapter discusses two approaches.

We first investigated how to support exploration in Juxtapose, a source code editor and

runtime environment for designing multiple alternatives of interaction designs in parallel.

Juxtapose offers a code editor for user interfaces authored in ActionScript in which

Figure 1.3: Exemplar combines

programming-by-demonstration with direct

manipulation to author sensor-based

interactions.

Figure 1.4: This evaluation participant

used Exemplar to control 2D aiming in a

game with an accelerometer, and shooting

with the flick of a bend sensor.

8

interaction designers can define multiple program alternatives through linked editing, a

technique to selectively modify source files simultaneously. The set of source alternatives are

then compiled into a set of programs that are executed in parallel (Figure 1.5). Optimizing

user experience often requires trial-and-error search in the parameter space of application

variables. To improve this tuning practice, Juxtapose generates a control interface for

application parameters through source code analysis and language reflection (Figure 1.6). A

summative study of Juxtapose with 18 participants demonstrated that parallel editing and

execution are accessible to interaction designers and that designers can leverage these

techniques to survey more options, faster. To show that general principles of working with

alternatives carry over into other domains, we also developed Juxtapose runtime

environments for mobile phones and microcontrollers.

We then discuss how ideas for exploring alternatives can be transferred from a textual

programming environment such as Juxtapose to the visual authoring environment of d.tools.

Visual control flow environments offer the opportunity to present alternative states side-by-

side in the same canvas. They also present some challenges in managing the additional visual

complexity resulting from capturing multiple behavior options.

Figure 1.5: Side-by-side execution in

Juxtapose enables rapid comparison of

alternatives.

Figure 1.6: Juxtapose automatically

generates control interfaces for program

variables.

9

1.2.5 GAINING INSIGHT THROUGH FEEDBACK (CHAPTER 6)

If prototyping is about eliciting feedback, then tools that manage the feedback process

explicitly can help designers gain insight, capture that insight, and act on it. We present two

methods for integrating feedback capture and management directly into design tools.

Many prototypes go through team discussions and reviews before being tested. In word

processing, revision management algorithms and interactions techniques effectively enable

asynchronous collaboration over text documents. But no equivalent functionality exists yet

for revising interaction designs. d.note introduces a revision notation for expressing tentative

design proposals within d.tools. The tool comprises commands for insertion, deletion,

modification and commenting on appearance and behavior of interface prototypes (Figure

1.7). d.note realizes three benefits: it visually distinguishes tentative changes to retain design

history, allows for Wizard of Oz simulation of proposed functionality, and manages display of

alternative design choices to facilitate comparison. In a laboratory evaluation, twelve design

students critiqued existing d.tools prototypes with and without d.note. Participants reported

that the ability to express and test functional changes was a clear benefit of d.note. In a

follow-up study, eight design students interpreted the annotated diagrams produced in the

first study, showing that d.note diagrams were less ambiguous to interpret, but that they

lacked high-level justification when compared to free-form annotation.

When prototypes are tested with team mates or external users, test sessions are often

recorded on video. Historically, the hours and days of work required for manual video analysis

has limited the practical value of these recordings. The d.tools video suite provides integrated

Figure 1.7: d.note introduces stylus-

driven revision of interaction diagrams.

Figure 1.8: The d.tools test & analysis

functions link video clips of test sessions

to event traces of the tested prototype.

10

support for testing prototypes with users and rapidly analyzing test videos to inform

subsequent iteration (Figure 1.8). d.tools logs all user interactions with a prototype and

records an event-synchronized video stream of the user‘s interactions. The video is

automatically structured through state transitions and input events. After a test, d.tools

enables designers to view video and storyboard in parallel as a multiple view interface [41]

into the test data. Two novel query techniques shorten the time to find relevant segments in

the video recordings: query by state selection, where users access video segments by selecting

states in the storyboard; and query by input demonstration, where designers demonstrate the

kind of input that should occur in the video.

1.2.6 CONCLUSIONS & FUTURE WORK (CHAPTER 7)

The final chapter provides a review of the contributions, and offers an outlook to future work

by reconsidering the fundamental assumptions made in this dissertation. The chapter

discusses opportunities for different types of authoring tools that result if some of these

assumptions are modified.

1.2.7 OVERVIEW: RESEARCH CONCERNS & PROJECTS

This dissertation explores the space of novel prototyping tools through multiple projects. To

aid the reader, Table 1.1 shows how research concerns map onto the different concrete

projects discussed in this dissertation.

Table 1.1: An overview how research concerns map onto the concrete systems

presented in this dissertation.

11

1.3 STATEMENT ON MULTIPLE AUTHORSHIP AND PRIOR

PUBLICATIONS

The research presented in this dissertation was not undertaken by me alone. While I initiated

and led all of the projects described here, the contributions of a talented group of

collaborators must be acknowledged — without their efforts, the research could not have

been realized in its current scope. In particular, the d.tools project benefited from UI

implementation contributions by Michael Bernstein, Leith Abdulla, and Jennifer Gee; and

video editor programming and integration by Brandon Burr and Avi Robinson-Mosher. In the

Exemplar project, Manas Mittal contributed to the signal processing routines; Leith Abdulla

contributed to the Exemplar user interface implementation. Sean Follmer, Timothy Cardenas,

and Anthony Ricciardi contributed to gesture recognition, revision management, and the

graphical user interface editor in d.tools and d.note. Meredith Ringel Morris, Sean Follmer,

Haiyan Zhang, and Jesse Cirimele collaborated on various demonstration applications for

d.tools and Exemplar. Loren Yu worked with me on the source code editor and runtime user

interface of Juxtapose; Abel Allison and Yeonsoo Yang helped with the implementation of

Juxtapose functionality for microcontrollers.

This dissertation is partially based on papers published in previous ACM conference

proceedings; I am primary author on all publications. In particular, the d.tools system was

published at UIST 2006 [109]; Exemplar at CHI 2007 [107]; and Juxtapose at UIST 2008 [114].

A paper describing d.mix is still in submission at the time of publication of this dissertation.

12

CHAPTER 2 BACKGROUND:

PROTOTYPES IN THE DESIGN PROCESS

This dissertation proposes novel tools for the prototyping of user interfaces as part of a larger

user interface design process. Doing so successfully requires understanding underlying

principles and practices of design. This chapter presents a brief review of different models of

design and the role prototypes play in the process.

2.1 DESIGN, DEFINED

User interface design is informed and influenced by professional design disciplines such as

product design on one side and by software engineering on the other side. This section

provides a brief overview of the history of professional design and introduces some

established models of the design process to motivate the development of design-specific tools.

2.1.1 WHAT DO WE MEAN BY DESIGN?

Herbert Simon provided a very broad definition of design as ―devising courses of action aimed

at changing current situations into preferred ones‖ [230]. Countless competing definitions

exist. Common to many definitions is the focus on a specific process, with the goal of creating

plans or models for the creation of new artifacts, which have to fit potentially conflicting sets of

constraints, requirements, and preferences. To elaborate on these three core characteristics:

1) Design is a process and has structure — there is a set of core activities designers engage

in, regardless of the domain of design.

2) Design is not manufacturing — for physical artifacts, the final realization is done by

someone else. For software, the division between design and implementation may be less

clear. In both domains, the end product of design is often a specification that will be

interpreted and implemented by someone else.

3) Design has a client and users — it is accountable to external judgment. Different

stakeholders may have conflicting expectations.

Design is thus distinguishable as a unique discipline from art (creation which is accountable

to the vision of the artist); engineering (―the application of scientific and mathematical

13

principles to practical ends‖ [31]); and science (the development of generalizable knowledge

through observation, experimentation and hypothesis testing).

A more pragmatic characterization would be that design is what professional designers do. The field

of design research adopts this perspective and describes the practices of successful

practitioners to analyze what makes these practices effective. Cross [66], a prominent design

researcher, argues that design has a ―unique way of knowing‖ and distills four core abilities

exercised by professional practitioners:

1) resolving ill-defined problems

2) adopting solution-focused cognitive strategies

3) employing abductive or appositional thinking

4) using non-verbal modeling media

In ill-defined or ―wicked‖ [213] problems, the problem formulation itself is not clear at the

outset and remains to be defined. Because the problem statement itself is not fixed, it is not

possible to enumerate all possible options or to find an optimal solution. Simon argued that

design problems therefore cannot be solved by optimizing, they can only be satisficed [230] —

one can tell an adequate solution from an inadequate one, and make relative judgments of fit,

but no global optimum exists.

Designers adopt solution-focused strategies by generating possible solutions first, then

checking to what extent the generated ideas are adequate for the problem. Cross, reporting on

a study of designers, summarizes: ―Instead of generating abstract relationships and attributes,

then deriving the appropriate object to be considered, the [designers] always generated a

design element and then determined its qualities.‖ [66:100]. Creation comes before analysis,

and only through the creation of prototypes and other representations is it possible to test to

what extent a design idea fulfills the design goals.

This tendency to produce proposals first is an expression of abductive reasoning which, in

contrast to deductive or inductive thinking, starts with concrete observations and guesses,

which only later lead to theories about a design space. Making the right guesses or creative

leaps requires experience.

Finally, designers tend think with, and communicate through artifacts and models rather

than written language – sketches, diagrams, models and prototypes are used both to work

through problems as well as to anchor communication with design team members and other

stakeholders [66:28].

14

2.1.2 A SHORT HISTORY OF PROFESSIONAL DESIGN

Architecture has the claim to being the oldest design discipline. Its focus is on the holistic

creation of structures that simultaneously satisfy requirements of functionality, economy, and

aesthetics. Notably the architect is not the one who creates the building itself: her role is to

transform needs, requirements, and constraints into a suitable plan that can then executed by

a builder. Professional product design as a discipline emerged as a result of the shift from one-off

artifacts created by craftspersons to mass production after the industrial revolution. While

craftsmen would iterate from project to project and slowly evolve a product over time, mass

production yielded many identical copies [175,237]. Because making changes to the tooling for

mass manufacturing became more expensive, while marginal cost of production decreased,

more care and planning was needed before manufacturing commenced to ensure that the

manufactured product was in fact functional and desirable to consumers. Notable pioneers of

product design in the first half of the 20th century include Henry Dreyfuss, Raymond Loewy,

Walter Dorwin Teague, and Norman Bel Geddes. Their autobiographies offer detailed

accounts of the mid-century industrial design process in North America [73,175,237].

Product design as a methodology has since been assimilated by the software industry.

One of the formative academic works that advocated for this transfer of process was

Winograd‘s ―Bringing Design to Software‖ [251]. As software is ultimately used by people, its

user interfaces should be created with the same concern for utility, usability, and satisfaction

as other artifacts of daily life.

2.1.3 HOW DO DESIGNERS WORK? MODELS OF THE DESIGN PROCESS

How do the underlying principles of designerly knowledge introduced in section 2.1.1 find

expression in designers‘ work practices? The process that evolved from architecture and

product design is characterized by four core strategies: need finding through user research

methods to establish constraints, ideation to generate many possible ideas and subsequently

select promising ideas, prototyping to create concrete models and approximations based on

those ideas, and iterative refinement based on testing generated prototypes. A more detailed

model of this iterative process, as described by Moggridge [189], is shown in Figure 2.1.

Need finding involves learning about the target users of a new product — what are their

unmet needs and unresolved pains; what are their motivations? Needs, requirements, and

constraints may be expressed in narrative form, e.g., as personas and scenarios [64:p. 123]; or

more formally, e.g., as user and task models [99]. The data gathered from such user research is

15

then used to construct a concrete point of view or framing that encapsulates the goals a new

design seeks to achieve. Given a framing, designers generate a multitude of concrete

proposals. Initially, idea generation can take the shape of brainstorming or sketching of

alternatives. To move from graphical envisioning towards concrete, testable artifacts,

designers next generate concrete prototypes. These proposals are then compared an evaluated

— against each other, or against user or stakeholder feedback. The gained knowledge is then

used to drive the next iteration.

The process model described above is commonly observed, but by no means canonical. A

wide-ranging overview of different design methodologies can be found in Jones [135]. Jones

categorizes these methods and distills an important common thread: design is a sequence of

divergent steps, where ideas are produced; and convergent steps, where ideas are eliminated.

Buxton echoes this theme, writing that design alternates between concept generation and

concept selection [55].

2.2 UNDERSTANDING PROTOTYPES

The prior section established that prototyping is a core activity in design across different

domains. This section reviews some conceptions of prototypes in design and computer

science and summarizes the literature on the purpose, role, and place of prototypes.

Figure 2.1: Design process stages according to Moggridge

[189]. Diagram redrawn by the author.

16

2.2.1 PROTOTYPES, DEFINED

The notion of a prototype is overloaded and there is no generally agreed upon definition. As a

broad, inclusive definition, Moggridge regards a prototype as ―a representation of a design,

made before the final solution exists.‖ [189]. Houde and Hill similarly point to the purpose of

prototypes as indicators of a future reality, and distinguish between two functions —

exploration and demonstration [126]. Buchenau and Suri add a third function of prototypes as

tools for gaining empathy: ―[A]n Experience Prototype is any kind of representation, in any

medium, that is designed to understand, explore or communicate what it might be like to

engage with the product, space or system we are designing‖ [52]. Lim and Stolterman

foreground the role of prototypes as learning vehicles: ―Prototypes are the means by which

designers organically and evolutionarily learn, discover, generate, and refine designs.‖ [170]

The above definitions place very little restrictions on the medium of the prototype or the

attributes of a design it tries to represent. In the software engineering literature, prototypes

are often defined more narrowly as working models, created in the same software medium as

the final deliverable. Lichter writes that ―Prototyping involves producing early working

versions (‗prototypes‘) of the future application system and experimenting with them‖ [166].

Connell and Schafer explicitly distinguish software prototypes from — in their view

insufficient — other modeling media: ―A software prototype is a dynamic visual model

providing a communication tool for customer and developer that is far more effective than

either narrative prose or static visual models for portraying functionality.‖ (quoted in [208])

In contrast to the software engineering focus on producing functional software, Rettig

[211] and Wong [255] advocate that user interface prototypes should not be constructed in

software in early project stages. Both argue for low-fidelity paper-based prototypes. To better

understand this multitude of viewpoints, this section summarizes prior publications about

prototypes and prototyping in design in general, and within HCI and software engineering in

particular.

2.2.2 BENEFITS OF PROTOTYPING

Are there concrete, measurable, defensible benefits of using a prototyping-driven design

approach, as opposed to a more linear approach, e.g., the waterfall model? This section reviews

experimental and theoretical arguments for the benefit of prototyping.

17

2.2.2.1 Quantifying the Value of Prototyping

The ideal experimental result in favor of prototyping would be that prototyping leads to

better design outcomes. However, operationalizing design quality in experimental settings is

difficult and isolating the impact of prototyping has proven to be problematic for real-world

design tasks. The most concrete result to date is reported by Dow et al. [72] who found that

for a constrained experimental design task with a time limit and a concretely measurable

outcome, participants who built early prototypes and iterated outperformed those who did

not prototype. Dow‘s experimental task was the mechanical engineering egg-drop exercise —

participants are asked to create a vessel that protects a raw egg from a vertical fall and

subsequent impact, using a limited set of everyday materials. In a between-subjects design,

the treatment group, which had to build a testable prototype early and was forced to iterate

on that prototype, outperformed the control group, in which prototyping was not

encouraged. In particular, novices unfamiliar with the task who prototyped performed as well

as experts who did not prototype.

In the absence of other strong experimental results, a frequently cited benefit by

proponents is that prototyping leads to earlier identification of problems and blind alleys,

when it is still feasible to fix them. McConnell summarizes several studies that have shown

that for software defects, the cost of finding an error increases by an order of magnitude for

each product phase [183:29], and it appears reasonable to extrapolate similar costs to

usability and user experience problems.

2.2.2.2 Cognitive Benefits of Prototyping

Research in Cognitive Science suggests that the construction of concrete artifacts —

prototyping — can be an important cognitive strategy to successfully reason about a design

problem and its solution space. This section presents some arguments for the cognitive

benefits of prototyping.

ARGUMENT 1: WE KNOW MORE THAN WE CAN TELL.

Embodied cognition theory argues that thought (mind) and action (body) are deeply

integrated and co-produce learning and reasoning [59,60,61]. In this view, ―thinking through

doing‖ — engaging with ideas on a tangible level — is a more successful strategy for design

than thinking hard about the problem alone. Why might this be the case?

Polanyi argues that much of our expertise and skill are ―action-centered‖ and as such not

available to explicit, symbolic cognition. Polanyi introduced the term tacit knowledge to

18

describe such expertise. A well-known example is the problem of describing to someone else

how to ride a bicycle. Riding a bike is an action-centered skill, one gained through repeated

practice and one only accessible as an action in the context of sitting on a bike. Practicing

designers such as Moggridge [189] argue that much knowledge in design is tacit and that

designers therefore need to create concrete artifacts to express their tacit knowledge [207].

ARGUMENT 2: COGNITIVE ACTIVITY EXTENDS INTO OUR ENVIRONMENT.

Proponents of distributed cognition argue that what is cognitive extends beyond the individual

and encompasses the environment, artifacts and other people [123,130]. Hutchins describes in

detailed case studies how people solve hard problems by offloading tasks into appropriate

artifacts in their environment. For example, medieval navigation was aided by the Astrolabe;

airline navigation is a task distributed between pilot, co-pilot, and instruments.

In this view, designers need concrete artifacts such as prototypes to be more effective in

their reasoning. Along the same lines, Hutchins also argues that ―material anchors‖ help

stabilize conceptual knowledge [131]: ―Reasoning processes require stable representations of

constraints. [...][T]he association of conceptual structure with material structure can

stabilize conceptual representation.‖

ARGUMENT 3: ACTIONS IN THE WORLD CAN OUTPERFORM MENTAL OPERATIONS

Kirsh and Maglio introduced a distinction between pragmatic and epistemic actions [143]:

pragmatic actions are those that advance us toward a known goal; epistemic actions in

contrast uncover more information about the goal. Kirsh and Maglio showed, through a study

of Tetris players, that external actions in the world can be faster or more efficient than mental

operations. Their study measured the amount of piece rotations performed by novice and

expert Tetris players, and found that experts rotated their pieces more frequently. Why?

Because the cost of performing the rotation in the game and then visually comparing the

shape of the piece with the shape of open gaps on the board was faster than mentally rotating

and checking for fit. Similar results have been found for the game of Scrabble, where expert

players rearrange their set of letters to help them reason about possible words that can be

formed with that set. Constructing concrete prototypes could thus be faster than trying to

reason about a design problem in the abstract.

2.2.2.3 Reflective Practice: The Value of Surprise

Schoen introduced the concept of reflective practice to describe designers‘ activity during

visualization and prototyping [221]. Reflective practice is the repeated framing and evaluation

19

of a design challenge by working it through, rather than thinking it through. For Schoen,

successful product and architectural designs result from a series of ―conversations with

materials.‖ Here, the ―conversations‖ are interactions between the designer and the design

medium — sketching on paper, shaping clay, building with foam core. The production of

concrete prototypes provides the crucial element of surprise, unexpected realizations that the

designer could not have arrived at without producing a concrete manifestation of her ideas.

Schoen terms this element of surprise ―backtalk‖. The backtalk that artifacts provide helps

uncover problems or generate suggestions for new designs.

2.2.2.4 Prototyping as a Teaching Technique

Prototyping has also been considered teaching technique that seeks to instill better design

intuitions over time [136]. By continually forcing designers to be faced with the consequences

of their actions through prototype testing, they are held accountable for their ideas. Designers

thus develop a better sense for which ideas work and which do not.

2.2.3 THE PURPOSE OF PROTOTYPING — DESIGN PERSPECTIVES

What questions do prototypes answer? When and how should they be constructed? This

section summarizes arguments from product design and human-computer interaction

research. The subsequent section will present contrasting arguments from software

engineering.

2.2.3.1 What Do Prototypes Prototype?

Houde and Hill [126] classified ways in which prototypes can be valuable to designers.

Prototypes in their view include ―any representation of a design idea, regardless of medium.‖

Their model defines three types of questions a prototype can address: the role of a product in

the larger use context; its look and feel; and its technical implementation. These questions are set

up as end points in a triangular, barycentric coordinate design space into which prototypes

are plotted (Figure 2.2).

20

Role refers to questions about the function that an artifact serves in a user‘s life—the way

in which it is useful to them. Look and feel is concerned with questions about the concrete

sensory experience of using an artifact—what the user looks at, feels and hears while using it.

Implementation refers to algorithms and engineering techniques used to realize functionality

of a product — ―the ‗nuts and bolts‘ of how it actually works.‖

For reasons of economy, any given prototype will only address some of these aspects, or

prioritize some over others. For example, a video clip that shows a ―commercial‖ of an

envisioned product in use would prioritize its role (Figure 2.2–1); a screen mockup of a new

graphics application showing menus and toolboxes would prioritize look and feel (Figure

2.2–2); while a demonstration of algorithms required for that graphics application would

prioritize implementation. Prototypes that strive to strike a balance and address all three

questions are labeled ―integration prototypes‖ (Figure 2.2–3). Such prototypes most closely

approximate the final design and permit testing of the overall user experience, but are also

most resource intensive to construct.

2.2.3.2 Experience Prototyping

Buchenau and Suri [52] introduced the term ―Experience Prototyping‖ to refer to prototyping

activity that enables stakeholders to gain first-hand experiential understanding of either

design problems or of proposed solutions. An example of such a prototype given by the

authors is wearing gloves while operating a consumer electronics device to experience the

reduced dexterity of older adults. Experience prototypes focus on direct active bodily

involvement of the designer or client in a constructed situation. Three uses for experience

prototyping are described: understanding existing use; exploring future situations; and

communicating designs to others.

Figure 2.2: The Houde & Hill model distinguishes Role,

Implementation, and Look and Feel functions of prototypes.

(Diagram redrawn by the author).

21

To understand existing situations that call for better design solutions, experience

prototyping may involve role playing to gain empathy for target users. As an example, the

authors cite the redesign of a remote control interface for an underwater camera vehicle. The

existing experience was prototyped by one designer ―playing‖ the vehicle with a shoulder

mounted camera, and another designer yelling commands (―move up‖) and watching the

video feed on a television monitor.

To explore future situations, Buchenau and Suri advocate creating multiple concrete

artifacts or repurposing found artifacts and everyday objects. Designers on the project team

have enough shared context to interpret these objects as stand-ins for future artifacts. For

example, a pebble might be used to suggest a handheld wireless controller. However, if

exploration requires input from external users, experience prototypes may have to be more

specific and functional, as end users don‘t share the same background or conceptual

framework with the team.

When communicating design solutions to clients and other external parties through

prototypes, the intent is frequently to persuade. Such prototypes are often polished and

complete and can take on the role of a ―living specification.‖ The authors caution that

prototypes that succeed in conveying a complete experience can easily be mistaken to be a

complete product.

2.2.3.3 Inspiration, Evolution, Validation

In personal communication, Hans-Christoph Haenlein, Director of Prototyping at IDEO, the

prominent Bay Area design consultancy, described a company-internal three stage view of

prototyping (Figure 2.3) [100]. In the beginning of a project, many parallel prototypes are

Figure 2.3: The IDEO three-stage model of prototyping: as a

design project progresses, the number of entertained ideas

decreases, and prototypes turn from inspiration tools to

validation tools. Diagram redrawn by the author.

22

generated to get inspiration. Here, prototypes are often very dissimilar from each other to

explore fundamentally different design options. Later on, a smaller number of ideas are

iteratively evolved to resolve more focused design questions. Through both phases, project

specifications are derived from the prototypes. Towards the end of a project, very complete

prototypes are built to validate the design specification as a whole. Haenlein also makes an

explicit distinction between prototypes used internally by the design team for exploration,

and prototypes created for communicating design insights to external clients and other

stakeholders.

Buxton [55] draws a distinction between sketches and prototypes. For him, sketches are

―quick, timely, inexpensive, disposable, plentiful‖; ―they suggest and explore rather than

confirm‖. Prototypes in contrast are ―didactic, they describe refine, answer, test, resolve; they

are specific and are depictions‖ [55:140]. While the distinction in nomenclature is unique to

Buxton, the expressed difference between prototypes used for inspiration and those used for

experimentation, evolution and validation matches the IDEO model.

2.2.3.4 Prototyping as Inquiry

Gedenryd stresses that prototypes are ―inquiring materials‖, that is, materials with a cognitive

purpose [84]. Many prototyping approaches all share the underlying goal to envision the

future situation of the designed artifact in use — prototyping is thus a ―situating strategy‖.

Echoing distinctions drawn by Haenlein and Buxton, Gedenryd distinguishes between

exploratory prototypes used to familiarize oneself with the problem, and experimental

prototypes, which probe and test specific design hypotheses. He further distinguishes

between horizontal relevance (breadth) and vertical relevance (depth) of the functionality

explored in a prototype.

As a guideline, Gedenryd advocates that prototypes exhibit a minimalist approach:

―A good prototype serves its purpose as a basis of inquiry and interactive cognition, while

being simple to create. This means that it should have the properties required for its purpose,

and as few other properties as possible. It also means that relevance is always relative to just

what exactly a prototype will be used for; this determines what properties it will need to

have.‖ [84:165]

2.2.3.5 Low-Fidelity Prototypes Might Be Preferable

Rettig [211] and Wong [255] argue that the resolution or fidelity of a user interface prototype

should match the level of detail of the questions asked of the prototype. In particular, Rettig

23

advocates against building functional software prototypes of user interfaces early on because

their surface finish is too high at a time when the general resolution of the project is still low.

According to Rettig, building functional UI prototypes (―high-fidelity prototypes‖) early on

squanders design resources and yields the wrong kind of feedback. Particularly, Rettig cites

four problems:

1) High-fidelity prototypes take too long to construct and modify.

2) Testers of the prototype are lead to comment on surface attributes such as typography

and alignment, when those are not the attributes tested.

3) The act of constructing a high-fidelity prototype creates emotional investment by

developers in that prototype, which results in resistance to act on feedback that asks for

fundamental changes. Similarly, a high-fidelity prototype creates expectations by users

exposed to the prototype that may be hard to change later.

4) High-fidelity prototypes are too brittle and have no graceful ―repair strategies‖ if users

run into bugs.

As an alternative, Rettig proposes paper prototyping of user interfaces, where interfaces are

assembled out of different layers of cut out paper strips. A designer simulates the logic of the

application by rearranging paper strips. Wong is also concerned with the fidelity of UI

prototypes and suggests taking inspiration from graphic design by creating ―rough‖ UI

prototypes through sketching and omission of concrete details.

One fundamental shortcoming of paper-based UI prototyping is that the human

―computer‖ who rearranges UI elements fundamentally changes the experience of interface

dynamics. While useful for exploring questions of interface layout, content, and structure,

paper prototypes are therefore less useful for exploring interactive behaviors in user

interfaces.

2.2.4 THE PURPOSE OF PROTOTYPING —

SOFTWARE ENGINEERING PERSPECTIVES

This section summarizes publications on prototyping from outside the field of human-

computer interaction and product design. Not surprisingly, software engineering prototypes

are more frequently concerned with testing implementation strategies than user experience.

However, the software engineering literature also departs from human-computer interaction

publications on prototyping in additional ways: prototypes are frequently seen as early

version of the final software, rather than standalone artifacts to be discarded after testing. In

24

addition, more emphasis is placed on capturing and documenting what questions a prototype

explored, and what was learned from it.

2.2.4.1 Exploration, Experimentation, Evolution

Floyd [79], in an early workshop on prototyping for complex software systems, describes two

primary goals of prototypes: 1) functioning as ―learning vehicles‖ and 2) enhancing

communication between developers and users, as developer introspection of user needs often

leads to inadequate products.

For Floyd, a software prototype must be functional enough to be demonstrated to users

with ―authentic, non-trivial tasks.‖ That functionality may either be implemented, or

simulated. In either case, Floyd assumes that for complex software projects, resource

constraints only permit one such prototype to be built and tested at a time. Floyd also claims

that by demonstrating a prototype to users, their expectations of the final system are ―deeply

influenced‖ so that the designer is committed to the overall outline of the prototype. This

places the designer in a paradoxical situation: prototypes are constructed to learn, but their

very construction constrains the extent to act on what was learned by modifying the design.

This paradox may have been an artifact of the types of applications considered — custom

software written for individual clients, so that the prototype testers and final users are

identical.

Three different purposes of prototyping are distinguished by Floyd (Table 2.1): exploration

(clarifying requirements, discussing alternatives), experimentation (measuring how adequate a

proposed solution is), and evolution (adapting an existing system to changing requirements).

Floyd suggests that prototypes should be expanded into the target system or integrated into

it — that is, the prototype is an earlier version of the final product. This implies using similar

production tools for the prototype as for the final deliverable and thinking about modularity,

both of which may require more time and expertise than the ―quick and dirty‖ prototypes

Approach Purpose Topic of Investigation

Explorative Elicit requirements, determine scope and
different alternatives of computer support

Requirements

Experimental Try out technical solutions to meet
requirements

Particular solutions

Evolutionary Continually adapt a system to a rapidly
changing environment.

Evolving requirements

Table 2.1: Three purposes of prototypes according to Floyd [79] (table redrawn from

Schneider’s summary [220].)

25

advocated by designers, which are created with the expectation of being discarded.

2.2.4.2 Prototypes as Immature Products

Riddle [212] states that ―prototyping is an approach to software development that

emphasizes the preparation of immature versions that can be used as the basis for assessment

of ideas and decisions.‖ Riddle identifies two ―dimensions of immaturity‖ along which a

prototype may fall short of complete software: a prototype may offer less than a final, polished

system in terms of quality (response time, maintainability, robustness), or in terms of

functionality. While prototypes should be produced quickly, Riddle also stresses that a

rational, controlled approach to prototype development is needed to preserve modifiability

and understandability of the produced code, which suggests that the implementation of the

prototype should be integrated into the main production codebase to some degree. Finally,

since prototypes are constructed for assessment, Riddle argues that tools should also provide

ways to instrument prototypes to gather pertinent usage data automatically.

2.2.4.3 Presentation Prototypes, Breadboards, and Pilot Systems

Lichter et al. [166] present case studies of prototype use in industrial software development

and introduce a taxonomy that distinguishes kinds of prototypes, goals of prototypes, and

prototype construction techniques. Four different kinds of prototypes are distinguished,

based on the phase of software development they support:

1) A presentation prototype is used as a persuasive tool to convince a client of the feasibility of

a project before starting major work on it. Other authors also describe prototypes as

persuasive tools, but usually as the outcome of some design process, not its precursor.

2) A prototype proper is a ―provisional operational software system‖ that is limited to specific

parts of the user interface or implementation.

3) A breadboard is designed to clarify implementation problems for the development team

and does not usually involve end-user feedback.

4) A pilot system is any software not constructed specifically for experimentation or

communication, but part of the core project being developed (e.g., an alpha version).

The purposes of prototyping are adapted from Floyd (exploratory, experimental, and

evolutionary). Construction techniques are distinguished based on whether functional

coverage is horizontal across application layers (e.g., user interface only, database only) or

vertical (e.g., implementing all aspects touched by the shopping cart in an ecommerce

26

system). Lichter et al.‘s review of five real-world case studies showed little consistency in the

selection of prototyping strategies in the surveyed companies.

2.2.4.4 Capturing and Sharing Knowledge Gained from Prototypes

Schneider [220], in investigating the role of prototypes in software engineering, lamented that

frequently, no systematic effort is made to capture and share the knowledge gained from

developing and testing prototypes. Because prototypes only examine particular details of a

future product, they often cannot stand alone and require their developers‘ explanation to

clarify context and scope: ―The prototype itself is not well suited to indicate what it does well

or poorly‖. Schneider therefore argues that the right level of analysis is the ―developer-

prototype system‖ since only the two together can fully capture intent and meaning.

Documentation for each prototype should thus be systematically captured through design

tools.

2.2.5 SYNTHESIS OF THE SURVEYED MATERIAL

Given the previous review of both human-computer interaction and software engineering

literature on prototyping, we can now combine the various presented perspectives in to a

single framework that addresses purpose, aspects, and functionality of user interface

prototypes. For this dissertation, we will define a user interface prototype as a concrete artifact

that can be experienced by a user as if it possessed some or all of the interactive qualities of the envisioned

interface, constructed for the purpose of generating feedback.

Three high-level goals why designers prototype have been presented (Figure 2.4): First,

Figure 2.4: Why are prototypes constructed in design?

27

prototypes are built to give the designer experiential insight into some situation that already

exists [52]. Second, prototyping is a technique to gain information about possible future

situations [84]. As described by Floyd [79] and Haenlein [100], this stage of prototyping can

have three different goals: to explore the space of alternatives, to conduct more focused

experiments comparing two or more options, and to get real-world validation. Third,

prototypes are used to aid communication between different project stakeholders with

different ―languages.‖ Within a design team, experts with different realms of expertise use

prototypes to serve as boundary objects [233] that can bridge language differences and serve

as a common referent in discussion. For communication with clients, prototypes are

frequently constructed to persuade the client.

Three different aspects of a final product can be tested in a prototype (Figure 2.5), as

described in Houde & Hill [126]: The role a current or future product plays for a users; the

look and feel of the product, and its implementation strategies. Within the category of look

and feel, designers further distinguish between ―looks like‖ prototypes that express the

Figure 2.5: What aspects of a product can prototypes

approximate?

Figure 2.6: What kind of functionality can prototypes exhibit?

28

aesthetic, visual, and material qualities of a product, and ―works like‖ prototypes that exhibit

interactive behaviors.

Works-like prototypes can either exhibit full functionality, or limit functionality by

selecting a horizontal or vertical slice of behavior (Figure 2.6). The functionality in a works-

like prototype may or may not share implementation strategies and tools with the final

product. Thus, four different realization methods are possible: building a working

implementation with the same toolset as the final product; building a working

implementation with a different toolset specifically geared towards prototyping; creating a

lower-fidelity approximation; or simulating the functionality.

The prototyping tools in this dissertation support the creation of a specific subset of

prototypes (shown through shading in Figure 2.4–Figure 2.6). The introduced tools focus on

prototypes created to explore design options or test specific ideas through experiments; these

prototypes have working interactive behaviors, but are not necessarily comprehensive and are

expressed in a new, prototype-specific tool, rather than in production-ready code.

With this particular point-of-view established, we next review related prior research

into authoring techniques and systems.

29

CHAPTER 3 RELATED WORK

Authoring tools and techniques for creating user interfaces have a rich history in human-

computer interaction. They have also been a commercial success — few graphical user

interfaces are created without the help of UI authoring tools. This chapter first reviews the

status quo of UI prototyping in industry, and then presents a survey of related research to

answer three questions: What tools are interaction designers using today to prototype user

interfaces? What additional tools have been introduced by prior research? What important

gaps in tool support remain?

3.1 STATUS QUO: TOOLS & INDUSTRY PRACTICES TODAY

Before surveying related research, it is useful to understand which tools are used by

interaction designers today. We will first review tools to build user interface prototypes, and

subsequently survey tools to gain insight from those prototypes.

3.1.1 BUILDING PROTOTYPES

A wide variety of commercial applications are available for prototyping desktop user

interfaces, and survey data reporting on the use of such tools by professionals is available. In

contrast, few commercial applications support the creation of UIs that do not target desktop

or mobile phone platforms, leading today‘s practitioners to appropriate other tools or build

their own scaffolding for prototyping. This section reviews these two areas in turn.

3.1.1.1 Desktop-Based User Interfaces

Myers et al. [195] conducted a survey of 259 interaction designers of desktop- and web-based

applications. Statistics for the most frequently used tools are reproduced in Figure 3.1. To

make sense of these tool choices, consider the three different high-level tasks involved in

creating a user interface prototype. Designers have to define appearance — the graphic design

of static screens; information architecture — how screens relate to each other; and behavior —

animations and transitions. We can examine how each of the reported applications supports

these three tasks:

30

APPEARANCE

For static screen design, many designers rely either on complex graphics software for

professionals (Adobe Photoshop and Illustrator) or they appropriate office productivity

software with vector-graphics layout functions (Microsoft PowerPoint and Visio). It is not

uncommon for interaction designers to have a background in graphic design, which gives

them familiarity with professional tools. One factor favoring the use of office productivity

tools may be their widespread availability on desktop computers, regardless of their

suitability for the task.

INFORMATION ARCHITECTURE

To capture key interaction sequences, PowerPoint is used to create linear walkthroughs from

screen to screen. Such walkthroughs can describe important paths through an interface, but

they cannot capture the multiple options usually available to the user at any given point in an

interface. For more complex structure, dedicated user interface construction tools such as

Adobe Flash (for dynamic web applications), Adobe Director (for stand-alone applications),

and Adobe Dreamweaver (for web pages) are used.

BEHAVIOR

The task of creating interactive behaviors was judged to be more difficult by Myers‘

respondents than creating appearance. The toolset behaviors is also more limited. Two

Figure 3.1: Common tools used for UI prototyping as

reported in Myers’ survey of interaction designers [195].

Figure redrawn by the author.

31

different kinds of dynamic behaviors are one-shot animations that are not dependent on user

interaction once started, and user-in-the-loop behaviors, where continuous user input drives the

behavior. One-shot animations can be prototyped using direct manipulation tools in

presentation applications such as PowerPoint and in UI software such as Adobe Flash. User-

in-the-loop behaviors mostly require textual programming to set up polling loops or event

handlers.

It is notable that tools specifically created for the task of prototyping user interfaces,

such as Axure RP, have relatively little mind- and market share with Myers‘ respondents.

Whether this is due to a lack of perceived need for such software, or due to other factors such

as pricing and marketing cannot be determined from the published data, but deserves

additional attention.

3.1.1.2 Non-Traditional User Interfaces

Interfaces that target other devices than desktop PCs suffer from a relative paucity of tool

support. Because smart phones are rapidly becoming the next standardized platform for

software, it is useful to distinguish between interfaces for such commodity hardware, and

interfaces for custom devices.

COMMODITY HARDWARE

Of the tools reported in the previous section, some support the creation of prototypes that

can be tested on mobile devices: Adobe Flash can generate applications for mobile phones

that run a special Flash player software; web pages and web applications can be used on a

mobile phone if the target device has a suitable web browser. Mobile development platforms

also often include a desktop PC-based emulator in which mobile applications can be tested

without having to load the application onto a device. The downside to this approach is that

the unique input affordances of the phone are lost and that it is not possible to test the

prototype in realistic use contexts outside the lab. To our knowledge, no comprehensive

survey about mobile prototyping techniques has been published to date.

CUSTOM HARDWARE

The commercial tools reported in Myers‘ survey all lack direct support for creating user

interfaces with custom hardware. Creating functional prototypes of physical user interfaces

involves the design of custom electronics or the creative repurposing of existing devices

through ―hardware hacking.‖ In our own fieldwork with eleven designers and managers at

three product design consultancies in the San Francisco Bay Area, we found that most

32

interaction designers do not have the technical expertise required for either approach. Where

expertise exists, it is often restricted to a single individual within an organization. At two of

the companies we visited, a single technology specialist would support prototyping activities

by programming microcontroller platforms such as the Parallax Basic stamp [2] to the

requirements of the design teams.

Two fundamentally different approaches to custom hardware are to create standalone

devices that function on their own, or to create devices that are tethered in some way to a

desktop PC, which can provide processing power and audio-visual output. While tethering

constrains testing to the lab (or requires elaborate laptop-in-a-backpack configurations), it

allows the design of prototypes without having to pre-maturely optimize for hardware

limitations. Two examples of such tethered prototypes from the literature attest to their use

in professional settings: Pering reports on prototyping applications for the Handspring PDA

using custom hardware for input, and a PC screen for output [204] (Figure 3.2); Buchenau

and Suri describe a prototype of an interactive digital camera driven by a desktop PC in [52]

(Figure 3.3).

HARDWARE HACKING

In our own physical computing consulting work, we encountered requests from interaction

designers to ―glue‖ new hardware input into their existing authoring tools, for example by

providing new input events to an Adobe Flash application. Such solutions are brittle since

most authoring tools are built around the assumption that all input emanates from a single

Figure 3.2: Pering’s “Buck” for testing

PDA applications: PDA hardware is

connected to a laptop using a custom

hardware interface. Application output is

shown on the laptop screen.

Figure 3.3: IDEO interaction prototype for

a digital camera UI. The handheld

prototype is driven by the desktop

computer in the background.

33

mouse and keyboard — the standard graphic GUI widgets are not written to interpret

different kinds of input events. One approach to reusing standard GUI tools is to marshal

hardware input events into mouse and keyboard events, e.g., by reusing standard keyboard

and mouse electronics, but attaching different input mechanisms to them. Examples of

hardware hacking for the purpose of prototyping include Zimmerman‘s augmented shopping

cart, where a standard mouse was used to sense rotational motion of the cart (described in

[108]); and Buxton‘s Doormouse [56], which sensed the state of an office door by means of a

belt around the door hinge connected to the shaft encoder in a disassembled mouse (Figure

3.4). Hardware hacks might look appealing because they can control any existing application,

but their reach is limited because of many assumptions made by operating systems and

application about how input from standard devices is structured. For example, widget

behavior for multiple simultaneous key presses is not well defined, and it is not easily possible

to use more than one mouse in an application.

3.1.2 GAINING INSIGHT FROM PROTOTYPES

What tools are used in design practice to gain insight from prototypes? Three important

aspects to consider are: support for expressing and comparing alternatives, capturing change

suggestions through annotations and revisions, and capturing and analyzing feedback from

user test sessions.

3.1.2.1 Considering Alternatives

Alternatives of static content such as UI layouts can be compared by showing them side-by-

side on screen or by printing and pinning them to a wall. Different graphic alternatives can

Figure 3.4: Buxton’s Doormouse [56] is

an example of a “hardware hack” that

repurposes a standard mouse.

34

also be generated using layer sets and other features in professional graphics programs. Terry

reports that on a micro-level, designers use undo operations to explore A/B comparisons in

such software [240]. While comparison of alternatives of UI appearance is feasible, Myers

notes that tool support for comparing behaviors is still lacking:

―[D]esigners frequently wanted to have multiple designs side-by-side, either in their

sketchbooks, on big displays, or on the wall. However, this is difficult to achieve for behaviors

— there is no built-in way in today‘s implementation tools to have two versions of a behavior

operating side-by-side.‖ [195]

3.1.2.2 Annotating and Reviewing

To find out how interaction design teams currently communicate revisions of user interface

designs, we contacted practitioners through professional mailing lists and industry contacts.

Ten designers responded, and seven shared detailed reports. There was little consistency

between the reported practices — techniques included printing out screens and sketching on

them; assembling printouts on a wall; capturing digital screenshots and posting them to a

wiki for comments; and using version control systems and bug tracking databases. We

suggest that the high variance in approaches is due to a lack of specific tool support for user

interface designers.

We also noted a pronounced divide between physical and digital processes [144] — one

designer worked exclusively on printouts; four reported a mixture between working on paper

and using digital tools; and two relied exclusively on digital tools. To make sense of this

divide, it useful to distinguish between two functions: the recording of changes that should be

applied to the current design (what should happen next?); and keeping track of multiple

versions over time (what has happened before?). For expressing changes to a current design,

five of the surveyed designers preferred sketching on static images because of its speed and

flexibility. In contrast, designers preferred digital tools to capture history over time and to

share changes with others. Designers would thus benefit from tools that bridge this divide

and enable both fluid sketching of changes and tracking of revisions inside their digital

authoring tools.

3.1.2.3 Feedback from User Tests

Evaluation strategies to assess the usability of user interface prototypes can be divided into

expert inspection and user testing. In expert inspection techniques such as heuristic evaluation

[199] and the cognitive dimensions of notation questionnaire [47], expert evaluators review

35

an interface and identify usability issues based on a pre-established rubric. The main benefit

of expert inspection is its low cost.

Rubin‘s Handbook of usability testing [216] provides a blueprint for usability studies

with non-expert users: Participants are asked to complete a set of given tasks with the device

or software being tested, and are asked to vocalize their cognitive process using a think-aloud

protocol [162:Chapter 5]. Sessions are video- and audio-recorded for later review and analysis.

What tools are used to record and analyze prototype evaluations in practice? A review of

discussion threads on the Interaction Design Association mailing list [3] suggests that the use

of specialized usability recording applications such as Silverback [4] and Morae [5] is

common. Such tools record both screen output as the participant sees it, as well as video of

the participant and audio of their utterances. These media streams are then composited or

played back in synchrony for analysis. Some tools like Morae can also capture low-level input

events, such as mouse clicks and key presses. However, the tested application is treated as a

black box — no information about the application‘s internal state is recorded. Morae‘s

observer software also makes it possible for the experimenter to add indices to the video as it

is being recorded. These features echo functionality described in d.tools video suite and

appeared roughly simultaneously. We became aware of them after our research was

completed.

Usability recording tools are predominantly targeted at the evaluation of desktop UIs.

Methods for testing mobile and custom device prototypes are less established. Video-

recording the screen of a mobile device using either over-the-shoulder, head-mounted, or

device-mounted cameras has been reported in mailing list discussions. Detailed interaction

meta-data is usually not available for these approaches.

We next turn to a review of related research.

3.2 UI PROTOTYPING TOOLS

Prior research has introduced tools aimed at constructing and testing prototypes for

particular types of user interfaces (e.g., desktop, mobile, speech) and for specific functionality

exhibited by these interfaces (e.g., location awareness, animation). Research prototyping

tools are often based on fieldwork with groups of target designers and seek to strike a balance

between preserving successful elements of existing practice and introducing new

functionality to aid or enhance the authoring process. Generally, these tools offer the

following three benefits:

36

1) They decrease UI construction time.

2) They isolate designers from implementation details.

3) They enable designers to explore a new interface technology previously reserved to

engineers or other technology experts.

While many prototyping tools target design professionals, the offered benefits also match the

characteristics of successful end-user toolkits reported by von Hippel and Katz:

1) End-user toolkits enable complete cycles of trial-and-error testing.

2) The ―solution space‖ of what can be built with the tools matches the user‘s needs.

3) Users are able to utilize the tools with their existing skills and conceptual knowledge.

4) The tools contain a library of commonly used elements that can be incorporated to avoid

re-implementing standard functionality.

To facilitate comparison between the different systems reviewed in this section, Table 3.1

summarizes characteristic features and approaches, while Figure 3.5 provides a historical

timeline.

Table 3.1: Comparison of prior research in UI prototyping tools.

37

HYPERCARD & VISUAL BASIC

The first successful UI prototyping tool is probably Atkinson‘s HyperCard [36]. HyperCard

enables rapid construction of graphical user interfaces on the Macintosh computer by

introducing the notion of cards. A card contains both data and a user interface, composed of

graphics, text, and standard GUI widgets. The user interface can be created through direct

manipulation in a GUI editor. Different cards make up a stack; the links between cards in the

stack is authored in HyperTalk, a scripting language. HyperTalk‘s legacy can be found in

other applications that combine a direct manipulation GUI editor with a high-level scripting

language, e.g., Visual Basic [63] and Adobe Director[6] and Flash[1]. One challenge such

applications have faced is the constant pull to turn into a more complete, secure, robust

development platform. Feature creep and software engineering abstractions progressively

raise the threshold of expertise and time required to use the environment such that it

becomes less and less suitable for rapid prototyping.

SILK

Landay‘s SILK system [155,156] introduced techniques for sketching graphical desktop user

interfaces with a stylus on a tablet display. Stylus input preserves the expressivity and speed

of paper-based sketching, while adding benefits of interactivity. A stroke recognizer matches

ink strokes to recognize common widgets, which can then be interacted with during a test.

To capture the information architecture of an interface, multiple screens can be assembled

into a storyboard; transitions from one page to another can be initiated by the drawn widgets.

DENIM

Lin et al.‘s DENIM [171] builds on the techniques introduced in SILK to enable stylus-based

prototyping of (static) HTML web sites. Users draw pages and page elements on a 2D canvas

Figure 3.5: Timeline of prototyping tools for graphical user interfaces.

38

and establish hyperlinks by drawing connecting links between pages. DENIM adds semantic

zooming — hiding and revealing information based on a global level-of-detail setting — to

move between overview, sitemap, storyboard, sketch, and detailed drawing.

DESIGNERS‘ OUTPOST

The Designers‘ Output [147] also targets prototyping of web site information architectures,

but focuses on design team collaboration, rather than individual work. Fieldwork uncovered

that information architecture diagramming frequently takes place by attaching paper post-it

notes to walls to facilitate team discussion. Respecting the physical aspects of this practice,

Outpost introduces a large vertical display to which notes representing pages can be affixed.

Notes are tracked and photographed using a computer vision system and a high-resolution

still camera. Links between pages are authored using a digital pen, so the hierarchy model can

be captured digitally.

DEMAIS

Bailey‘s DEMAIS [40] contributes a visual language to author dynamic behaviors through

stylus marks (Figure 3.6). DEMAIS focuses on interaction with audio and video elements

embedded in the user interface. It combines connections between different screens in a

storyboard editor, similar to SILK and DENIM, with behaviors within a screen that can be

authored with ―behavioral ink strokes.‖ The visual language for these ink strokes allows

expression of source events (e.g., mouse click, mouse rollover, and elapsed time) and actions

(navigational control of audio/video elements, show/hide elements).

Figure 3.6: Bailey’s DEMAIS system

introduced a visual language for sketching

multimedia applications [40].

Figure 3.7: Li’s Topiary system for

prototyping location-aware mobile

applications [163].

39

TOPIARY & BRICKROAD

Topiary [163] contributes authoring techniques for prototyping location-based applications

for handheld devices. In addition to the customary storyboard, it adds an ―active map‖ view to

the authoring tool, where users can model the location of places (regions on the map), objects,

and people (Figure 3.7). Designers can then add actions that should be executed when the

relation between places, objects and people change. Applications can be tested without

requiring the designer to physically move using a Wizard of Oz interface [140], in which the

designer can move people and objects on a map and see the resulting changes in the mobile

interface a user would see. BrickRoad [174] expands on the role the Wizard can play by

enabling real-time composition of mobile application output based on a visualization for the

Wizard where the mobile device user is located at a given moment.

MONET & K-SKETCH

Where many of the other tools surveyed thus far are concerned with high-level interaction

logic and information architecture, Monet [164] introduces techniques for prototyping

continuous, user-in-the-loop graphical behaviors. Users sketch the interface appearance on a

tablet PC and then demonstrate how the appearance should change during user interaction.

K-Sketch [68] introduces interaction techniques for rapidly authoring animations. Its stylus

controlled interface enables users to sketch graphics, and express animation of rotation,

translation, and scale by demonstration. Motivated by the insight that too many features slow

down the authoring process and raise the threshold for non-expert animators, K-Sketch

introduces an optimization technique that seeks to find the minimum feature set in the

authoring tool that satisfies the greatest number of possible use cases.

MAESTRO

Maestro [7] is a commercial design tool for prototyping mobile phone interactions. It provides

a complex visual state language with code generators, software simulation of prototypes, and

compatibility with Nokia‘s Jappla hardware platform. Maestro and Jappla together offer high

ceiling, high fidelity mock-up development; however, the complexity of the tools make them

too heavyweight for informal prototyping activities. The availability of such a commercial tool

demonstrates the importance of prototyping mobile UIs to industry.

ACTIVITY DESIGNER

The ActivityDesigner tool [165] supports prototyping applications that respond to and

support user activities, where an activity is defined as long-term transformation process

towards a motivation (e.g., staying fit) that finds expression in various concrete actions.

40

ActivityDesigner distinguishes itself from other tools by not treating screens or UI states as

the top-level abstraction. Instead, it introduces situations (location and social context),

scenes (pairs of situations and actions), and themes (sets of related scenes). Prototyping

applications thus involves both modeling of context through these abstractions as well as

concrete authoring of application behavior.

MIXED-FIDELITY PROTOTYPING

De Sa‘s Mixed-Fidelity Prototyping tool [217] offers support for building prototypes of mobile

applications at different levels of resolution. The most rapid way is to show single images of

sketched user interfaces on the device; user interaction, e.g., stylus taps on the screen, are

relayed back to a wizard, who can then select the next screen to show. Interaction logic can

also be created using node-link diagrams and a library of widgets so wizard action is not

required.

SKETCH WIZARD

Sketch Wizard [69] proposes to accelerate prototyping of pen-based user interfaces (those

that rely on stylus input and handwriting) by providing a Wizard with a powerful control

interface tailored to the pen-input domain. The end-user who interacts with a tablet

application prototype can provide free-hand input on a drawing canvas. That drawing canvas

is also shown to a Wizard on a desktop PC, who can modify the user‘s strokes, delete them, or

add new content in response to the user‘s input. The main contribution of this work is the

design of the control interface that enables designers to provide quick responses to stroke-

based user input, which could be intended as text, drawing, or commands.

ADOBE FLASH CATALYST

Adobe Flash Catalyst [8], while not an academic research project, is worth including in this

summary because it represents the latest commercial product specifically aimed at

prototyping graphical user interfaces. Flash Catalyst uses states or frames as the top-level

abstraction, as many of the other authoring environments reviewed in this section. However,

different states are not laid out in a node-link diagram with transitions. Rather, transitions

are listed in a table. Each transition can then be associated with animation commands for

graphical elements in the source and destination states.

SUMMARY

A number of themes emerge from the review of related UI prototyping tools. Early UI design

tools introduced a combination of direct manipulation UI layout editors with high-level

41

scripting languages for behavior programming. While successful in commercial tools such as

HyperCard and Visual Basic, use of scripting languages has not been a focus in research

prototyping tools. Many research tools use storyboards as an authoring abstraction. A frame

or screen in such a storyboard corresponds to a unique screen in a user interface. To capture

the UI architecture, relationships between storyboard frames are frequently expressed as

node-link diagrams. Several tools rely on sketch-based input to define both UI contents as

well as visual diagrams for UI logic. Finally, a recurring question across tools is to what

extent functionality should be implemented (through script or diagrams) versus simulated

(through Wizard of Oz techniques).

d.tools adopts successful choices from prior work such as the use of visual storyboards. It

goes beyond purely visual authoring by enabling scripted augmentations to storyboard

diagrams. All discussed tools assume some fixed hardware platform with standardized I/O

components. d.tools and Exemplar move beyond commodity platforms by supporting flexible

hardware configurations and definitions of new interaction events from sensor data. The

Juxtapose project takes a different approach by building directly on top of ActionScript, the

procedural language used by Adobe Flash; it investigates how to support the exploration of

multiple interaction design alternatives expressed entirely in source code.

3.3 TOOL SUPPORT FOR PHYSICAL COMPUTING

The previous section reviewed prototyping tools for desktop, web, and mobile user interfaces.

A separate set of research has enabled experimentation in physical computing with sensors

and actuators. These systems have focused less on supporting professional designers, perhaps

because the design of such user interfaces is not an established discipline yet. Greenberg

argues that toolkits in established design areas, such as GUI design, play a different role from

toolkits in emergent areas of technology, such as ubiquitous computing [91]: ―Interface

toolkits in ordinary application areas let average programmers rapidly develop software

resembling other standard applications. In contrast, toolkits for novel and perhaps unfamiliar

application areas enhance the creativity of these programmers.‖ Table 3.2 provides a feature

comparison of the physical computing systems reviewed in this section, while Figure 3.8

presents a historical timeline.

42

BASIC STAMP

The Basic Stamp [2] represents an early attempt at making embedded development accessible

to a broad range of users. Instead of writing firmware for a microcontroller in a low-level

language like Assembly, Basic Stamp developers write programs in a high-level BASIC dialect,

which is then interpreted on the Basic Stamp chip. The Stamp is successfully used to teach

electronics and programming fundamentals in secondary schools, and has also found its way

into product design studios, as reported by Moggridge [189]. The Basic Stamp is geared

towards creating standalone devices and is not powerful enough to handle graphics, limiting

its utility for modern interfaces that combine graphics output with novel input devices.

Table 3.2: Comparison of prior research in physical computing tools.

Figure 3.8: Timeline of selected physical computing toolkits.

43

PHIDGETS

The Phidgets [93] system introduced physical widgets: programmable ActiveX controls that

encapsulate communication with USB-attached physical devices, such as switches, pressure

sensors, or servo motors. Phidgets abstracts electronics implementation into an API and thus

allows programmers to leverage their existing skill set to interface with the physical world. In

its commercial version, Phidgets provides a web service that marshals physical I/O into

network packet data, and provides several APIs for accessing this web service from standard

programming languages (e.g., Java and ActionScript). d.tools shares much of its library of

physical components with Phidgets. In fact, Phidgets analog sensors can be connected to

d.tools. Both Phidgets and d.tools store and execute interaction logic on the PC. However,

d.tools differs from Phidgets in both hardware and software architecture. First, d.tools offers a

hardware extensibility model not present in Phidgets. Second, on the software level, d.tools

targets prototyping by designers, not development by programmers. The d.tools visual

authoring environment contributes a lower threshold tool and provides stronger support for

rapidly developing the ―insides of applications‖ [191]. Finally, Phidgets only addresses the

design part of the design-test-analyze cycle — it does not offer support for testing or

analyzing user test data.

CALDER

Calder [37,159] makes RFID buttons and other wired and wireless devices accessible in C and

the Macromedia Lingo language. The small form factor of Calder input components facilitate

their placement on physical prototypes; Calder also describes desirable mechanical

attachment mechanisms and electrical properties (e.g., battery-powered RF transceivers) of

prototyping components. Like Phidgets, Calder‘s user interface is a textual API and only

supports the creation of prototypes, not testing or exploration of alternatives.

ISTUFF & ISTUFF MOBILE

iStuff [43] contributes an architecture for loose coupling between input devices and

application logic, and the ability to develop physical interactions that function across

different devices in a ubiquitous computing environment. iStuff, in conjunction with the

Patch Panel [44], enables standard UIs to be controlled by novel inputs. iStuff targets room-

scale applications.

iStuff Mobile [42] introduces support for sensor-based input for mobile phone

applications through a ―sensor backpack,‖ attached to the back of the mobile device. Since

most mobile phones do not permit communication with custom hardware, iStuff mobile

44

interposes a desktop PC that receives sensor data using a wireless link. The events are

processed using Quartz Composer [9], a visual data flow language and relayed to the mobile

phone using a second wireless link. On the phone, a background application receives these

messages and can inject input events to control existing phone applications.

LEGO MINDSTORMS

The Lego Mindstorms Robotic Invention System [10] offers plug-and-play hardware

combined with a visual environment for authoring autonomous robotics applications.

Mindstorms uses a visual flowchart language where language constructs are represented as

puzzle pieces such that it is impossible to enter syntactically invalid programs. While a

benchmark for low-threshold authoring, Lego Mindstorms targets autonomous robotics

projects; the programming architecture and library are thus inappropriate for designing user

interfaces. Mindstorms programs are downloaded and executed on the hardware platform

without a communication connection back to the authoring environment, which prevents

inspection of behaviors at runtime.

ARDUINO

The Arduino project [185] consists of a microcontroller board and a desktop IDE to write

programs for that hardware platform in the C language. It is included in this review because it

is one of the most popular platforms with students and artists today. Arduino wraps the

open-source avr-gcc tool chain for developing and deploying applications on 8bit AVR RISC

microcontrollers. The avr-gcc tool chain is commonly used by professional developers of

embedded hardware. Unlike many other tools reviewed here, Arduino does not offer visual

programming or high-level scripting. The success of the platform is probably attributable to

hiding of configuration complexity where possible (removing ―incidental pains‖ of

programming); careful design of a small library of most commonly used functions; and a focus

on growing a user community around the technology that contributes examples and

documentation. The success of Arduino programming (and of HyperCard) suggests that it

might not be necessary to eliminate all textual programming to build a rapid, accessible

prototyping tool, if the tasks the designer wants to accomplish can be succinctly expressed

using provided libraries.

THUMBTACKS

Hudson‘s Thumbtacks system [127] focuses on using novel hardware input to interact with

existing applications. Only discrete input from capacitive switches in supported. Users

capture screenshots of running existing applications, and draw regions onto those

45

screenshots corresponding to areas where mouse clicks should be injected when an external

switch is pressed or released. Key presses can be similarly injected at the system event queue

level. Exemplar also offers the ability to generate such events. Keyboard & mouse event

injection has the benefit that any existing application can be targeted. It has serious

drawbacks, too: the response to a mouse click or key press may depend on internal

application state, which cannot be sensed or modeled in the Thumbtacks system. In addition,

the rest of the computer is essentially inoperable while events are injected. One solution to

this problem is to run the authoring environment on a different machine than the application

that should be controlled, and relay events through network messages from one computer to

the other.

DART

DART [178], The Designers‘ Augmented Reality Toolkit, supports rapid development of AR

experiences, where computer-generated graphics (and audio) are overlaid on live video.

DART was implemented as a set of extensions for Macromedia (now Adobe) Director [6],

enabling designers familiar with that tool to leverage their existing skill set. d.tools shares

DART‘s motivation of enabling interaction designers to build user experiences in a technical

domain previously beyond their reach, but supports different types of interfaces and also

introduces its own authoring environment instead of extending an existing software package.

PAPIER-MÂCHÉ & EYEPATCH

Papier-Mâché [146] focuses on supporting computer-vision based tangible applications. It

introduces architectural abstractions that permit substitution of information-equivalent

technologies (e.g., visual tag tracking and RFID). Papier-Mâché is a Java API — applications

have to be programmed in Java — restricting its target audience to advanced programmers.

Papier-Mâché contributes the methodology of user centered API design and a visual preview

window, where internal state of recognition algorithms and live video input can be seen,

enabling inspectability of running code. EyePatch [182] also targets vision-based applications.

It offers a larger number of recognition approaches and outputs data in a format that a variety

of other authoring applications can consume. EyePatch relies on programming by

demonstration, and will thus be covered in more detail in that section.

BUG

The BugLabs BUG [11], a commercial product introduced after the publication of d.tools, is a

modular hardware platform for developing standalone mobile devices. It consists of a base

into which modular units (LCD display, GPS, general purpose IO, accelerometer) can be

46

plugged. Applications for the BUG are written in a subset of Java and execute on a virtual

machine on the base unit. The development environment, which extends the Eclipse Java

environment on a desktop PC, links to a shared online repository of applications that one can

download and immediately execute on the BUG. The plug-and-play architecture resembles

the d.tools hardware interface, although the embedded BUG Linux system is more powerful

(and more complex to manage). Like Phidgets, the BUG system mainly targets accomplished

programmers — while changing hardware configurations is trivial, the software abstractions

of the BUG API are not suitable for non-expert developers.

3.4 VISUAL AUTHORING

Many existing prototyping tools have adopted some form of node-link diagram to express

interface semantics. How do these particular authoring techniques fit into the larger space of

visual programming? Why might they be a good fit or why might other techniques be more

suitable? This section provides an overview of different approaches to use visual

representations in the authoring process.

Visual means have been used both to describe programs, as well as to implement them.

We will first review visual formalisms — systematic ways of diagramming or otherwise

graphically describing computational processes. Visual programming proper uses graphics to

implement software. The following section provides a summary of different visual

programming systems. A third approach to leverage graphics in programming is to employ a

textual programming language and offer rich visual editors that help with writing correct

code (structured editors) or substitute graphic editing for some tasks, i.e., GUI layout, while

also allowing textual programming (hybrid environments). The last section reviews

important research in such structured editors and rich, hybrid IDEs.1

3.4.1 VISUAL FORMALISMS

Visual formalisms use graphical means to document or analyze computational processes.

Some can be transformed automatically into executable code. Others may not be useful as a

way to implement programs because they may be too abstract or purposefully ambiguous, or

they may require too much effort to describe programs of useful complexity. Some of the main

ways of graphically describing computation are state diagrams, statecharts, flowcharts, and

1 The structure and some of the examples used in this section are inspired by Brad Myers‘ survey talk on
the Past, Present and Future of Programming in HCI [189].

47

UML diagrams (which subsume the previous and add additional diagram types). A

comprehensive review of additional visual specification techniques can be found in

Wieringa‘s survey [250].

3.4.1.1 State Diagrams

State diagrams are graphical representations of finite state machines [125:Chapter 2], a

computational model consisting of states, transitions, and actions. States capture the current

point of computation; transitions change the active state based on conditional expressions

over possible program input. Actions modify internal memory or generate program output.

Actions can be defined for state entry, state exit, input received while in a state, and

activation of a transition. State diagrams are easy to comprehend and to generate. However,

they also have fundamental limitations: capturing concurrent, independent behaviors leads to

a combinatorial explosion in the number of states. Adding behavior that should be accessible

from a number of states requires authoring corresponding transitions independently for each

state, which makes maintenance and editing cumbersome and results in a ―rat‘s nest‖ of many

transitions. As state and transition density increases, interpreting and maintaining state

diagrams becomes problematic; state diagram thus suffer from multiple scaling limitations, a

problem common to many visual formalisms and visual programming languages [53].

3.4.1.2 Statecharts

Harel‘s statecharts [105] find graphical solutions for some of the limitations of simple state

machines. Statecharts introduce hierarchical clustering of states to cut down on transition

density; introduce concurrency through multiple active states in independent sub-charts; and

Figure 3.9: A partial, hierarchical statechart for a wrist watch

with alarm function; redrawn from an example in Harel [105].

48

offer a messaging system for communication between such sub-charts. Harel summarizes:

―statecharts = state-diagrams + depth + orthogonality + broadcast communication.‖ Harel uses

the example of a programmable digital watch — an early ubiquitous computing device —and

models its entire functionality with a statechart in his original paper on the topic (Figure 3.9).

Both state diagrams and statecharts have been used extensively to describe reactive systems, i.e.,

those that are tightly coupled to, and dependent, on, external input. Both industrial process

automation and user interfaces fit into this reactive paradigm. The added flexibility of the

statechart notation makes generating correct charts and reasoning about them harder than

working with simple finite state machines. Heidenberg et al. [117] studied defects in

statecharts produced in an industrial setting and found that use of orthogonal components,

one of the parts that make statecharts more powerful than state diagrams, also contributed to

defect rate and advocated that its use should therefore be minimized.

3.4.1.3 Flowcharts

Flowcharts [48] express algorithms as a directed graph where nodes are computational steps

(evaluating statements that change variable values, I/O, conditionals) and arrows transfer

control from one step to another (Figure 3.10). One important use of flowcharts is to

document algorithms written in procedural programming languages. Nassi-Shneiderman

structograms [197] are a more succinct graphical representation of control flow in procedural

Figure 3.10: Example of a flowchart,

adapted from Glinert [87].

Figure 3.11: Example of a Nassi-

Shneiderman structogram, adapted from

Glinert [87].

49

languages (Figure 3.11). Graphical elements of structograms include process blocks, which

contain program statements, branching blocks for conditionals, and testing loops, to express

iteration with a stopping condition.

3.4.1.4 Data Flow Diagrams

State diagrams and flowcharts express the change of program control over time. In contrast,

data flow diagrams (DFDs) focus on describing how data travels in complex, multi-

component systems. Arrows in DFDs denote the flow of information from one component to

another; nodes represent processes that operate on incoming data flows and emit outgoing

flows (Figure 3.12). As a diagramming technique, data flow modeling is extensively used in

Structured Systems Analysis [82,259]. Flow diagrams expose the type of data that is

transmitted, its origin and destination. Flow diagrams do not capture any sequencing of

computation. Reasoning about the order of execution or other temporal aspects of programs

is therefore not well supported in DFDs.

3.4.1.5 Unified Modeling Language

The Unified Modeling Language (UML [12]) is an umbrella term used to characterize a set of

13 different diagramming techniques (in UML 2.0) that can be used to describe various

aspects of a computer system. UML is closely linked to object oriented programming

languages, while flowcharts arose at the same time as structured programming languages.

UML distinguishes between structure diagrams that show the interrelation of different

components, e.g., class diagrams, behavior diagrams, which subsume state machines; and

interaction diagrams which model sequences of communication and control transfer between

different components. Dobing and Parsons [71] report survey results on how UML is used in

practice; their survey found that many diagram types were not well understood.

Figure 3.12: Example of a data flow diagram, redrawn by the

author from Yourdon [259: p. 159]

50

3.4.2 VISUAL PROGRAMMING PROPER

Visual programming constructs executable programs using graphical means. Many visual

programming languages follow a node-and link diagram paradigm, but the meaning of nodes

and links vary significantly. Two main approaches are control flow languages, where nodes

express program state and links express transitions that move a program through those

states; and data flow languages, where states are transformation operations to be performed

on data, and links are pipes through which data flows from node to node. Some languages

have been created by directly operationalizing the visual formalisms described in the previous

section. State diagrams, statecharts, and all fall under the category of control flow; data flow

diagrams, predictably, express data flow.

In general, purely visual programming languages are not widely used in practice to

implement general programs or user interfaces. This is partially due to the relatively high

viscosity (resistance to modification) of visual languages (see section 3.4.4 on cognitive

dimensions of notations). The exceptions are applications in education where flowchart-

based languages have had success with novice and hobbyist programmers; and digital signal

processing (with electronic music being one application), where visual data flow languages

are used.

Early research in visual programming languages has been reviewed by Glinert [87].

Rather than opting for breadth, this section discussed a small number of concrete examples

chosen for historical interest or relevance to user interface design.

3.4.2.1 Control Flow Languages

FLOWCHARTS

Glinert‘s Pict [87] is an early example of a purely visual programming environment. Pict

operationalizes program flowcharts and can be used to implement simple but non-trivial

numerical algorithms such as the Fibonacci function. I/O is numerical only, so no user

interfaces can be constructed. The design environment is entirely cursor controlled, without

any text input. Pict introduced visual animation of execution by adding graphical decorators

to the design diagram — such runtime feedback in the design environment is also used in

d.tools. A user study with 60 computer science students revealed that novices reacted

positively to Pict, while expert programmers were more critical and less likely to prefer it over

textual approaches.

51

More recently, the Lego Mindstorms Robotics kit [10] includes a flowchart

programming language. Programs can have parallel ―tracks‖ to express concurrency, but the

language does not have variables. Resnick‘s Scratch [13] is an environment for programming

interactive animations and games aimed at young, novice programmers. The editor also offers

a flowchart-inspired programming environment, with support for user-defined variables.

STATECHARTS

Wellner reports the development of an early user interface management system (UIMS)

based on Statecharts [249]. Statecharts were drawn in a graphics package to capture event

logic for UI dialogs. These graphics had to be manually transcribed into a text format to make

them executable. Completely automatic systems that generate executable code from

statecharts such as IBM Rational Rose RealTime [14] also exist, though they do not focus on

integration with user interface development.

STORYBOARDS AS CONTROL FLOW LANGUAGES

Storyboards as used in UI prototyping systems in Section 3.2 are variants of finite state

machines. Traditional, hand-drawn storyboards from film production present a linear

sequence of key frames. When applied to user interface design, storyboard frames often

consist of different unique user interface views. To capture the information architecture —

how different screens relate to each other — storyboards are then enhanced with connecting

arrows. The semantics of a canonical storyboard state diagram can be expressed as follows:

the ―enter state‖ action in each state corresponds to showing the interface of the particular

storyboard frame. Transitions are conditionals that express that a different state or screen

should be shown based on an appropriate input event. Because storyboard-driven authoring

tools equate a state with a complete UI definition, no parallelism or encapsulation is offered.

52

3.4.2.2 Data Flow Languages

Data flow languages have found successful applications in domains such as digital signal

processing (DSP) and electronic music. LabView [15] is a digital signal processing and

instrumentation language widely used in electrical engineering. LabView programs are

referred to as Virtual Instruments and are defined by graphically connecting different

functional units, e.g., data providers such as sensors, Boolean logic, and mathematical

functions. To support control flow constructs such as loops, LabView offers control flow

blocks that are embedded into the data flow language. Other data flow languages used for

measuring and instrumentation are MatLab Simulink [16], and Agilent Visual Engineering

Environment [17]. In focusing on measurement and instrumentation, these applications

support different user populations than d.tools and Exemplar, with different respective needs

and expectations.

Max/MSP [18] and its open-source successor Pure Data (Pd) [209] are used by artists to

program new electronic musical instruments, live video performances, or interactive art

Figure 3.13: Examples of commercial or open source data flow languages. A: Quartz

Composer; B: Pure Data; C: Yahoo Pipes

53

installations. The interface metaphor for these languages is that of an analog patch cord

synthesizer, where different functional units (the nodes) are ―patched together‖ with

connections (Figure 3.13B). Output from one node thus flows into an input of another node.

There is no visual notion of ―state‖ and in fact, reasoning about the order in which operations

are performed in these languages is subtle and non-trivial. Both environments make

distinctions between nodes and transitions that operate on sound data, which has to be

updated on a fixed audio rate, and those that operate on control data (e.g., human

interaction), which is event-based and can be processed at much lower rates.

Data flow to process and transform input streams or filter signals has also been applied

in other multimedia applications. Apple‘s Quartz Composer [9] employs a data flow paradigm

to author image processing pipelines for graphics filters and animation (Figure 3.13A); it has

been integrated into the iStuff Mobile toolkit [42] for sensor data processing. The MaggLite

toolkit [129] uses a similar approach to provide a flexible interconnection layer between new

kinds of input devices and suitably instrumented applications that expose abstract input

event hooks.

A third application area for data flow languages has been the processing of online data

streams queried via web service APIs and RSS feeds. Yahoo Pipes [19] is a recent example of a

browser-based tool that allows the merging and filtering of multiple data streams (Figure

3.13C). Common examples programmed in Pipes are meta search engines that combine query

results from multiple sources, and ―mashups‖ which combine data from multiple web services

in novel ways [108].

3.4.2.3 Control Flow and Data Flow in d.tools and Exemplar

In d.tools, states express output to screens or other output components (e.g., motors, LEDs).

To enable continuous behaviors and animations, d.tools offers two extensions to pure visual

control flow: First, d.tools supports a limited amount of data flow programming by drawing

arrows from input components to output components within a state. This way, for example,

an LED can be dimmed by a slider. However, there is no compositionality as in other data

flow languages and d.tools‘ primary representation remains control flow, because it maps

directly to interface states. Second, d.tools combines visual authoring with procedural

scripting in each state. The next section will review different related approaches of combining

visual and textual programming.

Exemplar is a direct manipulation visual environment that is organized according to a

data flow model: raw sensor data arrives as input, and emerges transformed as high-level UI

54

output events. As such, Exemplar could be seen as one possible processing node in a data flow

language, which would allow for further composition. At present, it is a standalone

application that feeds event data to d.tools or controls existing GUI applications through

mouse & keyboard event injection.

3.4.3 ENHANCED EDITING ENVIRONMENTS

Beyond purely visual programming, different ways of combining graphical and textual

authoring exist. Three common combinations are: visual GUI editors that generate source

code for textual programming languages; structured editors that use graphic techniques to

facilitate code entry and prevent errors; and hybrid approaches where some computation is

specified graphically, and other computation is specified in source code.

3.4.3.1 Visual Editors

GUI editors enable direct graphical layout of user interfaces. In general these editors are

restricted to defining the appearance of UIs. Behavior and architecture have to be expressed

separately in code. Two types of visual GUI editors exist: 1) editors that generate code in the

source language, and 2) editors that generate code in some intermediate, often declarative

language that is then interpreted later by a suitable library in the application.

Early GUI editors, e.g., for Java Swing, generate procedural code and accordingly read

procedural code as well. A recurring issue for such systems is the roundtrip problem: If

procedural code generated by these systems is later edited manually by a programmer, the

visual editor may not be able to parse the modified text and re-created an editable graphical

interface for it. The roundtrip problem exists for any environment that produces user-editable

source, but it is exacerbated when the produced text is code for a full-fledged programming

language, where arbitrary statement can be added.

Recent years have seen a shift towards GUI editors that generate declarative UI

specifications, often in some UI-specific XML dialect (e.g., HTML, MXML, XAML). Such UI

specifications may have more runtime overhead, but reduce the roundtrip problem.

Declarative UI definitions are also thought to be easier to write and reason about, since layout

of hierarchical UI elements on screen is expressed by the hierarchical structure of the source

document. Examples of editors that produce declarative UI specifications are Adobe Flex

Builder, Adobe Dreamweaver, and Microsoft Expression Blend.

Beyond visual editing of layout, some GUI editors also allow direct manipulation

definition of dynamic behavior, such as path-following animations. Conversely, graphics

55

applications that are primarily direct manipulation editors may also offer programmability

through scripting language APIs. 3D modeling applications such as Google SketchUp

(programmable in Ruby) and Autodesk Maya (programmable in MEL, a C-like scripting

language) are examples of such an approach.

3.4.3.2 Structured Source Editors

Structured editors add interaction techniques to source code editors that facilitate correct

entry of source code by using knowledge about valid syntax constructs in the target language

(e.g., by using the language grammar) or knowledge about the structure of language types and

libraries. Where traditional syntax editors operate on individual characters in plain text files,

structured editors operate on the abstract syntax tree (AST) that can be constructed by

parsing the source text. Structured source editors can use this knowledge to enforce correct

syntax, and other statically verifiable properties, by making it impossible to enter incorrect

programs, or they can check these properties and inform the programmer of detected

problems.

The Cornell Program Synthesizer [238] is an early example of a syntax-directed editor

which enforced correct syntax through a template-instantiation system for programs written

in PL/I. Common language constructs were encoded in templates — keywords and

punctuation were immutable, while placeholders could be replaced by either inserting

variables, immediate values, or other templates.

The CMU MacGnome project developed multiple structured editors to facilitate

learning of programming by novices [188]. Alice2 [139], an environment for developing

interactive 3D virtual worlds, features a structured editor where program statements can be

composed through drag-and-drop. Suitable values (immediate or through variables) can be

selected through drop-down lists. One challenge of structured editors is that they may

increase the viscosity and hinder provisionality of expressed programs — by enforcing

correctness, they may make it harder to experiment or make changes that require breaking

the correctness of the program during intermediate steps (as noted by Miller [188]).

56

3.4.3.3 Hybrid Environments

A final way to combine visual and textual programming is to permit embedding of textual

code into visual programming systems. One response to the criticism that visual programming

either does not scale, or becomes hard to reason about and modify, is to move away from a

purely visual system and permit expression of both visual and textual programs within the

same environment. For example, the data flow language Pd permits procedural expressions

within certain nodes (Figure 3.14). Conditional logic or mathematical formulas, which are

cumbersome to express in pure data flow, can thus succinctly be captured in a single node.

The Max/MSP language permits evaluation of JavaScript and use of Java classes in its

language.

d.tools also opts for a hybrid approach by following a storyboard approach to capture

high-level architecture of the designed interface, while relying on an imperative scripting

language, BeanShell [200], for most continuous behaviors. This flexibility comes at a price:

simultaneous presence of multiple different authoring paradigms raises the number of

concepts a user has to learn to effectively use that environment.

3.4.4 ANALYZING VISUAL LANGUAGES WITH COGNITIVE DIMENSIONS OF

NOTATION

How might one compare the relative merits and drawbacks of different visual programming

environments, or of visual and textual programming languages? The most complete effort to

date to develop a systematic evaluation instrument is Greene and Blackwell‘s Cognitive

Dimensions of Notation framework (CDN) [89,90]. The CDN framework offers a high-level

inspection method to evaluate the usability of information artifacts. In CDN, artifacts are

analyzed as a combination of a notation they offer and an environment that allows certain

manipulations of the notation. As an expert inspection method, it is most comparable to

Figure 3.14: Example of hybrid authoring in Pure Data:

a visual node contains an algebraic expression.

57

Nielsen‘s heuristic evaluation, with a different set of metrics. Blackwell and Green‘s Cognitive

Dimensions Questionnaire [47] asks evaluators to first estimate of how time is spent within

the authoring environment, and then analyze the software against the framework‘s 13

cognitive dimensions (Table 3.3).

Evaluation of the notation is always relative to some target activity. Greene distinguishes

six major activities: incrementation, transcription, modification, exploratory design,

searching, and exploratory understanding. Any given task will likely break down into a

mixture of these cognitive activities. Similarly, any given notation and environment will

support or impede these activities to different extents. A CDN analysis can therefore be seen

as establishing the impedance match (or mismatch) of a particular programming task and a

particular programming system.

Dimension Description

Abstraction What are the types and availability of abstraction mechanisms?

Hidden Dependencies Is every dependency overtly indicated in both directions?

Premature Commitment Do programmers have to make decisions before they
have the information they need?

Secondary Notation Can programmers use layout, color, or other cues to convey extra
meaning, above and beyond the ‗official‘ semantics of the language?

Viscosity How much effort is required to perform a single change?

Visibility Is every part of the code simultaneously visible, or is it at least possible
to juxtapose any two parts side-by-side at will?

Closeness of Mapping Closeness of visual representation to problem domain.
What ‗programming games‘ need to be learned?

Consistency When some of the language has been learnt, how much of the rest can
be inferred?

Diffuseness How many symbols or graphic entities are required to express a
meaning?

Error-proneness Does the design of the notation induce ‗careless mistakes‘?

Hard mental operations Are there places where the user needs to resort to fingers or penciled
annotation to keep track of what‘s happening?

Progressive evaluation Can a partially-complete program be executed to obtain feedback?

Role-expressiveness Can the reader see how each component of a program relates to the
whole?

Table 3.3: The main dimensions of the Cognitive Dimensions of Notation inspection

method (from [90: p.11]).

58

3.5 PROGRAMMING BY DEMONSTRATION

Programming by demonstration (PBD) is the process of inferring general program logic from

observation of examples of that logic. Given a small number of examples, PBD systems try to

derive general rules that can be applied to new input. This generalization from examples to

rules is the crucial step in the success or failure of PBD systems [168]. The inference step often

leverages machine learning and pattern recognition techniques. Demonstration and

generalization techniques are not enough to build a PBD system. In textual programming,

more time is spent editing and modifying existing code than writing new code [194]. For PBD

systems, where program logic is built ―under the hood‖, this implies that separate techniques

are needed to present what was learned back to the user, and allow her to edit this

representation as well.

Because PBD builds functionality without requiring textual programming, it has been a

strategy employed for end-user development [196]. Comprehensive surveys of PBD systems

can be found in books edited by Cypher [67], Lieberman [168]; and Lieberman, Paterno and

Wulf [169].

3.5.1 PBD ON THE DESKTOP

In many PBD systems, the examples or demonstrations are provided as mouse and keyboard

actions in a direct manipulation graphical user interface. PBD has been employed in

educational software to introduce children to programming concepts [231]; for the

specification of functionality in GUI builders [192]; to author spreadsheet constraints [193];

and to author web automation scripts by demonstration [173]. In the realm of prototyping

tools, demonstration has been used for authoring animations and other dynamic behavior in

Monet [164]. Monet learns geometric transformations applied to widgets through continuous

function approximation using radial basis functions centered on screen pixels.

3.5.2 PBD FOR UBIQUITOUS COMPUTING

Early examples of using demonstrations that take place in physical space or that have effects

on physical space can be found in the robotics field. Andreae used demonstration to specify

robot navigation [35]; Friedrich et al employed it to define grasp motions for robotic assembly

arms [80]. Our research on Exemplar builds upon the idea of using actions performed in

physical space as the example input.

59

The closest predecessor to Exemplar in approach and scope is a CAPella [70]. This

system focused on authoring binary context recognizers by demonstration (e.g., is there a

meeting going on in the conference room?), by combining data streams from discrete sensors,

a vision algorithm, and microphone input. Exemplar shares inspiration with a CAPella, but it

offers important architectural contributions beyond this work. First, a CAPella was not a

real-time interactive authoring tool: the authors of a CAPella reported the targeted iteration

cycle to be on the order of days, not minutes as with Exemplar. Also, a CAPella did not

provide strong support for continuous data. More importantly, a CAPella did not offer

designers control over how the generalization step of the PBD algorithm was performed

beyond marking regions. We believe that this limitation was partially responsible for the low

recognition rates reported (between 50% and 78.6% for binary decisions).

FlexiGesture is an electronic instrument that can learn gestures to trigger sample

playback [186]. It embodies programming by demonstration in a fixed form factor. Users can

program which movements should trigger which samples by demonstration, but they cannot

change the set of inputs. Exemplar generalizes FlexiGesture‘s approach into a design tool for

variable of input and output configurations. We share the use of the dynamic time warping

algorithm [218] for pattern recognition with FlexiGesture.

We also drew inspiration for Exemplar from Fails and Olsen‘s Crayons technique for

end-user training of computer vision recognizers [75]. Crayons enables users to sketch on

training images, selecting image areas (e.g., hands or note cards) that they would like the

vision system to recognize. Maynes-Aminzade‘s EyePatch [182], a visual tool to extract

interaction events from live camera input data, expands on Crayons‘ interaction techniques.

With EyePatch, users also directly operate on input images to indicate the kind of objects or

events they would like to detect. While Crayons only supported a single recognition

algorithm (induction of decision trees), EyePatch shows that different detection algorithms

require different kinds of direct manipulation techniques. For example, training an object

detector may require highlighting examples of objects in frames of multiple different video

clips, while training a motion detector requires interaction techniques to select sequences of

consecutive frames, and a visualization of the detected motion on top of the input video.

Crayons and EyePatch complement our work well, offering a compelling solution to learning

from images, where as Exemplar introduces an interface for learning from time-series data.

60

3.6 DESIGNING MULTIPLE ALTERNATIVES &

RAPID EXPLORATION

To explore the space of possible solutions to a design problem, single point designs are

insufficient. Two strategies for enabling broader design space exploration are to build tools

that support working with multiple alternatives in parallel; and tools that minimize the cost

of making and exploring changes sequentially. This section reviews prior art in both areas.

3.6.1 TOOLS FOR WORKING WITH ALTERNATIVES IN PARALLEL

The research on alternatives in this dissertation, embodied in Juxtapose, was directly

motivated by Terry et al.‘s prior work on tools for creating alternative solutions in image

editing. Side Views [241] offer command previews, e.g., for text formatting, inside a tooltip.

Parameter Spectrums [241] preview multiple parameter instances to help the user choose

values. Similar techniques are now part of Microsoft Office 2007, attesting to the real-world

impact of exploration-based tools. Parallel Pies [242] enable users to embed multiple image

filters into a single canvas, by subdividing the canvas into regions with different trans-

formations. Since Juxtapose targets the domain of textual programming of interaction

designs, its contributions are largely complementary. Unlike creating static visual media, the

artifacts designed with Juxtapose are interactive and stateful, which requires integration

between source and run-time environments.

Terry also proposed Partials, an extension to Java syntax that delays assignment of

values to variables until runtime [239:Appendix B]. Partial variables list a set of possible

values in source code; at runtime, the developer can choose between these values through a

generated interface. Juxtapose extends this work by contributing both authoring

environment and runtime support for specifying and manipulating alternatives.

61

Automatic generation of alternatives was proposed in Design Galleries [181] a browsing

interface for exploring parameter spaces of 3D rendered images. Given a formal description of

a set of input parameters, an output vector of image attributes to assess, and a distance

metric, the Design Galleries system computes a design-space-spanning set of variations, along

with a UI for structured browsing of these images. Design Galleries require developers to

manually specify a set of image features to steer a dispersion algorithm; options are then

generated automatically. In Juxtapose, options are created by the designer. Juxtapose makes

the assumption that the results of parameter changes can be viewed instantaneously, while

rendering latency motivated Design Galleries. Table 3.4 shows a comparative overview of

Design Galleries, Terry et al.‘s work, and Juxtapose.

Subjunctive interfaces [177] introduced working with alternatives in information

processing tasks. Multiple scenarios co-exist simultaneously and users are able to view and

adjust scenarios in parallel. Clip, connect, clone [81] applies these interface principles to

accessing web application data, e.g., for travel planning. There are no design tools for creating

subjunctive interfaces; only applications that realize these principles in different information

domains.

Spreadsheets also inherently support parallel exploration through their tabular layout.

Prior research has applied the spreadsheet paradigm to image manipulation [161] and in-

formation visualization [58]. Such graphical spreadsheets offer a more complex model of

defining and modifying alternatives than Juxtapose‘s local-or-global editing. Investigating

how a spreadsheet approach could extend to interaction design is an interesting avenue for

future work.

 Does evaluation of
output require real-
time input?

How are parameter
values created?

Who creates parameter-to-output
mapping?

Design
Galleries

No — output is a
static image or a
sequence of images.

Generated by dispersion
algorithm

Expert specifies for each DG instance

Side Views/
Parallel Pies

No — output is a
static image

Mixed initiative:
parameter spectrums
are auto-generated;
designers chooses values

Mixed: image processing library
provides primitives; designers
compose primitives in
Side Views

Juxtapose Yes, output is a user
interface

Designer creates values
in code alternatives or
tunes at runtime

Developers specify mapping in their
source code

Table 3.4: Differences between Design Galleries, set-based interaction, and Juxtapose

are based on requirements of real-time input, method of alternative generation, and the

source of input-output mapping.

62

TEAM STORM [101] addresses management of multiple sketches by a team of designers

during collaborative ideation. The system, consisting of individual tablet devices and a shared

display wall, allows design teams to manage and discuss multiple visual ideas. Like Terry‘s

work, the system only addresses working with static visual media — interaction can be

described in these sketches, but not implemented or tested.

3.6.2 RAPID SEQUENTIAL MODIFICATION

Rapid sequential changes, such as undo/redo actions are frequently used by graphic design

professionals to explore alternatives [240]. In the realm of programmed user interfaces,

research has explored several strategies to reduce the cost of making changes.

CREATING CONTROL INTERFACES

One strategy is to make data in a program modifiable at runtime. Many breakpoint debuggers

for modern programming languages allow the inspection of runtime state when then program

is suspended; some allow modification of the values as well. However, breakpoint debugging

is not always feasible when testing interactions that require real-time user input.

Furthermore, the user interface for parameter access has not been a focus of research in

debuggers.

In Juxtapose, suitable control interfaces are automatically generated. Adobe‘s Pixel

Bender Toolkit [20] also automatically creates control sliders for scalar parameters in image

processing code. In this domain, the entire specified algorithm can be rerun whenever a

parameter changes. Juxtapose offers a more general approach that enables developers to

control what actions to take when a variable value is changed at runtime and to select which

variables will be shown in the control interface.

Juxtapose furthermore enables settings of multiple parameters to be saved in ―parameter

snapshots.‖ The notion of parameter snapshots exists in Isadora [62], a visual dataflow

language for multimedia authoring. In Isadora, the parameter sets are predetermined by the

library of data processing nodes. The notion of parameter snapshots is also commonly found

in music synthesizers. Many early synthesizers offered a fixed hardware architecture, i.e., a

certain number of oscillators and filters. The different presets or sounds shipped with the

synthesizer were essentially different parameter snapshots for that given architecture. In

Juxtapose, the programmer can define new variables for tuning in the source at any point.

63

LIVE CODING

Beyond changing parameter values, some tools offer ―live‖ coding where source code can be

modified while the program is executing. Interpreted languages such as Python may offer an

interactive command line, which enables access to the internals of the running program. JPie

[88] is an environment for Java education which permits real-time inspection and

modification of all objects in a Java program. The Eclipse IDE [21] permits modifications of

Java method contents in a running program. However, it is not always obvious when the

modified class will be replaced in the virtual machine, and some modifications, e.g., to method

signatures, require terminating and restarting the application. ChucK is a programming

language expressly written for live music synthesis [246]. Juxtapose shares the goal of

eliminating edit-compile-test cycles in favor of real-time adjustment. Juxtapose offers less

flexibility than live coding languages for editing objects and logic. Conceptually, Juxtapose

makes a distinction between a low-level source representation, and a higher-level set of

―knobs‖ used for runtime manipulation. This higher-level abstraction allows for more

controlled live improvisation.

3.7 FEEDBACK FROM USER TESTING

Prior research has investigated how to aid the analysis of user interface tests by making use of

metadata generated either by the application being tested, by the system the application runs

on, or by experimenters and users. Logged data is then either visualized directly, or it is used

for structured access to other media streams, e.g., audio or video, also recorded during a test.

Accelerating review and analysis of usability video data is especially valuable, as the high cost

of working with video after its capture (in terms of person hours) restricts its use in

professional settings today.

Two literature surveys are available that cover most existing techniques in automatically

capturing and analyzing test data. Hilbert and Redmiles presented a comparative survey of

systems that extract usability data from application event traces for remote evaluation, where

experimenter and participant are geographically separated [119]. Ivory and Hearst present a

survey of techniques to automate aspects of usability testing [133]. Their taxonomy

distinguishes techniques for automatic capture of data (e.g., event traces) from techniques for

automated analysis (e.g., statistics), and techniques for automated critique (e.g., suggestions

for improvement). Most existing work has focused on WIMP applications on desktop PCs or

64

on web applications that run inside a browser. Test support for other types of user interfaces

has received less attention.

3.7.1 IMPROVING WORK WITH USABILITY VIDEOS

Several techniques correlate time-stamped event data and video of GUI application tests.

Mackay, in an early paper [179], described challenges that have inhibited the utility of video in

usability studies, and outlined video functionality that would be useful to usability

researchers and designers: capturing multiple, timestamp-correlated data streams, spatial

viewing of temporal events, symbolic annotation, and non-destructive editing and reordering.

Mackay introduced EVA, which offers researcher-initiated annotation at record time and

later on during review. All annotations in this system were generated explicitly by the

experimenter.

Hammontree et al. developed an early UI event logger that records low-level system

events (key presses and mouse clicks). A programmable filter aggregates these observations

into more meaningful, higher-level events such as command invocations. A ―Multimedia Data

Analyzer‖ then allows researchers to select elements in the log of UI events to locate the

corresponding point in time in the video [103]. Hammontree speculated that video analysis

tools would be particularly appropriate to compare different UI prototypes.

I-Observe by Badre et al. [38] enabled an evaluator to access synchronized UI event and

video data of a user test by filtering event types through a regular expression language.

Akers et al. [34] showed that for applications that support creative authoring tools, e.g.,

image editing and 3D modeling, collecting undo and redo events then filtering usability video

around these occurrences is a successful strategy to uncover many relevant usability problems

at a fraction of the time required to survey full video.

While Weiler [247] suggests that solutions for event-structured video have been in place

in large corporate usability labs for some time, their proprietary nature prevented us from

learning about their specific functionality. Based on the data that is available, d.tools video

analysis functions extend prior research and commercial work in three ways. First, they move

off the desktop to physical UI design, where live video is especially relevant, since the

designers‘ concern is with the interaction in physical space. Second, d.tools offers a bi-

directional link between software model and video where video can also be used to access and

replay flow of control in the model. Third, d.tools introduces comparative techniques for

evaluating multiple user sessions.

65

3.7.2 INTEGRATING DESIGN, TEST & ANALYSIS

Most closely related to the design methodology embodied in d.tools is SUEDE [148], a design

tool for rapidly prototyping speech-user interfaces (Figure 3.15). SUEDE introduces explicit

support for the design-test-analyze cycle through dedicated UI modes. It also offers a low-

threshold visual authoring environment and Wizard of Oz support. At test time, SUEDE

generates a wizard interface that allows the experimenter to guide the direction of a user test,

by simulating speech recognition. SUEDE records a history of all user speech input and

system speech output and makes that history available as a graphic transcript in analyze

mode. SUEDE also computes statistics such as time taken to respond, and visualizes how

many times a particular menu path was followed through varying link thickness. d.tools

extends SUEDE‘s framework into a new application domain — physical user interfaces. It

also adds integration of video analysis into the cycle. Like SUEDE, the d.tools system

supports early-stage design activities. Aggregation and visualization of user sessions has also

been applied to web site user tests in WebQuilt, where URL visitation patterns are logged

using a proxy server [124].

3.8 TEAM FEEDBACK & UI REVISION

Gaining feedback on a UI prototype through user testing has high external validity, but it is

resource intensive. Design team members can also provide valuable feedback in different roles

Figure 3.15: SUEDE introduced techniques to unite design,

test, and analysis of speech user interfaces.

66

— as collaborators or as expert inspectors. Team members also have the design expertise to

suggest changes. How can design tools aid this process of team-internal collaboration over

prototypes and revision of prototypes?

Research in word processing and other office productivity applications has introduced

annotation and change tracking tools that allow suggestion of changes along with tracking a

history of modifications. But outside word processing and spreadsheets, such tools are still

lacking. Research in version control and document differencing systems has introduced a

complementary set of algorithms and techniques that compute and visualize differences

between documents after they are made. We review both areas briefly.

3.8.1 ANNOTATION TOOLS

Fish et al.‘s Quilt system [77] introduced annotation and messaging inside a word processor

to support the social aspects of writing, noting that in some academic disciplines, the

majority of publications are co-written by multiple authors. The combination of change

tracking and commenting effectively enables asynchronous collaboration, where different

members may have different functions, such as author, commenter, and reader [198]. In

modern word processing tools, annotation and change tracking tools are now pervasive,

attesting to the utility of asynchronous collaboration.

Sketching has also been used to capture and convey changes and comments. In Paper

Augmented Digital Documents, annotations are written on printed documents with digital

pens; a pen stroke interpreter then changes a digital document accordingly [96]. In

ModelCraft [232] physical 3D artifacts, created from CAD models, can be annotated with

sketched commands to express extrusions, cuts, and notes. These annotations are then

converted into changes in the underlying CAD model for the next iteration. d.note applies

this approach of selectively interpreting annotations as commands to the domain of

interaction design.

3.8.2 DIFFERENCE VISUALIZATION TOOLS

Change tracking editors record modifications as they happen. Another approach is to

compute and visualize differences of a set of documents after they were edited. The well-

known diff algorithm computes a set of changes between two text two text files [128]. Offline

comparison algorithms also exist for pairs of UML diagrams [86] and for multiple versions of

slide presentations [74]. The d.note visual language for revising interaction design diagrams is

67

most closely related to the diagram differencing techniques introduced by Mehra et al. for

CASE diagrams [184]. Difference visualization research contributes algorithms to identify and

visualize changes. d.note contributes interaction techniques to create, test, and share such

changes.

3.8.3 CAPTURING DESIGN HISTORY

Managing team feedback and design revisions is also related to research in capturing design

histories, although the two fields have somewhat different goals. Design histories capture and

visualize the sequence of actions that a designer or a design team took to get to a current

point in their work. The visual explanations tend to focus on step-by-step transformations,

e.g., for web site diagrams [149], illustrations [154,242], or information visualizations [116].

Revision tools such as d.note focus on a larger set of changes to a base document version,

where the order of changes is not of primary concern. Design histories offer timeline-based

browsing of changes in a view external to the design document; d.note offers a comprehensive

view of a set of changes in situ, in the design document itself.

68

CHAPTER 4 AUTHORING SENSOR-BASED INTERACTIONS

Ubiquitous computing devices such as portable information appliances — mobile phones,

digital cameras, and music players — are growing quickly in number and diversity. In

addition, sensing technologies are becoming pervasive, for example in game controllers, and

sensor hardware is increasingly diverse and economical. To arrive at usable designs for the

user interfaces of such physical devices, product designers have to be able to prototype the

experience of interacting with a novel hardware device. This chapter presents two systems

that bring prototyping of interactions based on sensor data input within reach of interaction

designers. The first section introduces d.tools, an authoring environment that combines visual

authoring of application logic with a novel plug-and-play hardware platform (Figure 4.1). The

second section introduces Exemplar, an extension to d.tools that enables designers to author

sensor-based interaction events through programming by demonstration.

4.1 AUTHORING PHYSICAL USER INTERFACES WITH D.TOOLS

Fieldwork with professional interaction designers revealed that the creation of ubiquitous

computing prototypes has remained largely out of their reach. d.tools lowers the expertise

threshold and time commitment required for creating ubiquitous computing prototypes

through two contributions. The first contribution is a set of interaction techniques and

Figure 4.1: Overview of prototyping with d.tools: A designer

interacts both with a hardware prototype (left) and the

authoring environment (right).

69

architectural features that support rapid, early-stage prototyping. d.tools introduces a visual,

control flow-based prototyping model that extends existing storyboard-driven design

practice [126]. To provide a higher ceiling than is possible with visual programming alone,

d.tools augments visual authoring with textual programming.

Second, d.tools offers an extensible architecture for physical interfaces. In this area,

d.tools builds on prior work [37,43,92,93,159,185] that has shielded software developers from

the intricacies of mechatronics through software encapsulation, and offers a similar set of

library components. However, the d.tools hardware architecture is more flexible than prior

systems by offering three extension points — at the hardware-to-PC interface, the intra-

hardware communication level, and the circuit level — that enable experts to extend the

library.

The rest of this section is organized as follows. We begin by outlining key findings of

fieldwork that motivated our research. We then describe design principles, followed by the

key interaction techniques for building, testing and analyzing prototypes that d.tools offers.

We then outline implementation decisions and conclude with a report on three different

strategies we have employed to evaluate d.tools.

4.1.1 FIELDWORK

To learn about opportunities for supporting iterative design of ubiquitous computing devices,

we conducted individual and group interviews with eleven designers and managers at three

product design consultancies in the San Francisco Bay Area, and three product design masters

students. This fieldwork revealed that designing off-the-desktop interactions is not nearly as

fluid as prototyping of either pure software applications or traditional physical products.

Most product designers have had at least some exposure to programming but few have

fluency in programming. Design teams have access to programmers and engineers, but

delegating to an intermediary slows the iterative design cycle and increases cost. Thus, while

it is possible for interaction design teams to build functional physical prototypes, the cost-

benefit ratio of ―just getting it built‖ in terms of time and resources limits the use of

comprehensive prototypes to late stages of their process. Comprehensive prototypes that

integrate form factor (looks-like prototypes) and functions (works-like prototypes) are

mostly created as expensive one-off presentation tools and milestones, but not as artifacts for

reflective practice.

Interviewees reported using low-fidelity techniques to express UI flows, such as

Photoshop layers, Excel spreadsheets, and sliding physical transparencies in and out of cases

70

(a glossy version of paper prototyping). However, they expressed their dissatisfaction with

these methods since the methods often failed to convey the experience offered by the new

design. In response, we designed d.tools to support rapid construction of concrete interaction

sequences for experience prototyping [52] while leaving room to expand into higher-fidelity

presentation models.

4.1.2 DESIGN PRINCIPLES

To guide the design of the d.tools authoring environment, we distilled the following design

principles from our fieldwork observation and the general analysis of prototyping within the

design process described in Chapter 2.

FAVOR CONCRETE, SPECIFIC INTERACTION SEQUENCES OVER GENERAL FUNCTIONALITY

The purpose of a UI prototype is to evoke the experience of using a future product, not to

serve as an alpha version of the product. Exhibiting interactive behavior is a critical element

for such prototypes, but only to the extent that it is needed to elicit the right feedback.

Therefore, it is more important to rapidly build a concrete example of an interaction than to

build general logic to handle different possible applications of the technique. Prototypes are

concrete, narrow, and specific first; generalization and abstraction can be introduced at a

later point. This guideline is a key differentiator between prototyping software and general

programming tools.

MINIMIZE COGNITIVE FRICTION BETWEEN WORKING IN HARDWARE AND SOFTWARE BY

BRIDGING ABSTRACTION LAYERS

When designing interactions for novel devices, more ―moveable parts‖ exist than in

traditional GUI design: the shape of the physical device, the type and layout of input and

output components, and the mapping of input events to application logic have to be defined

in addition to the standard concerns of interface appearance, information architecture, and

behavior. To reduce some of the complexity of dealing with different levels of abstraction,

d.tools introduces a device designer that serves as a virtual stand-in of the physical device

being created. The goal of this device representation is to reduce the cognitive friction

involved in switching between working with hardware and working with software.

OFFER IMMEDIATE, OBSERVABLE FEEDBACK ACROSS HARDWARE AND SOFTWARE

To allow the designer to experience their own design, the time between authoring a change

and seeing that change, or between providing test input and observing the result, should be

minimized. To this end, tight coupling between the software and hardware domains is used

71

when appropriate: an action in physical space (e.g., pressing a button) should have an

immediate, observable result in the authoring environment. Vice versa, an action in the

authoring environment (e.g., changing a screen graphic) should have an immediate observable

result in hardware as well (e.g., show the changed graphic on an external display).

4.1.3 PROTOTYPING WITH D.TOOLS

In this section we discuss the most important interaction techniques that d.tools offers to

enable the rapid design of interactive physical devices. d.tools‘ goal is to support design

thinking rather than implementation tinkering. Using d.tools, designers place physical

controllers (e.g., buttons, sliders), sensors (e.g., accelerometers, force sensitive resistors), and

output devices (e.g., LEDs, LCD screens, and speakers) directly onto their physical

prototypes. The d.tools library includes an extensible set of smart components that cover a

wide range of input and output technologies. Software proxy objects of physical I/O

components can be graphically arranged into a visual representation of the physical device

(Figure 4.2A). On the PC, designers then author behavior using this representation in a visual

language inspired by both storyboards and the statechart formalism [105] (Figure 4.2B). A

graphical user interface editor enables composition of graphics for screen output (Figure

Figure 4.2: The d.tools authoring environment. A: device designer. B: storyboard editor.

C: GUI editor. D: asset library. E: property sheet

72

4.2C). Visual interaction models can be augmented by attaching code to individual states.

d.tools employs a PC as a proxy for an embedded processor to prevent limitations of

embedded hardware from impinging on design thinking. Designers can test their authored

interactions with the device at any point in time, since their visual interaction model is

always connected to the ‗live‘ device.

4.1.3.1 Designing Physical Interactions with ‘Plug and Draw’

Designers begin by plugging physical components into the d.tools hardware interface (which

connects to their PC through USB) and working within the device designer of the authoring

environment. When physical components are plugged in, they announce themselves to the

d.tools authoring environment, creating virtual duals the device designer (Figure 4.3).

Alternatively — when the physical components are not at hand or when designing

interactions for a control that will be fabricated later — designers can create visual-only input

and output components by dragging and dropping them from the device editor‘s palette. A

designer can later connect the corresponding physical control or, if preferred, manipulate the

behavior via Wizard of Oz [140,148] at test time.

In the device designer (Figure 4.2A), designers create, arrange and resize input and

output components, specifying their appearance by selecting images from an integrated image

browser, the asset library (Figure 4.2D). Building a virtual, iconic representation of the

physical device affords rapid matching of software widgets with physical I/O components and

reduces the cognitive friction of switching between working with hardware and working

with software. The device design can also be used to simulate interaction with a device: by

selecting a simulation tool from the palette, clicking (for discrete inputs) and dragging (for

Figure 4.3: d.tools plug-and-play: inserting a physical

component causes a corresponding virtual component to

appear in the d.tools device designer.

73

continuous inputs) injects input events into the d.tools system as if the associated hardware

input component had been pressed, moved, etc.

The component library available to designers comprises a diverse selection of inputs and

outputs. Supported inputs include: discrete buttons and switches, rotary and linear

potentiometers, rotary encoders, light sensors, accelerometers, infrared rangers, temperature

sensors, force sensitive resistors, flex sensors, and RFID readers. Outputs include LCD

screens, LEDs, DC motors, servo motors, and speakers. LCD and sound output are connected

to the PC A/V subsystem, not our hardware interface. In addition, general purpose input and

output circuit boards are available for designers who wish to build custom components.

Physical and virtual components are linked through a hardware address that serves as a

unique identifier of an input or output.

4.1.3.2 Authoring Interaction Models

Designers define their prototype‘s behavior by creating interaction diagrams in the storyboard

editor (Figure 4.2B). States are graphical instances of the device design. They describe the

content assigned to the outputs of the prototype at a particular point in the UI: screen images,

sounds, and LED behaviors. States are created by dragging from the editor palette onto the

storyboard canvas. As in the device editor, content can be assigned to output components of a

state by dragging and dropping items from the asset library (Figure 4.2D) onto a component.

All attributes of states, components and transitions (e.g., image filenames, event types, data

ranges) can also be manipulated in text form via attribute sheets (editable tables that list

attribute names and values – Figure 4.2E). To define graphic output, a graphical user interface

editor provides common GUI design functionality: entering and positioning text, and loading,

resizing and positioning graphical elements (Figure 4.2C). The designed graphical user

interface is unique to each state.

Transitions represent the control flow of an application; they define rules for switching

the currently active state in response to user input (hardware events). The currently active

state is shown with a red outline. Transitions are represented graphically as arrows

connecting two states. To create a transition, designers mouse over the input component

which will trigger the transition and then drag onto the canvas. A target copy of the source

state is created and source and target are connected. Transitions are labeled with an icon of

the triggering input component (Figure 4.4A).

Conditions for state transitions can be composed using the Boolean AND/OR

expressions (Figure 4.4B). A single Boolean connective is applied to all conditions on a

74

transition arrow, as complex Boolean expressions are error prone. Boolean combinations

allow authoring conditionals such as ‗transition if the accelerometer is tilted to the right, but

only if the tilt-enable button is held down simultaneously.‘ More complex conditionals can be

authored by introducing additional states.

To define discrete events for continuous sensors, designers define upper and lower

thresholds for a sensor‘s value. Whenever the sensor value transitions into the threshold

region, a transition event is generated. To help designers visualize such sensor thresholds, a

graph showing both recent sensor history and threshold lines can be displayed on demand

above the transition arrow utilizing the event (Figure 4.4C).

Within the visual editor, timers can be added as input components to a device to create

automatic transitions or (connected with AND to a sensor input) to require a certain amount

of time to pass before acting on input data. Automatic transitions are useful for sequencing

output behaviors, and timeouts have proven valuable as a hysteresis mechanism to prevent

noisy sensor input from inducing rapid oscillation between states.

While the storyboard aids a designer‘s understanding of the overall control flow of the

prototype, complex designs still benefit from explanation. d.tools supports commenting with

text notes that can be freely placed on the storyboard canvas.

4.1.3.3 Raising the Complexity Ceiling of Prototypes

The state-based visual programming model embodied in d.tools enables rapid design of the

information architecture of prototypes, but the complexity of the control flow and interactive

behavior that can be authored is limited. To support refining designs and permit higher-

fidelity behaviors, d.tools provides two mechanisms that enable more complex interactions:

parallel states and code extensions.

Figure 4.4: d.tools interaction techniques. A: creating new transitions through dragging.

B: adding a new condition to an existing transition. C: Visualizing sensor signal input and

thresholds in context. D: parallel active states. E: editing code attached to a state.

75

PARALLEL STATES

Expressing parallelism in single point-of-control state diagrams results in an exponentially

growing number of states. Our first-use study also showed that expressing parallelism via

cross products of states is not an intuitive authoring technique. To support authoring parallel,

independent functionality, multiple states in d.tools can be active concurrently in

independent sub-graphs (e.g., the power button can always be used to turn the device off,

regardless of the other state of the model – Figure 4.4D). One limitation of parallel states in

d.tools is that the system currently lacks an explicit mechanism to define what behavior

should occur when two states try to assign output to the same component simultaneously.

ATTACHING CODE

To specify behaviors that are beyond the capability of the visual language (e.g., dynamically

generating animations tied to user input), designers can attach textual code to visual states.

The right-click context menu for states offers actions to edit and hook or unhook code for

each state (Figure 4.7E). A d.tools API provides read and write access to hardware

components, and allows procedural animation of graphics objects on screen. We

implemented two different alternatives of d.tools code extensions — one with compiled Java

classes, and one with interactively interpreted Java — to explore the tradeoffs of mixing

visual and textual programming.

The compiled Java extension leverages the Eclipse programming environment‘s rich Java

editing functionality. When users right-click on a visual state and choose the edit code

command, d.tools generates a skeleton Java class file and launches the native Eclipse Java

editor, which provides auto-completion, syntax highlighting, and integrated help. The

primary benefit of this path is that is offers Eclipse‘s mature toolset. However, the toolset also

brings with it a steep learning curve and a discontinuous authoring experience for two

reasons. First, Eclipse targets professional software engineers and favors generality and

completeness; many of the UI options offered are irrelevant to the more narrowly scoped task

of writing state code in d.tools. Second, Java is a very verbose, strongly & statically typed,

object-oriented language. The combination of these features requires designers to fully

understand the object oriented development paradigm to make use of d.tools code extension

— a barrier that proved too high in conversations with our target users.

In response to the identified complexity challenge, later versions of d.tools replaced the

compiled Java architecture with an interactive interpreter which supports standard Java

syntax but also offers ―syntactic sugar‖ which results in much more concise code that focuses

76

on expressing the intended logic. The scripted Java extension trades off more concise and

structurally simpler code against limited editor support for detecting syntax errors,

suggesting corrections, and debugging.

 EXECUTING INTERACTION MODELS AT DESIGN TIME

Designers can execute interaction models in three ways. First, they can manipulate the

attached hardware. Second, they can imitate hardware events within the software workbench

by using a simulation tool. Clicking on input components with the simulation tool then

generate synthetic input events, e.g., button presses and release events, that are used to drive

the interaction model as if real hardware input events had been received. Third, designers can

employ a Wizard of Oz approach where they observe a user interacting with the prototype,

and manually change the active state in the editor with their mouse.

4.1.4 ARCHITECTURE AND IMPLEMENTATION

Implementation choices for d.tools hardware and software emphasize both a low threshold

for initial use and extensibility through modularity at architectural seams. In this section we

describe how these design concerns and extensibility goals are reflected in the d.tools

architecture.

4.1.4.1 Plug-and-Play Hardware

d.tools contributes a plug-and-play hardware platform that enables tracking identity and

presence of smart hardware components for plug-and-play operation. I/O components for

low-bandwidth data use a common physical connector format so designers do not have to

worry about which plugs go where. Smart components each have a dedicated small

microcontroller; an interface board coordinates communication between components and a

Figure 4.5: The d.tools hardware interface (left). Individual smart components (middle)

are can be plugged into any bus connector (right).

77

PC (Figure 4.5). Components plug into the interface board to talk on a common I2C serial

bus [32] (Figure 4.6). The I2C bus abstracts electrical characteristics of different kinds of

components, affording the use of common connectors. The interface board acts as the bus

master and components act as I2C slaves. A USB connection to the host computer provides

power and the physical communication layer.

Atmel microcontrollers are used to implement this architecture because of their low cost,

high performance, and programmability in C. The hardware platform is based around the

Atmel ATmega128 microcontroller [22] on a Crumb128 development board from chip45 [172].

I/O components use Atmel ATtiny45 microcontrollers [23]. Programs for these chips were

compiled using the open source WinAVR tool chain and the IAR Embedded Workbench

compiler. Circuit boards were designed in CADsoft Eagle, manufactured by Advanced

Circuits and hand-soldered.

d.tools distinguishes audio and video from lower-bandwidth components (buttons,

sliders, LEDs, etc.). The modern PC A/V systems already provide plug-and-play support for

audio and video; for these components d.tools uses the existing infrastructure. For graphics

display on the small screens commonly found in information appliances, d.tools includes LCD

displays which can be connected to a PC graphics card with video output. This screen is

controlled by a secondary video card connected to a video signal converter. Displays that

receive both graphics commands and power through a single USB connection are also

becoming available and can be substituted.

4.1.4.2 Hardware Extensibility

Fixed libraries limit the complexity ceiling of what can be built with a tool by knowledgeable

Figure 4.6: Schematic diagram of the d.tools hardware infrastructure. Smart components

are networked on an I2C bus. A master microcontroller communicates over a serial-over-

USB connection with the computer running the d.tools authoring environment.

78

users. While GUIs have converged on a small number of widgets that cover the design space,

no such set exists for physical UIs because of the greater variety of possible interactions in the

real world. Hence, extending the library beyond what ‗comes with the box‘ is an important

concern. In the d.tools software, extensibility is provided by its Java hooks. In the d.tools

hardware architecture (Figure 4.6) extensibility is offered at three points: the hardware-to-

PC interface, the hardware communication level, and the electronic circuit. This allows

experts with sufficient interest and skill to modify d.tools to suit their needs.

d.tools hardware and a PC communicate by exchanging OpenSoundControl (OSC)

messages [256] over a USB serial connection. OSC was chosen for its open source API,

existing hardware and software support, and human readable addressing format (components

have path-like addresses — e.g., buttons in d.tools are labeled /btn1 or /btn6.) By

substituting devices that can produce OSC messages or software that can consume them,

d.tools components can be integrated into different workflows. For example, music synthesis

programs such as Max/MSP [18] can receive sensor input from d.tools hardware. Connecting

other physical UI toolkits to d.tools involves developing an OSC wrapper. As a proof of

concept, we have written such a wrapper to connect Phidgets InterfaceKits [93].

Developers can extend the library of smart I/O components by adding components that

are compatible with the industry standard I2C serial communication protocol. I2C offers a

large base of existing compatible hardware. For example, the accelerometers used in d.tools

projects are third party products that send orientation to d.tools via on-board analog-to-

digital converters. Presently, adding new I2C devices requires editing of source code for the

master microcontroller; this configuration step could also be pushed up to the d.tools

authoring environment.

On the circuit level, d.tools can make use of inputs that vary in voltage or resistance and

drive outputs with on/off control and pulse width modulation. This allows designers versed

in circuit design to integrate new sensing and actuation technologies at the lowest level. This

level of expansion is shared with other hardware platforms that offer direct pin access to

digital I/O lines and A2D converters.

79

4.1.4.3 Software

To leverage the benefits of a modern IDE, d.tools was implemented in Sun‘s Java JDK 5 as a

plug-in for the open-source Eclipse platform. Its visual editors are fully integrated into the

Eclipse development environment [21]. d.tools uses the Eclipse Graphical Editing Framework

(GEF) for graphics handling [24]. d.tools file I/O is done via serialization to XML, which

enables source control of project files in ASCII format using version control tools. The design

environment is platform independent except for ―glue‖ code for USB port communication,

and has been tested under Windows and Mac OS X.

CODE EXTENSIONS

The compiled Java code extension leverages the Eclipse programming environment‘s rich Java

editing and compilation functionality. Eclipse automatically compiles the user‘s code into

class files. d.tools, on entering a new state, uses a custom Java class loader to search for any

new class files for the current state, and, if found, instantiates the class and calls its API

methods. The initial d.tools Java API is reproduced in Table 4.1.

The subsequently developed scripted code extension model builds on BeanShell, a Java

interpreter [200]. The interpreter‘s namespace is populated by d.tools with objects matching

both hardware I/O components and graphics components defined in each state. For example,

if a button with the name ―upButton‖ exists in the device designer, then a variable

corresponding to a Button object with name ―upButton‖ will be present in the interpreter.

Similarly, if a screen graphic object with the name ―menuGraphic‖ is defined in a particular

state, then a corresponding object with name ―menuGraphic‖ will be accessible in the script

Function Description

enterState() Is called when the code’s associated state receives focus in the statechart
graph.

update(String component,

Object newValue)
Is called when a new input event is received while the code’s state has
focus. The component’s hardware address (e.g., “/btn5” for a button) is
passed in as an identifier along with the updated value (Booleans for discrete
inputs, Floats for continuous inputs, and Strings for RFID tags).

getInput(String

component)
Queries the current value of an input.

setOutput(String

component, Object

newValue)

Controls output components. LCD screens and speakers receive file URLs,
and LEDs and general output components Booleans for on/off.

println(String msg) Outputs a message to a dedicated debug view in our editor.

keyPress(KeyEvent e)

keyRelease(KeyEvent e)

Inserts keyboard events into the system’s input queue (using Java Robots)
to remote control external applications.

Table 4.1: The d.tools Java API allows designers to extend visual states with source

code. The listed functions serve as the interface between designers’ code and the d.tools

runtime system. Standard Java classes are also accessible.

80

of that state. The technique of creating objects based on name properties entered in a direct

manipulation interface is also present in other GUI editors such as Adobe Flash.

For programming animations, the interpreter uses a polling method for calling user-

defined graphics routines. If the user defines a function called loop(), that function is called

repeatedly at 30Hz, a rate sufficient for generating animations. This polling technique is

conceptually more straightforward than event callbacks and was inspired by its successful

use in the end-user graphics programming environment Processing [210].

A challenge we noted in the compiled Java model was that persisting data for sharing

between different states was cumbersome. To facilitate defining globally accessible variables

and functions, the scripted Java extension therefore added the concept of a ―global script‖ in

addition to individual state scripts. Variables and functions declared in the global script are

accessible to all state scripts. Global scripts are reloaded whenever the project files are saved.

State-specific scripts are executed whenever the associated graphical state becomes active.

The complete d.tools scripting API is reproduced in Table 4.2 and some examples of the API

in use are given in Figure 4.7

//working with text objects

text1.setText(“Hello”);

text1.setText(text1.getText()+”, World!”);

text1.setFontSize(24);

//resize the image “clipImg” based on

//two button events

loop() {

 //scale down

 if(btnDown.getValue())

 clipImg.setScale(clipImg.getScale()-5);

 //scale up

 if(btnUp.getValue()) {

 clipImg.setScale(clipImg.getScale()+5);

 //center image on stage

 clipImg.setXY(stage.getWidth()/2-

 clipImg.getWidth()/2,

 stage.getHeight()/2-

 clipImg.getHeight()/2);

}

Figure 4.7: Code examples for the d.tools scripting API.

81

Global Functions for Drawing and Accessing Hardware

Function Description
void loop() If the user‘s state script defines a loop function,

the function will be called repeatedly at
interactive rates while the given state is active.

void print(String msg) Print a message to the debug console.
boolean ditigalRead(String compName)

void digitalWrite (String compName,

 boolean value)

Read the last known state of a discrete input
component such as a button or switch with
identifier compName, Write a new value.

float analogRead (String compName)

void analogWrite (String compName,

 float value)

Read the last known value of a continuous input.
Write to a pulse-width modulated output
component such as a PWM LED

Hardware Component Proxy Objects
component.setValue(boolean v)

component.setValue(float v)

Set the state of the component named
―component‖; overloaded based on component
type (discrete or PWM output). Corresponds to
digitalWrite() and analogWrite() above.

boolean component.getValue()

float component.getValue()

int component.getValue()

Read the last known state of the component
named ―component‖; overloaded based on
component type (discrete, continuous or
identity-reporting). Corresponds to
digitalRead() and analogRead() above.

GUI Objects: Stage
int getWidth(), int getHeight() Return the width and height of stage, as defined

in the device designer.
void setColor (int r, int g, int b)

int getColor(String which)
Set/get the stage color.

GUI Objects: Graphic Clips
void setWidth(int w)

void setHeight(int h)

int getWidth(), int getHeight()

Set/get the width and height of the clip object.

int getX(), int getY()

void setX(int x), void setY(int y)
Set/get the position of the clip object.

setVisible(boolean v)

boolean isVisible()
Set/get the visibility of the clip object.

setImage(String filename)

String getImage()
Set/get the image displayed by this clip object.

GUI Objects: Text
setX(int x), setY(int y),

int getX(), int getY()
Set/get the position of the text object.

setVisible(Boolean v)

boolean isVisible()
Set/get the visibility of the text object.

setText(String text)

String getText()
Set/get the string displayed by the text object.

setFontSize(int size)

int getFontSize()
Set/get the text font size.

Table 4.2: The d.tools scripting API provides both global and object-oriented functions to

interact with hardware, and a concise object-oriented set of function for manipulating GUI

elements.

82

4.1.5 EVALUATION

In this section, we outline the methodological triangulation we employed to evaluate and

iteratively refine d.tools. First, to ascertain the expertise threshold of d.tools, we conducted a

first-use lab study with thirteen design students and professional designers. Second, the

author and other members of our research group rebuilt prototypes of existing devices and

used d.tools in two research projects. Third, we made d.tools hardware kits available to

students in a project-centric interaction design course at our university.

4.1.5.1 Establishing Threshold with a First Use Study

We conducted a controlled laboratory study of d.tools to assess the ease of use of our tool; the

study group comprised 13 participants (6 male, 7 female) who had general design experience.

Three participants served as pilot testers to refine the testing protocol. Participants were

given three design tasks of increasing scope to complete with d.tools within 90 minutes. Most

participants were students or alumni of design-related graduate programs at our university.

Sessions started with a demonstration of the d.tools software editor and the hardware

components by the experimenters. We then gave participants two narrowly defined tasks

and one open-ended design project. For the first task, participants were asked to complete a

menu navigation design that the experimenter had started during the demonstration. For the

second task, participants were asked to build a functional physical prototype of a device with

one button and one switch as inputs, and one LED and a speaker as outputs. Pressing the

button should play a sound clip and toggling the switch should turn the LED on or off. The

two components were to function independently of each other.

The third assignment was to begin prototyping a digital music player for children.

Participants were given written guidelines such as ―children prefer dedicated controls and

like elements that move better than buttons.‖ As the study allotted only 30 to 45 minutes for

this part, participants were informed that they were not expected to produce a finished

product. To sketch and build physical prototypes, we provided an 18‖ × 24‖ paper pad, sheets

of foam core, pens, a selection of tools, glue and tape, and a label printer. As the final step of

the study, participants were asked to complete a 26 question survey.

83

STUDY RESULTS

All participants successfully completed both close-ended tasks, regardless of prior experience

in user interface design or physical computing. Task one took a mean of 9 minutes while task

two took a mean of 24 minutes to complete (Figure 4.8).

For the music player design task, participants followed heterogeneous approaches: some

started by exploring the ergonomics of different shapes to determine input component

placement; others focused on requirements analysis on paper; yet others worked exclusively

in software. d.tools was most frequently used for determining layout of interaction

components in the device designer, and reasoning about the interaction model in the

storyboard designer. Two participants with prior physical computing experience built

functional physical prototypes with navigation and sound playback in less than 30 minutes.

SUCCESS OF A LOW THRESHOLD AND TIGHT COUPLING

Almost all users commented positively on the tight coupling of hardware components and

their software counterparts, especially the automatic recognition of hardware connections.

Authoring storyboards through link-and-create actions was immediately intuitive. Refining

default behaviors through text properties and expressing functional independence in a

Figure 4.8: Task completion times, and prior experience and

expertise of d.tools study participants. Participants completed

task 1 in an average of 9 minutes, and task 2 in an average

of 24 minutes. These times demonstrate that prototyping with

d.tools is fast enough to be appropriate for early-stage design.

84

storyboard took longer; nevertheless, participants mastered these strategies by the end of the

session.

After an initial period of learning the d.tools interface, participants spent much of their

time with design thinking — reasoning about how their interface should behave from the user‘s

point of view instead of wondering about how to implement a particular behavior. This was

especially true for authoring UI navigation flows.

The experimenter asked participants to hand over the devices built for the second task to

test whether the required functionality had been achieved — while observing this on-the-spot

user test, many subjects expressed the wish to iterate on their designs and produced another

version two to ten minutes later. This suggests the advantage of the rapid iteration cycles that

d.tools enables. In a post-test survey (Figure 4.9), participants consistently gave d.tools high

marks for enabling usability testing (µ=4.6 on 5 point Likert scale), shortening the time

required to build a prototype (µ=4.3), and helping to understand the user experience at design

time (µ=4.25).

NEEDS: SOFTWARE SIMULATION, LARGER LIBRARY, RICHER FEEDBACK

One significant shortcoming discovered through the study was the lack of software

simulation of an interaction model: the evaluated version did not provide a mechanism for

stepping though an interaction without attached hardware. . This prompted the addition of

our software simulation mode. Specifying sensor parameters textually worked well for

subjects who had some comfort level with programming, but were judged disruptive of the

Figure 4.9: Post-test survey results from the d.tools user

study. Participants provided responses on Likert scales.

85

visual workflow by others. Interaction techniques for graphically specifying sensor ranges

were added to address this issue. Users also wished for aggregate inputs that have become

standard navigation elements for information appliances such as combined up/down buttons,

five-way joysticks, and keypads.

4.1.5.2 Rebuilt Existing and Novel Devices

To evaluate the expressiveness of d.tools‘ visual language, we recreated prototypes for four

existing devices — an Apple iPod Shuffle music player, the back panel of a Casio EX-Z40

digital camera (Figure 4.10A), Hinckley et al.‘s Sensing PDA [121] (Figure 4.10B), and

Partridge et al.‘s TiltType [202] text entry device. The iPod Shuffle is a digital music player

without a screen where all playback options are controlled through tactile switches. For the

digital camera, we prototyped image review mode, where users can navigate through images,

zoom, crop, and delete images. The Sensing PDA uses an accelerometer to detect device pose

and adjust display orientation accordingly. An infrared distance sensor can detect whether

the device is held close to a user‘s face; a force-sensitive touch sensor detects whether the

device is held. The TiltType device uses a dual-axis accelerometer in conjunction with

momentary switches under the user‘s index fingers to explore orientation-based text entry

techniques. We distilled the central functionality of each device and prototyped these key

interaction paths.

Additionally, two research projects in our group used d.tools to provide physical input

for table and wall interfaces. The tangible drawers project explored physical drawers as a file

access metaphor for a shared tabletop display [112]. The author built four drawer mechanisms

mounted underneath the sides of a DiamondTouch interactive table (Figure 4.10C, Figure

4.10D). Opening and closing these drawers controlled display of personal data collections,

and knobs on the drawers allowed users to scroll through their data. Ju et al. used d.tools to

explore proxemics for interactive whiteboards through an array of infrared distance sensors

mounted to the frame of a wall display [137] (Figure 4.10E).

From these exercises, we learned that interactive physical prototypes have two scaling

concerns: the complexity of the software model, and the physical size of the prototype. d.tools

diagrams of up to 50 states are visually understandable on a desktop display (1920 × 1200);

this scale is sufficient for the primary interaction flows of current devices. Positioning and

resizing affords effective visual clustering of subsections according to gestalt principles of

proximity and similarity. However, increasing transition density makes maintaining and

troubleshooting diagrams taxing, a limitation shared by other visual authoring environments.

86

Figure 4.10: Some applications built with d.tools in our research group. A: digital camera

image navigation. B: sensor-enhanced smart PDA. C & D: tangible drawers for a multi-user

interactive tabletop. E: proxemics-aware whiteboard. F: TiltType for orientation-based text

entry.

87

In the tangible drawers project, the presence of multiple independent drawers prompted

the need for multiple concurrently active states. This project as well as Range also required

sensor data access from an existing Java application. d.tools can interact with existing

applications in one of two ways: state change information and raw sensor data can be

received by a 3rd party application using socket communication; or d.tools can inject mouse

and keyboard events into the operating system event queue, a technique termed screen poking

(similarly to Hudson‘s Thumbtacks project [127]). The first method was used to interface

with the our other research project code bases; it raises the question which parts of the

interaction should be authored in d.tools, and which parts in the external application‘s source

code. Screen poking was used by the author to prototype accelerometer-based zoom and pan

control for the Google Earth application in less than 30 minutes. However, screen poking is a

brittle technique as d.tools is unaware of the internal state of the controlled application; it is

therefore less useful for more complex prototypes.

The first author also served as a physical prototyping consultant to a prominent design

firm. Because of a focus on client presentation, the design team was primarily concerned with

the polish of their prototype — hence, they asked for integration with Flash. From a research

standpoint, this suggests — for ―shiny prototypes‖ — a tool integrating the visual richness of

Flash with the computational representation and hardware abstractions of d.tools.

4.1.5.3 Teaching Experiences — HCI Design Studio

We deployed the d.tools hardware and software to student project teams in a master‘s level

HCI design course at Stanford [150]. Students had the option of using d.tools (among other

technologies) for their final project, the design of a tangible interface. Seven of twelve groups

used d.tools. In the following year, d.tools was offered again to students in the class. In this

real-world deployment, we provided technical assistance and tracked usability problems, bug

reports, and feature requests. Figure 4.11 provides an overview of some projects built by

students.

SUCCESSES

Students successfully built a range of innovative interfaces. Examples include a wearable

watch that allows children to record and trade secret audio messages, a color mixing interface

in which children can ―pour‖ color from tangible buckets onto an LCD screen, and an

augmented clothes rack that offers product comparisons and recommendations via hanger

sensors and built-in lights.

88

Figure 4.11: Some student projects built with d.tools. A: a tangible color mixing device

where virtual color can be poured from physical paint buckets by tilting them over an LCD

screen. B: a message recording system for children to exchange secrets. C: a smart

clothes rack can detect which hangers are removed from the rack and display fashion

advice on a nearby screen. D: a mobile shopping assistant can scan barcodes of grocery

items and present sustainability information relating to the scanned item on its screen. E:

a tangible audio mixer to produce cell phone ring tones. F: an accelerometer-equipped

golf club used as a game controller.

89

Students were able to work with supplied components and extend d.tools with sensor

input not in the included library. For example, the color mixing group integrated mechanical

tilt switches and vibration motors into their project.

SHORTCOMINGS DISCOVERED

Remote control of third party applications (especially Flash) was a major concern for

students — in fact, because d.tools did not have a graphical user interface editor in the

supplied version, two student groups chose to develop their project with Phidgets [93], as it

offers a Flash API. To address this need, we first released a Java API for the d.tools hardware

with similar connectivity. We observed that student groups that used solely textual APIs

ended up writing long-winded state machine representations using switch or nested

conditional statements; the structure of their code could have been more concisely captured

in our visual language. The need for direct control over GUI graphics also motivated the later

addition of the d.tools graphical user interface editor.

4.1.6 D.TOOLS MOBILE

The d.tools architecture was designed to focus on prototypes that involve custom hardware.

Might it also offer benefits for prototyping interfaces for commodity hardware, such as smart

phones? To understand the utility of d.tools for mobile interaction design, we collaborated

with Nokia to enable real-time input from and output to smart phones (Figure 4.12).

Figure 4.12: A d.tools mobile prototype on a Nokia N93 smart

phone, with the storyboard logic of the prototype in the

background.

90

With the d.tools mobile system, designers author functionality in the standard visual

environment. Designers do not need to create a device definition; they can load a pre-created

model that matches layout of phone input keys and screen. For running and testing such

prototypes, a custom d.tools client application is loaded onto a phone. This client intercepts

all input events (i.e., key presses) and sends them over a wireless connection to the PC

running d.tools, where they are used to trigger state transitions. Output commands resulting

from state transitions are then sent to the phone to display graphics or play sounds (Figure

4.13). In essence, the phone is turned into a terminal, while all application logic executes in

the d.tools authoring environment. Our current implementation was written in Python for

Nokia S60 phones. We are using a Wi-Fi connection for message passing. Messages are sent

as OpenSoundControl packets over UDP.

BENEFITS

We have tested the d.tools mobile approach informally in our lab and with collaborators at

Nokia. A primary benefit of our approach is that it sidesteps many of the pain points of

developing and deploying prototypes on phones, since development and execution both

remain on the PC. In addition, the state of the phone application can be monitored in d.tools.

It is also possible to change the interaction logic in the middle of a test. d.tools mobile is

especially suited for quick exploration of applications with relatively static individual screens

— a storyboard can be assembled in a few minutes and tested on the target device. Because of

the reliance on a common messaging protocol, OSC, it is also possible to add external sensors

connected to a d.tools hardware interface and explore interactions that rely on sensor input

not provided by the phone itself.

Figure 4.13: The d.tools mobile system architecture uses

socket communication over a wireless connection to receive

input events and send output commands to a smart phone.

91

LIMITATIONS

d.tools mobile also has multiple important limitations, some fundamental to its execution

model, others merely due to its nature as research software. Fundamentally, interactivity is

limited by the roundtrip latency of sending an event to d.tools, and receiving a message with

output commands in return. Mobile devices have to trade off network latency and battery life,

and as a result, we observed roundtrip latencies of 200-1000 milliseconds, with a large

amount of jitter (the variation in latency). While fast enough for discrete control tasks such

as navigating from screen to screen, d.tools mobile is not fast enough for continuous control

tasks such as smooth panning or zooming. Latency and jitter will further increase if users try

to take the device out of the lab and switch from a wireless Ethernet connection to a cellular

data connection. This limits the applicability of d.tools mobile for testing outside the lab.

An important pragmatic limitation of our implementation is that the d.tools scripting

language has not been ported to d.tools mobile yet. Thus dynamic behaviors cannot yet be

implemented. Adding script execution is not trivial as it requires deciding which commands

should be executed on the phone itself, and which commands should be executed on the PC.

For example, graphics commands such as translation, rotation, and scaling are best executed

on the phone itself so large graphics files don‘t have to be transmitted. Also, only keyboard

input is currently supported. Although processing data from built-in phone sensors is

certainly possible, the appropriate modules exposing such data to the Python programming

language were not available to us.

To understand the relative benefits and limitations of d.tools mobile, we compare design

decisions of d.tools mobile and important related work in Table 4.3. Ballagas‘ iStuff Mobile

[42] is the most related system, as it also executes logic on a PC. iStuff mobile targets higher-

fidelity development of mobile applications where phones are one among multiple devices in a

ubiquitous computing ecology, while d.tools mobile targets lower-fidelity UI walkthroughs.

92

4.1.7 LIMITATIONS & EXTENSIONS

To conclude our discussion of the d.tools system, this final section points out important

limitations of the current architecture and implementation, and suggests paths for extensions.

4.1.7.1 Dynamic Graphics Require Scripting

One important limitation of the current d.tools authoring environment is that achieving

dynamic graphic output, e.g., continuous animations, is only possible through the built-in

scripting API; it cannot be authored visually. This is partially a side-effect of choosing states

as the first-level abstraction. Consequently, information architecture can be rapidly

prototyped, but more detailed work on temporal aspects of the user interface is not well

supported.

Commercial tools [6,1] exist that focus on rapid creation of animated traditional,

desktop-bound user interfaces. Flash Catalyst for instance also uses states as an abstraction

principle, but lets designers specify explicitly how to animate transitions for individual

graphical elements for each transition. Other research has looked into how to specify

animations directly through stylus input [68,164]. However, it is likely insufficient to

translate these techniques directly into the d.tools environment, as they do not offer support

 d.tools mobile iStuff mobile Flash Lite Juxtapose
mobile

Authoring
Environment

Visual (d.tools
state diagrams)

Visual + Code
(Quarts
Composer +
JavaScript)

Visual + Code
(Adobe Flash IDE
+ ActionScript)

Code
(ActionScript)

Where does
computation
happen?

PC PC Phone Phone

Supported Input Phone keyboard,
external sensors

Phone keyboard,
external sensors

Phone hardware
only

Phone hardware
only

Supported
Output

Phone screen,
sound

Phone screen,
sound, external
screens

Phone screen,
sound

Phone screen,
sound

Can application
be inspected
while running?

Yes No? No No

Can application
be modified
while running?

Yes No No Yes (Tuning +
Alternatives)

Table 4.3: Comparison of d.tools mobile and related mobile prototyping tools.

93

for binding animation to the variety of possible input devices and input events in d.tools.

Promising directions for this problem are to either use a visual dataflow paradigm [129] to

link input events to graphical objects or to author constraints by demonstration [164].

4.1.7.2 Hierarchical Diagrams Not Supported

d.tools in its current version does not support hierarchical levels of abstraction for states. This

limits the complexity of prototypes that can be built with d.tools. While we implemented

parallel state machines (independent sub-graphs where one state is currently active in each

sub-graph), we did not implement support for hierarchical abstraction. Abstraction has three

primary benefits:

1. expressing multi-level logic, e.g., events that should apply to a set of states

2. enabling reuse of previously authored components

3. preserving screen real estate by collapsing the visual representation of clusters

Harel‘s original conception of statecharts [105] derives its visual economy from the notion of

state clusters. Clustering also exists in dataflow languages such as Max/MSP [18]. One

challenge with introducing a more powerful authoring abstraction is ensuring that this

concept does not raise the expertise threshold required for novices to the tool. In informal

testing, we found the notion of parallel states not well received by designers. One reason is

that in parallel states, what will be shown to the user of a designed prototype is never

completely visible in a single point in the diagram. Reasoning about program state now

requires mentally combining the behavior of multiple active states. Similarly, reasoning about

―what happens next‖ can be quite complex under multiple states active in parallel.

4.1.7.3 Screen Real Estate Not Used Efficiently

The current version of d.tools needlessly expends a large area of screen real estate by

repeatedly displaying the device design, i.e., the set of input and output components arranged

in a 2D layout, for every state in the state diagram. Having such a depiction of the device in

each state enables the current authoring technique for creating transitions: clicking on an

input component, then dragging out an arrow and releasing over a different state. But most of

the pixels dedicated to this state display are only needed during this transition authoring. At

other times, they clutter the diagram and reduce overall legibility. Hiding the device design

would free up more pixels which could either be used to show more complex diagrams, or to

devote more screen real estate to showing the graphical output of each state, by making the

states bigger.

94

One possible solution achieve space savings while keeping the current authoring

technique would be a dynamic visualization where the device design is hidden by default and

states only show output and transitions. On mouse-rollover or another explicit invocation

mechanism, the full design is temporarily shown to allow easy transition authoring. The

implementation of such a technique is straightforward for the standard GUI case, where there

is only a single display. It is less clear how to automatically create a suitable state abstraction

when multiple output components are defined. Two possible options are to automatically

rearrange the component layout; or to give the designer explicit control over how this second

representation should look in the device designer.

4.1.7.4 Lack of Support for Actuation

While d.tools supports output to LEDs, DC motors, and servo motors, most of our effort has

been concentrated on how to support sensor data input. We have not yet sufficiently

explored the space of more complex actuation. In particular, output is controlled at the single

output component level — one has to author behavior for each LED in each state individually.

Such limitations are analogous to programming screen output by only writing single pixels.

Many interactive projects employ arrays of displays or mechanical actuators (e.g.,Hansen and

Rubin‘s Listening Post [104], or Rozin‘s Wooden Mirror [215]). Tools should therefore

support output abstractions that address collections of output devices. Also, hardware and

power supply design becomes a consideration when dealing with multiple outputs. The

current hardware interface would need redesign to support a wider variety of actuators.

Yet a different problem arises from the tethered nature of the d.tools kit: one can‘t currently

explore interactions that rely on precise timing and low latency feedback loops, such as for

haptic interactions. Haptic motor control routines require update rates near 1kHz. In the

current d.tools architecture, control loops execute at less than 100Hz, because every message

has to be relayed from the hardware interface to the PC and back.

4.1.7.5 Prototypes Have to be Tethered to PC by Wire

d.tools prototypes (other than d.tools for mobile phones) are currently restricted to be used

inside the design studio because because of the required tether cable linking them to a PC.

The tether has two functions: it is used for data exchange, since the interaction model itself

lives on the PC, and it provides power for the hardware interface sensors (actuators may need

additional, separate power). There are two general strategies for cutting this tether.

95

First, replacing the cable with a wireless data connection and operating the hardware

platform with batteries. D.tools mobile follows this approach: mobile phones send input

events to the PC over a WiFi connection, and receive output events in return. The advantage

of this approach is that the designer can follow in real-time on the PC what state the

prototype is in, and can make on-the-fly changes. The disadvantage is that one has to be

within range of the wireless signal.

A second approach is to execute interaction models directly on embedded hardware.

This could be achieved by either a) running the d.tools Java state machine code on an

embedded processor that can execute Java or b) by generating code for the target embedded

platform separately. We have done preliminary work in the first direction by connecting

components to an embedded Intel XScale platform that can execute interaction models.

Stepping beyond 8-bit microcontrollers also enables on-board graphics. The advantage of this

approach is that the created devices are completely standalone and do not require a PC

anymore. The disadvantage is that prototype behavior can no longer be tracked and visualized

on the PC.

96

4.2 EXEMPLAR: PROGRAMMING SENSOR-BASED INTERACTIONS

BY DEMONSTRATION

d.tools and other physical computing toolkits have lowered the threshold for connecting

sensors and actuators to PCs [37,43,93,127,159], and for prototyping the application logic of

systems that make use of sensors and actuators. Accessing sensor data from software has

come within reach of designers and end users.

However, our experience of deploying d.tools in the classroom showed that specifying

the relationship between sensor input and application logic remains problematic for

designers and students alike for three reasons. First, most current tools, such as Arduino

[185], require using textual programming to author sensor-based behaviors. Representations

are most effective when the constraints embedded in the problem are visually manifest in the

representation [201]. Thus, numbers alone are a poor choice for making sense of continuous

signals as the relationship between performed action and reported values is not visually

apparent. Second, existing visual tools (e.g., LabView [15]) were created with the intent of

helping engineers and scientists perform signal analysis; as such, they do not support

straightforward authoring of interactions. This leaves users with a significant gulf of

execution, the gap between their goals and the actions needed to attain those goals with the

system [132]. Third, the large time and cognitive commitment implied by a lack of tools

inhibits rapid iterative exploration. Creating interactive systems is not simply the activity of

translating a pre-existing specification into code; there is significant value in the epistemic

experience of exploring alternatives [145]. One of the contributions of direct manipulation

and WYSIWYG design tools for graphical interfaces is that they enable this ‗thinking through

doing‘ — the aim of our work is to provide a similarly beneficial experience for sensor-based

interactions.

This section contributes techniques for enabling a wider audience of designers and

application programmers to turn raw sensor data into useful events for interaction design

through programming by demonstration. It introduces a rapid prototyping tool, Exemplar

(Figure 4.14), which embodies these ideas. The goal of Exemplar is to enable users to focus on

design thinking (how the interaction should work) rather than algorithm tinkering (how the

sensor signal processing works). Exemplar frames the design of sensor-based interactions as

the activity of performing the actions that the sensor should recognize — we suggest this

approach yields a considerably smaller gulf of execution than existing systems. With

Exemplar, a designer first demonstrates a sensor-based interaction to the system (e.g., she

97

shakes an accelerometer). The system graphically displays the resulting sensor signals. She

then edits that visual representation by marking it up, and reviews the result by performing

the action again. Through iteration based on real-time feedback, the designer can refine the

recognized action and, when satisfied, use the sensing pattern in d.tools or other prototyping

applications. The primary contributions of this work are:

1) A method of programming by demonstration for sensor-based interactions that

emphasizes designer control of the generalization criteria for collected examples.

2) Integration of direct manipulation and pattern recognition through a common visual

editing metaphor.

3) Support for rapid exploration of interaction techniques through the application of the

design-test-analyze paradigm [109,148] on a much shorter timescale as the core

operation of a design tool.

Programming by demonstration as a technique was introduced in Chapter 3.5. The rest of this

section is organized as follows: we first describe relevant characteristics of sensors and

sensor-based interactions to position our work. We provide an overview of the design

principles embodied in Exemplar, then describe the research system, its interaction

techniques and implementation. We finally report on two evaluation methods we have

employed to measure Exemplar‘s utility and usability.

Figure 4.14: Iterative programming by demonstration for

sensor-based interactions: A designer performs an action;

annotates its recorded signal in Exemplar; tests the

generated behavior; and exports it to d.tools.

98

4.2.1 SENSOR-BASED INTERACTIONS

This section introduces an analysis of the space for sensor-based interactions from the

designer‘s point of view. Prior work has successfully used design spaces as tools for thinking

about task performance [57] and communicative aspects [46] of sensing systems. Here we

apply this approach to describe the interaction designer‘s experience of working with

sensors. This design space foregrounds three central concerns: the nature of the input signals,

the types of transformations applied to continuous input, and techniques for specifying the

correspondence between continuous signals and discrete application events.

4.2.1.1 Binary, Categorical, and Continuous Signals

As prior work points out [214], one principal distinction is whether sensing technologies

report continuous or discrete data. Most technologies that directly sample physical

phenomena (e.g., temperature, pressure, acceleration, magnetic field) output continuous data.

For discrete sensors, because of different uses in interaction design, it is helpful to distinguish

two sub-types: binary inputs such as buttons and switches are often used as general triggers;

while categorical data inputs (multi-valued) such as RFID are principally used for

identification. A similar division can be made for the outputs or actuators employed.

Exemplar focuses on continuous input in one or more dimensions; it does not support

working with categorical input data.

4.2.1.2 Working with Continuous Signals

Sensor input is nearly always transformed for use in an interactive application. Continuous

transformation operations fall into three categories: signal conditioning, calibration, and

mapping. Signal conditioning is about ‗tuning the dials‘ so the signal provides a good

representation of the phenomenon of interest, thus maximizing the visual signal-to-noise

ratio. Common steps in conditioning are de-noising a signal and adjusting its range through

scaling and offsetting. Calibration relates input units to real-world units. In scientific

applications, the exact value in real-world units of a measured phenomenon is of importance.

However, for the majority of sensor-based interfaces, the units of measurement are not of

intrinsic value. Mapping refers to a transformation from one parameter range into another.

Specifying how sensor values are mapped to application parameters is a creative process, one

in which design intent is expressed. Exemplar offers support for both conditioning sensor

signals and for mapping their values into binary, discrete, or continuous sets. When

calibration is needed, experts can use Exemplar‘s extensible filter model.

99

4.2.1.3 Generating Discrete Events

A tool to derive discrete actions from sensor input has to choose both a detection algorithm

and appropriate interaction techniques for controlling algorithm parameters. The

computationally most straightforward approach is thresholding — comparing a single data

point to fixed limits. However, without additional signal manipulations, e.g., smoothing and

derivatives, thresholds are susceptible to noise and cannot characterize events that depend on

change over time. Matching tasks such as gesture recognition require more complex pattern

matching techniques. Exemplar offers both thresholding with filtering and pattern matching.

Equally important is the user interface technique employed to control how the

computation happens. Threshold limits can be effectively visualized and manipulated as

horizontal lines overlaid on a signal graph. The parameters of more complex algorithms are

less well understood in our experience. Exemplar thus frames threshold manipulation as the

principal mechanism for authoring discrete events. Exemplar contributes an interaction

technique to cast parameterization of the pattern matching algorithm as a threshold

operation on matching error. Through this technique, Exemplar creates a consistent user

experience for authoring with both thresholding and pattern matching.

4.2.2 DESIGN PRINCIPLES

The following four design principles were derived from our analysis of sensor-based

interactions.

FOCUS ON GENERATING DISCRETE EVENTS FROM CONTINUOUS SIGNALS

What kind of output should Exemplar produce? The previous section has argued that many of

the most interesting potential input sources are continuous, and that discrete events are an

important output category. Discrete events can be used to trigger transitions in d.tools, which

provided the original motivation for this project, as well is an in other rule-based authoring

systems. Signal mapping and parameter estimation (extracting not only a discrete category

but also continuous parameters from sensor data) are separate problems left for future work.

LEVERAGE DEMONSTRATION TO PARTIALLY SPECIFY COMPUTATION;

GIVE THE DESIGNER EXPLICIT CONTROL OF THE REMAINING STEPS

The crucial step in the success of any Programming by Demonstration system is the

generalization from a small set of examples to general rules that can be applied to new input

(see Section 3.5). When authoring recognizers for sensor data traces generated from human

action, one has to contend with the ambiguity inherent in any recognition-based system:

100

there will be both misses and false positives. Giving the designer an understanding of the

performance of the authored interaction and a handle on improving recognition accuracy

requires showing a representation of what was learned. Exemplar uses data visualization for

this task. Importantly, these visualizations are interactive — they can be manipulated to

change parameters of the recognition algorithm.

PROVIDE REAL-TIME VISUAL FEEDBACK OF BOTH HARDWARE EVENTS AND

APPLICATION-GENERATED EVENTS

One primary challenge for a designer of sensor-based interactions is trying to make sense of

both the data streams from sensors, as well as the interaction events that are generated as a

result. To aid this sensemaking task, Exemplar provides real-time visualizations of both

incoming sensor data and outgoing event data in a unified graph window. Combining the two

types of information in the same display helps designers reason about why a particular action

did (or did not) happen.

PROVIDE ACCESS TO HISTORY OF COLLECTED SENSOR DATA

When tuning parameters of recognition algorithms, it is important to determine how those

changes affect not only new performances of an action that should be recognized, but also

past performances that have served as demonstrations or tests. Exemplar therefore records

the entire history incoming sensor data and can visualize how any of these previous actions

would have been recognized (or not recognized) given the latest recognition parameters.

Reviewing this history can act as a lightweight regression test, to ensure that actions that

were correctly recognized in the past are still recognized after a parameter change.

In the next section, we describe how the design principles outlined here are manifest in

Exemplar‘s UI.

101

4.2.3 DESIGNING WITH EXEMPLAR

Designers begin by connecting sensors to a compatible hardware interface, which in turn is

connected to a PC running Exemplar (Figure 4.15). As sensors are connected, their data

streams are shown inside Exemplar. The Exemplar UI is organized according to a horizontal

data-flow metaphor: hardware sensor data arrives on the left-hand side of the screen,

undergoes user-specified transformations in the middle, and arrives on the right-hand side as

discrete or continuous events (Figure 4.16). The success of data-flow authoring languages

such as Max/MSP attests to the accessibility of this paradigm to non-programmers.

Figure 4.15: The Exemplar authoring environment offers visualization of live sensor data

and direct manipulation techniques to interact with that data.

Figure 4.16: Sensor data flows from left to right in the Exemplar UI.

102

4.2.3.1 Peripheral Awareness

Live data from all connected sensors is shown in a small multiples configuration. Small

multiples are side-by-side ‗graphical depictions of variable information that share context,

but not content‘ [245]. The small multiples configuration gives a one-glance overview of the

current state of all sensors and enables visual comparison (Figure 4.15A). Whenever a signal is

‗interesting,‘ its preview window briefly highlights in red to attract the designer‘s attention,

then fades back to white. In the current implementation, this occurs when the derivative of a

sensor signal exceeds a preset value. Together, small multiple visualization and highlighting

afford peripheral awareness of sensor data and a visual means of associating sensors with

their signals. This tight integration between physical state and software representation

encourages discovery and narrows the gulf of evaluation, the difficulty of determining a

system‘s state from its observable output [132]. For example, to find out which output of a

multi-axis accelerometer responds to a specific tilt action, a designer can connect all axes, tilt

the accelerometer in the desired plane, and look for the highlighted thumbnail to identify the

correct input channel. Constant view of all signals is also helpful in identifying defective

cables and connections.

4.2.3.2 Drilling Down and Filtering

Designers can bring a sensor‘s data into focus in the large central canvas by selecting its

preview thumbnail (Figure 4.15C). The thumbnails and the central canvas form an overview +

detail visualization [227]. Designers can bring multiple sensor data streams into focus at once

by control-clicking on thumbnails. Between the thumbnail view and the central canvas,

Exemplar interposes a filter stack (Figure 4.15B). Filters transform sensor data interactively:

the visualization always reflects the current set of filters and their parameter values.

Exemplar maintains an independent filter stack for each input sensor. When multiple filters

are active, they are applied in sequence from top to bottom; filters can be reordered.

Exemplar‘s filter stack library comprises four operations for conditioning and mapping:

1. Offset: adds a constant value

2. Y-axis scaling: multiplies the sensor value by a scalar, including signal inversion

3. Smoothing: convolves the signal with one-dimensional Gaussian kernel to suppress high

frequency noise

4. Rate of change: takes the first derivative.

103

These four operations were chosen as the most important for gross signal conditioning and

mapping; a later section addresses filter set extensibility.

Interaction with the filtered signal in the central canvas is analogous to a waveform

editor of audio recording software. By default, the canvas shows the latest available data

streaming in, with the newest value on the right side. Designers can pause this streaming

visualization, scroll through the data, and change how many samples are shown per screen.

When fully zoomed out, all the data collected since the beginning of the session is shown.

4.2.3.3 Demonstration and Mark-Up

To begin authoring, the designer performs the action she wants the system to recognize. As an

example, to create an interface that activates a light upon firm pressure, the designer may

connect a force sensitive resistor (FSR) and press on it with varying degrees of force. In

Exemplar, she then marks the resulting signal curve with her mouse. The marked region is

highlighted graphically and analyzed as a training example. The designer can manipulate this

example region by moving it to a different location through mouse dragging, or by resizing the

left and right boundaries. Multiple examples can be provided by adding more regions.

Examples can be removed by right-clicking on a region.

In addition to post-demonstration markup, Exemplar also supports real-time annotation

through a foot switch (chosen because it leaves the hands free for holding sensors). Using the

switch, designers can mark regions at the same time they are working with sensors. Pressing

the foot switch starts an example region; the region grows while the switch remains pressed,

and concludes when the pedal is released. While this technique requires some amount of

hand-foot coordination, it enables true real-time demonstration.

4.2.3.4 Recognition and Generalization

Recognition works as follows: interactively, as new data arrives for a given sensor, Exemplar

analyzes if the data matches the set of given examples. When the system finds a match with a

portion of the input signal, that portion is highlighted in the central canvas in a fainter shade

of the color used to draw examples (Figure 4.15C). This region grows for the duration of the

match, terminating when the signal diverges from the examples.

Exemplar provides two types of matching calculations — thresholds and patterns —

selectable as modes for each event (Figure 4.15D). With thresholding, the minimum and

maximum values of the example regions are calculated. The calculation is applied to filtered

signals, e.g., it is possible to look for maxima in the smoothed derivative of the input.

104

Incoming data matches if its filtered value falls in between the extrema. Pattern matching

compares incoming data against the entire example sequence and calculates a distance metric

(to what extent incoming data resembles the example). Input matches when the distance

metric is closer than a user-specified value.

Matching parameters can be graphically adjusted through direct manipulation. For

threshold events, min and max values are shown as horizontal lines in the central canvas.

These lines can be dragged with the mouse to change the threshold values (see Figure 2G).

Parameters can be adjusted interactively: matched regions are automatically recalculated and

repainted whenever parameters change. Thus, Exemplar always shows how the signal would

have been classified. This affords rapid exploration of how changes affect the overall

performance of the matching algorithm.

Sensor noise can lead to undesirable oscillation between matching and non-matching

states. Exemplar provides three mechanisms for addressing this problem. First, a smoothing

filter can be applied to the signal. Second, the designer can apply hysteresis, or double

thresholding. In double thresholding, a boundary is represented by two values which must

both be traversed for a state change. Dragging the hysteresis field of a graphical threshold

manipulator (indicated by ―H‖ in Figure 4.15G) splits a threshold into two boundary lines.

The difference between boundary values is determined by the drag distance. Third, designers

can drag a timeout bar from the right edge of the central canvas to indicate the minimum

duration for a matching or non-matching state to be stable before an event is fired.

For pattern matching, Exemplar introduces a direct manipulation technique that offers a

visual thresholding solution to the problem of parameterizing the matching algorithm (Figure

Figure 4.17: Exemplar shows output of the pattern matching

algorithm on top of the sensor signal (in orange). When the

graph falls below the threshold line, a match event is fired.

105

4.17). Exemplar overlays a graph plotting distance between the incoming data and the

previously given example on the central signal canvas. The lower the distance, the better the

match. Designers can then adjust a threshold line indicating the maximum distance for a

positive match. When the distance graph falls below the threshold line, an event is fired.

With this technique, the designer‘s authoring experience is consistent whether applying

thresholds or pattern matching. In both cases, dragging horizontal threshold bars adjusts the

specificity of the matching criteria.

4.2.3.5 Event Output

Exemplar supports the transformation from sensor-centric input into application-centric

events. Exemplar generates two kinds of output events: continuous data streams that

correspond to filtered input signals; and discrete events that are fired whenever a

thresholding or pattern matching region is found. With these events in hand, the designer

then needs to author some output, e.g., she needs to specify the application‘s response to the

force sensor push. To integrate Exemplar with other design tools, events and data streams can

be converted into operating system input events such as key clicks or mouse movements.

Injecting OS events affords rapid control over third party applications (cf. [127]). However,

injection is relatively brittle because it does not express association semantics (e.g., that the

key ‗P‘ pauses playback in a video application). For tighter integration with application logic,

Exemplar can also be linked to d.tools. Exemplar events are then used to trigger transitions in

d.tools‘ interaction models.

4.2.3.6 Many Sensors, Many Events

Exemplar scales to more complex applications by providing mechanisms to author multiple

events for a single sensor; to run multiple independent events for different sensors

simultaneously; and to author events that combine multiple sensors‘ data to create a single

event.

To the right of the central canvas, Exemplar shows a list of event definitions for the

currently active sensor(s) (Figure 4.15E). Designers can add new events and remove

unwanted events in this view. Each event is given a unique color. A single event from this list

is active for editing at a time, and regions drawn by the designer in the central canvas always

apply to that active event.

The authored events for all sensors are always evaluated, and corresponding output is

fired, regardless of which sensor is in focus in the central canvas — this allows designers to

106

author multiple interactions simultaneously. To keep this additional state visible, a tree

widget shows authored events for all sensors along with their example regions in the lower

right corner of the UI (Figure 4.15F).

Finally, Exemplar enables combining sensor data in Boolean AND fashion (e.g., ‗scroll the

map only if the accelerometer is tilted to the left and the center button is pressed‘). When

designers highlight multiple sensor thumbnails, their signals are shown stacked in the central

canvas. Examples are now analyzed across all shown sensor signals and events are only

generated when all involved sensors match their examples. Boolean OR between events is

supported implicitly by creating multiple events. Together, AND/OR combinations enable

flexibility in defining events. They reduce, but do not replace the need to author interaction

logic separately.

4.2.3.7 Demonstrate-Edit-Review

The demonstrate-edit-review cycle embodied in Exemplar is an application of the design-test-

think paradigm for tools introduced in prior work [109,148]. This paradigm suggests that

integrating support for evaluation and analysis into a design tool enables designers to gain

more insight about their project, faster. Exemplar is the first system to apply design-test-

think to the domain of sensor data analysis. More importantly, Exemplar radically shortens

the iteration times by an order of magnitude (from hours to minutes) by making

demonstration, edit, and review actions the fundamental authoring operations in the user

interface.

4.2.4 IMPLEMENTATION & ARCHITECTURE

Exemplar was written using the Java 5.0 SDK as a plug-in for the Eclipse IDE. Integration

with Eclipse offers two important benefits: first, the ability to combine Exemplar with the

d.tools prototyping tool to add visual authoring of interaction logic; second, extensibility for

experts through an API that can be edited using Eclipse‘s Java tool chain. The graphical

interface was implemented with the Eclipse Foundation‘s SWT toolkit [25].

4.2.4.1 Signal Input, Output, and Display

Consistent with the d.tools architecture, our hardware communicates with Exemplar using

OpenSoundControl (OSC) [256]. This enables Exemplar to connect to any sensor hardware

that supports OSC. At the present time, three hardware interfaces boards are supported: the

d.tools I/O board, and the Wiring [45] and Arduino [185] boards with OSC firmware. OSC

107

messages are also used to send events to other applications, e.g., d.tools, Max/MSP, or Flash

(with the help of a relay program). Translation of Exemplar events into system key presses

and mouse movements and clicks is realized through the Java Robots package.

Exemplar visualizes up to eight inputs. This number is not an architectural limit; it was

chosen based on availability of analog-to-digital ports on common hardware interfaces.

Sensors are sampled at 50 Hz with 10-bit resolution and screen graphics are updated at 15-20

Hz. These sampling and display rates have been sufficient for human motion sensing and

interactive operation. However, we note that other forms of input, e.g., microphones, require

higher sampling rates (8-40 kHz). Support for such devices is not yet included in the current

library.

4.2.4.2 Pattern Recognition

We implemented a Dynamic Time Warping (DTW) algorithm to match demonstrated

complex patterns with incoming sensor data. DTW was first used as a spoken word

recognition algorithm [218], and has recently been used in HCI for gesture recognition from

sensor data [186]. DTW compares two time-series data sets and computes a metric of the

distortion distance required to fit one to the other. It is this distance metric that we visualize

and threshold against in pattern mode. DTW was chosen because, contrary to many machine

learning techniques, only one training example is required. The DTW technique used in this

work is sufficiently effective to enable the interaction techniques we have introduced.

However, we point out that — like related work utilizing machine learning in UI tools [70,75]

— we do not claim optimality of this algorithm in particular.

More broadly, this research — and that of related projects — suggests that significant

user experience gains can be realized by integrating machine learning and pattern recognition

with direct manipulation. From a developer‘s perspective, taking steps in this direction may

be less daunting than it first appears. For example, Exemplar‘s DTW technique comprises

only a small fraction of code size and development time. We have found that the primary

challenge for HCI researchers is the design of appropriate interfaces for working with these

techniques, so that users have sufficient control over their behavior without being

overwhelmed by a large number of machine-centric ‗knobs.‘

4.2.4.3 Extensibility

While Exemplar‘s built-in filters are sufficient for a large number of applications, developers

also have the option of writing their own filters, leveraging Eclipse‘s auto-compilation feature

108

for real-time integration. Developers derive from an abstract filter base class in their code and

override functions for processing data. Users then specify a directory where Exemplar should

search for compiled filter class files. Exemplar periodically scans that directory and adds

successfully loaded extensions to the filter stack UI panel where they can be activated,

deactivated and reordered like built-in filters. This architecture allows engineers on design

teams to add to the filter arsenal and for users to download filters off the web. Exemplar‘s

filter architecture was inspired by audio processing architectures such as Steinberg‘s VST

[26], which defines a mechanism how plug-ins receive data from a host, process that stream,

and return results. VST has dramatically expanded the utility of audio-editing programs by

enabling third parties to extend the library of processing algorithms.

4.2.5 EVALUATION

Our evaluation followed a three-pronged approach. First, we applied the Cognitive

Dimensions of Notation framework to Exemplar to evaluate the design tradeoffs of Exemplar

as a visual authoring environment. Second, we conducted a first-use study in our lab to

determine threshold and utility for novices, as well as to find usability problems. Third, we

used Exemplar in public demonstrations and interactive installations to measure real-world

performance with a larger group of participants.

4.2.5.1 Cognitive Dimensions Usability Inspection

The Cognitive Dimension of Notation (CDN) framework offers a high-level inspection

method to evaluate the usability of information artifacts [89,90]. In CDN, artifacts are

analyzed as a combination of a notation they offer and an environment that allows certain

manipulations of the notation. CDN is particularly suitable for analysis of visual programming

languages. We conducted a CDN evaluation of Exemplar following Blackwell and Green‘s

Cognitive Dimensions Questionnaire [47] to allow the reader to revisit Exemplar according to

categories independently identified as relevant, and to facilitate comparison with future

research systems. This analysis begins with an estimate of how time is spent within the

authoring environment, and then proceeds to evaluate the software against the framework‘s

cognitive dimensions.

TIME SPENT

Exemplar‘s main notation is a visual representation of sensor data with user-generated mark-

up. Lab use of Exemplar led us estimate that time is spend as follows:

109

30% Searching for information within the notation

(browsing the signal, visually analyzing the signal)

10% Translating amounts of information into the system (demonstration)

20% Adding bits of information to an existing description

(creating and editing mark up, filters)

10% Reorganizing and restructuring descriptions

(changing analysis types, redefining events)

30% Playing around with new ideas in notation without being sure what will result

(exploration)

This overview highlights the importance of search, and the function of Exemplar as an

exploratory tool.

DIMENSIONS OF THE MAIN NOTATION

We present a discussion of the most relevant CDN dimensions here.

VISIBILITY AND JUXTAPOSABILITY (ABILITY TO VIEW COMPONENTS EASILY):

All current sensor inputs are always visible simultaneously as thumbnail views, enabling

visual comparison of input data. Viewing multiple signals in close-up is also possible;

however, since such a view is exclusively associated with ‗AND‘ events combining the shown

signals, it is not possible to view independent events at the same time.

VISCOSITY (EASE OR DIFFICULTY OF EDITING PREVIOUS WORK):

 Event definitions and filter settings in Exemplar are straightforward to edit through direct

manipulation. The hardest change to make is improving the pattern recognition if it does not

work as expected. Thresholding matching error only allows users to adjust a post-match

metric as the internals (the ‗how‘ of the algorithm) are hidden.

DIFFUSENESS (SUCCINCTNESS OF LANGUAGE):

Exemplar‘s notation is brief, in that users only highlight relevant parts of a signal and define a

small number of filter parameters through graphical interaction. The length of event

descriptions is dependent on the Boolean complexity of the event expressed (how many

ORs/ANDs of signal operations there are).

HARD MENTAL OPERATIONS:

Most mental effort is required to keep track of events that are defined and active, but not

visible in the central canvas. To mitigate against this problem we introduced the overview list

of all defined interactions (Figure 4.15F) which minimizes cost to switch between event

110

views. One important design goal was to make results of operations visible immediately in

Exemplar.

ERROR-PRONENESS (SYNTAX PROVOKES SLIPS):

One slip occurred repeatedly in our use of Exemplar: resizing example regions by dragging

their boundaries. This was problematic because no visual feedback was given on what the

valid screen area was to initiate resizing. Lack of feedback resulted in duplicate regions being

drawn, with an accompanying undesired recalculation of thresholds or patterns. Improved

mouse manipulators on regions can alleviate this problem.

CLOSENESS OF MAPPING:

The sensor signals are the primitives users are operating on. This direct presentation of the

signal facilitates consistency between the user‘s mental model and the system‘s internal

representation.

ROLE-EXPRESSIVENESS (PURPOSE OF A COMPONENT IS READILY INFERRED):

Problems with role-expressiveness often arise when compatibility with legacy systems is

required. Since Exemplar was designed from scratch for the express purpose of viewing,

manipulating and marking up signals, this is not a problem. While the result of applying

operations is always visible, the implementation ―meaning‖ of filters and pattern recognition

is hidden.

SECONDARY NOTATIONS:

Currently, Exemplar permits users to label events, but not filter settings or regions of the

signal. If deemed important, this is an area for future work.

PROGRESSIVE EVALUATION:

Real-time visual feedback enables evaluation of the state of an interaction design at any point.

Furthermore, Exemplar sessions can be saved and retrieved through serialization to disk.

In summary, Exemplar performs well with respect to visibility, closeness of mapping,

and progressive evaluation. Many of the identified challenges stem from the difficulties of

displaying multiple sensor visualizations simultaneously. These can be addressed through

interface improvements — they are not inherent to the approach.

111

4.2.5.2 First-Use Study

We conducted a controlled study of Exemplar in our laboratory to assess the ease of use and

felicity of our tool for design prototyping. The study group comprised twelve participants.

Ten were graduate students or alumni of our university; two were undergraduates. While all

participants had some prior HCI design experience, they came from a variety of educational

backgrounds: four from Computer Science/HCI, four from other Engineering fields, two from

Education, and two from the Humanities. Participants‘ ages ranged from 19 to 31; five were

male, seven female. Two female participants served as pilot testers. Eight participants had had

some prior exposure to sensor programming, but none reported to be experts (Figure 4.19).

STUDY PROTOCOL

Participants were seated at a dual-screen workstation with a d.tools hardware interface. The

Exemplar software was shown on one screen, a help document on sensors was shown on the

other. Participants were asked to author interactions that controlled graphics on a large

projection display (Figure 4.18). We chose this large display to encourage participants to

think beyond the desk(top) in their designs. We chose graphical instead of physical output

since our study focused on authoring responses to sensor input only, not on actuation.

Individual study sessions lasted two hours. Sessions started with a demonstration of

Exemplar. We also introduced the set of available sensors, which comprised buttons,

Figure 4.18: Exemplar study setup: participants were seated

at a dual monitor workstation in front of a large wall display.

Figure 4.19: Self-reported prior experience of Exemplar study

participants.

112

switches, capacitive touch sensors, light sensors, infrared distance rangers, resistive position

sensors, force sensitive resistors (FSRs), load cells, bend sensors, 2D joysticks and 3D

accelerometers. Participants were given three design tasks. For each task, we provided a

mapping of triggers available in Exemplar to output behaviors in the instructions (e.g.,

sending an event called ―hello‖ activated the display of the hello graphic in the first task).

The first task was a simple ―Hello World‖ application. Subjects were asked to display a

hello graphic (by issuing the ―hello‖ event) when a FSR was pressed (through thresholding)

while independently showing a world graphic when a second FSR was pressed three times in

a row (through pattern recognition).

The second task required participants to augment a provided bicycle helmet with

automatic blinkers such that tilting the helmet left or right causes the associated blinkers to

signal. This task was inspired by Selker et al.‘s Smart Helmet [225]. While blinking output

was simulated on a ―mirror‖ on the projection display, participants had to attach sensors to

the real helmet.

Our last task was an open-ended design exercise to author new motion-based controls

for at least one of two computer games. The first game was version of Lunar Lander in which

the player has to keep a spaceship aloft, collect points and safely land using three discrete

events to fire thrusters (up, left, and right). The second game was a shooting game with

continuous x/y control used to aim and a discrete trigger to shoot moving targets.

STUDY RESULTS

In our post-test survey, participants ranked Exemplar highly for decreasing the time required

to build prototypes compared to their prior practice (mean=4.8, median=5 on a 5-point Likert

scale, σ=0.42); for facilitating rapid modification (mean=4.7, median=5, σ=0.48); for enabling

them to experiment more (mean=4.7, median=5, σ=0.48); and for helping them understand user

experience (mean=4.3, median=4; σ=0.48). Responses were less conclusive on how use of

Exemplar would affect the number of prototypes built, and whether it helped focus or

distracted from design details (σ > 1.0 in each case). Detailed results are shown in Figure 4.20.

113

Figure 4.20: Exemplar post-experiment questionnaire results.

Error bars indicate ½ standard deviation in each direction.

Figure 4.21: Interaction designs from the Exemplar user

study. A: turning on blinkers by detecting head tilt with bend

sensors; B: accelerometer used as continuous 2D head

mouse; C: aiming and shooting with accelerometer and bend

sensor; D: navigation through full body movement; E: bi-pedal

navigation through force sensitive resistors; F: navigation by

hitting the walls of a booth.

114

SUCCESSES

All participants successfully completed the two first two tasks and built at least one game

controller. The game controller designs spanned a wide range of solutions (Figure 4.21). Once

familiar with the basic authoring techniques, many participants spent the majority of their

time sketching and brainstorming design solutions, and testing and refining their design. This

rapid iteration cycle allowed participants to try out up to four different control schemes for a

game (Figure 4.22). We see this as a success of enabling epistemic activity: participants spent

their time design thinking rather than implementation tinkering.

Exemplar was used for exploration: given an unfamiliar sensor, participants were able to

figure out how to employ it for their purposes. For example, real-time feedback enabled

participants to find out which axes of a multi-axis accelerometer were pertinent for their

design. Participants also tried multiple sensors for a given interaction idea to explore the fit

between design intent and available technologies.

Interestingly, performance of beginners and experts under Exemplar was comparable in

terms of task completion time and breadth of ideation. Two possible explanations for this

situation are that either Exemplar was successful in lowering the threshold to entry for the

types of scenarios tested; or that it encumbered experts from expressing their knowledge. The

Figure 4.22: Example of one study participant’s exploration:

the participant created two different navigation schemes and

two iterations on a trigger control; he tested his design on a

target game three times within 16 minutes.

115

absence of complaints by experts in the post-test surveys provides some support for the first

hypothesis.

SHORTCOMINGS DISCOVERED

Participants identified two key areas for improvement. One recurring theme in our feedback

was the need for visualization of Exemplar‘s hidden state. At the time of the study,

participants could only see events authored for the sensor in focus. While other events were

still active, there was no comprehensive way of listing them. Also, highlighted regions

corresponding to training examples were hard to retrieve after more data was collected, as the

regions were pushed farther into the history of the signal. To address these difficulties,

Exemplar now displays a full list of active events, along with the corresponding example

regions. Selecting those regions jumps to the time of their definition in the central canvas.

Expert users expressed a need for finer control over hysteresis parameters for

thresholding and a visualization of time and value units on the axes of the signal display. In

response to these requests, we added direct manipulation of hysteresis and timeout

parameters to threshold events.

The importance of displaying quantitative data in addition to visualization to aid the

designer‘s mental model of events deserves further study. Participants also requested ways to

provide negative examples, techniques for displaying multiple large sensor visualizations

simultaneously, and finer control over the timing for pattern matching (both in terms of

latency and duration).

4.2.5.3 Using Exemplar to Create Game Controllers

To gain real-world experience with a larger number of users we exhibited Exemplar at the

2007 San Mateo Maker Faire, and created a motion-controlled game for the Interactivity

exhibit at the 2007 CHI conference (Figure 4.23).

The Maker Faire is a large annual gathering of amateurs interested in electronics, crafts

and do-it-yourself projects. We exhibited Exemplar under the theme ―Build your own game

controller.‖ We supplied the set of sensors and games used in the Exemplar lab study, as well

as a collection of household items such as garden gloves, staplers, and frying pans to attach

sensors to. Interested visitors were invited to come up with their own game control scheme

and implement it in Exemplar with the help of one of the researchers. Several hundred visitors

took part over the course of two days. Preparing for this installation sensitized us to the

limitations of the Java Robot event injection technique to control closed-source 3rd party

116

applications: because generated keyboard and mouse events cannot be targeted to a specific

application, it is easy for novices to inadvertently direct keyboard and mouse input back into

Exemplar itself, which is certainly not intended. A workable but expensive solution is to use

two computers: one to run Exemplar, and another to run the game. The game computer then

also requires a helper application that receives socket messages from Exemplar and translates

them into system keyboard and mouse events.

For the CHI conference exhibition, we used Exemplar as the back end for a wireless

gaming system [261]. The game, based on Zhang‘s Control Freaks concept [260], featured a

portable, wireless 3D accelerometer mounted to a clamp (disguised as a plush cartoon

character) that could be attached to clothing or other objects to turn those objects into game

controllers (Figure 4.23, right). For example, people could attach the clamp to their shoes to

detect running and jumping, or to a chair to detect swiveling the chair left and right. Using

Exemplar for this installation sensitized us to the limits of pattern recognition for fast-paced

game play — pattern recognition incurs a compulsory latency cost a pattern can only be

detected after it has happened. Thresholds can detect the onset of an action but may require

additional application logic to suppress spurious matches beyond timeouts and hysteresis.

4.2.6 LIMITATIONS & EXTENSIONS

Exemplar currently focuses on recognizing discrete actions in low-frequency continuous

sensor signals. This assumption limits the applicability of Exemplar in the following ways.

4.2.6.1 Lack of Support for Other Time Series Data

Much human motion can be adequately sampled at 50-100Hz (Winter for example reports

Figure 4.23: Exemplar was used for public gaming installations at the San Mateo Maker

Faire and at CHI 2007. For the CHI installation, wireless accelerometers were disguised as

plush characters; the characters could be attached to clothing or objects in the

environment. Characters and game concept were developed by Haiyan Zhang.

117

that many gait analyses can be performed at 24Hz [252:Ch. 2]). However, there are

applications and types of sensors for which this rate is insufficient. Audio input, for example

for recognizing the scratching of fingernails on a surface [106], is commonly sampled at rates

of 10-96kHz. Such higher frequency signals need different real-time visualization algorithms

(which we could borrow from audio editing). We have not yet investigated to what extent

dynamic time warping can be run in realtime on many parallel audio signals, or if it would

offer comparative recognition performance.

4.2.6.2 Matching Performance Degrades for Multi-Dimensional Data

The employed dynamic time warping algorithm was created to compare one-dimensional

time series data. The sequence alignment algorithm does not extend in a straightforward

manner to matching in multiple dimensions. Exemplar uses the following generalization to

make matching in multiple dimensions possible: An example for an event spanning multiple

input dimensions for a given time interval is defined as individual examples ex1, ex2, …, exn in

each input dimension. For new input data in1, in2, …, inn, a set of n DTW algorithms is then run

in parallel, one for each dimension. Each outputs a binary match/no-match decision, based on

individual thresholds on matching distance. Only if all dimensions independently report a

match is the multi-dimensional event fired:

𝑑𝑡𝑤_𝑚𝑎𝑡𝑐ℎ 𝑒𝑥1 ,… , 𝑒𝑥𝑛 , (𝑖𝑛1 ,… , 𝑖𝑛𝑛) = 𝑑𝑡𝑤_𝑚𝑎𝑡𝑐ℎ(𝑒𝑥𝑘 , 𝑖𝑛𝑘)

𝑛

𝑘=1

This approach ignores the fact that the data dimensions are interdependent and may distort

different dimensions differently.

4.2.6.3 Lack of Visualization Support for Multi-Dimensional Data

Exemplar relies on the designer to make decisions about recognition algorithms and

parameters based on a visualization of live sensor data. It is therefore important that the

designer can interpret the visualization and make sense of it. While we found straightforward

timeline visualization to be sufficient for one-dimensional sensors, this is not true for more

complex sensors that return multi-dimensional data. For example, a resistive touch screen

will return an (x,y) position; a three-dimensional accelerometer will return (x,y,z) acceleration

data. The inherent structure of such signal spaces cannot currently be shown in Exemplar.

Future work should investigate to what extent different visualizations can be used to give a

118

designer greater leverage. One challenge will be how to visualize time in higher-dimensional

time-series data.

As an example, take the (x,y) position task: instead of two independent timelines, it may

be advantageous to enable the designer to see a 2D space and to define thresholds as regions

within that space (Figure 4.24). The 2D space could be shown as stacked, rotated slices

through which the signal then describes a 3D trajectory. Events would be fired whenever the

signal moves within the threshold region. A recent survey of possible visualization techniques

that can inform future development can be found in [33].

4.2.6.4 Lack of Support for Parameter Estimation

Exemplar‘s recognizers only make binary decisions, e.g., they recognize that a tennis swing

has occurred from accelerometer data. They do not yet offer parameter estimation, e.g.,

detecting how fast the racket was swung. A new demonstration technique would be needed

that elicits examples for different parameter values from a designer. In addition, new

algorithms would be needed that, given multiple examples with parameter values and new

input data, can output parameter estimates. Note that it is already possible to author

categorical recognizers by defining multiple events on a given signal dimension — the

recognizers are then run in parallel and the single best match wins. But generalizing to the

continuous case is not possible.

4.2.6.5 Difficult to Interpret Sensor Data History

Whenever the parameters of an event recognizer are changed by the designer, e.g., by moving

a threshold line in the user interface, Exemplar recomputes how past data would have been

classified given the new definition and updates its event visualization accordingly. However,

it is hard to match the highlighted sensor signal traces back to the specific actions that

produced these traces. A promising way to give the designer a better handle on understanding

Figure 4.24: A possible visualization for 2D thresholding in

Exemplar.

119

how actions affect past demonstrations would be to also record live video of the

demonstration and replay it inside the authoring environment as the designer reviews the

history of collected data. The technique resembles interaction with the d.tools video editor

(see Section 6.1), but with a much more focused role: instead of reviewing the usability of an

entire prototype, the video is used to review examples used to define interaction events that

are used within that prototype.

120

CHAPTER 5 CREATING ALTERNATIVE DESIGN SOLUTIONS

5.1 ALTERNATIVES IN JUXTAPOSE

Design frequently alternates between divergent stages, where multiple different options are

explored, and convergent stages, where ideas are selected and refined [55,66,135] (Figure 5.1).

When designers create multiple distinct prototypes prior to committing to a final direction,

several important benefits arise. First, alternatives provide designers with a more complete

understanding of a design space [83]. Second, developing different ―what if‖ scenarios enables

more effective, efficient decision making within organizations [222]. Third, discussing

multiple prototypes helps project stakeholders better communicate their requirements [157].

Finally, presenting multiple alternatives in user studies facilitates participants‘ ability to

understand design tradeoffs and offer critical feedback [243].

Placing ―enlightened trial and error‖ at the core of design raises the research question,

how might authoring environments support designers in creating and managing design options?

Traditionally, design tools have focused on creating single artifacts [240]. Research in

subjunctive interfaces [177] pioneered techniques for parallel exploration of multiple

scenarios during information exploration. Set-based interaction techniques have also been

introduced for graphic design [241,242] and 3D rendering [181]. Providing alternative-aware

tools for interaction design adds the challenge of working with two distinct representations:

Figure 5.1: Design alternates between divergent and convergent stages. Diagram due to

Buxton [55], redrawn by the author.

121

source code, where changes are authored; and the running program, where changes are

observed.

This chapter suggests that interaction design tools can successfully scaffold exploration

by managing alternatives across source and execution environments, and introduces

Juxtapose, an authoring tool manifesting this idea (Figure 5.2). Juxtapose makes two

fundamental contributions to design tool research.

First, it introduces a programming environment in which interaction designers create

and run multiple program alternatives in parallel (Figure 5.3 left). Juxtapose extends linked

editing [244], a technique to selectively modify source duplicates simultaneously, by turning

source alternatives into a set of programs that are executed in parallel. The Juxtapose runtime

environment enables interacting with these parallel alternatives.

Figure 5.2: Interaction designers explore options in Juxtapose through a source code

editor that supports alternative code documents (left), a runtime interface that offers

parallel execution and tuning of application parameters (center), and an external

controller for spatially multiplexed input (right).

Figure 5.3: In the Juxtapose source editor (left), users work with code alternatives in

tabs. Users control whether modifications affect all alternatives or just the presently active

alternative through linked editing. In the runtime interface (right), alternatives are

executed in parallel. Designers tune application parameters with automatically generated

control widgets.

122

Second, Juxtapose introduces ―tuning‖ of interface parameters at runtime by

automatically generating a control interface for application parameters through source code

analysis and language reflection (Figure 5.3 right). We hypothesize that runtime controls

encourage real-time improvisation and exploration of the application‘s parameter space.

Designers can save parameter settings in presets that Juxtapose maintains across alternatives

and executions. To facilitate simultaneous control over multiple tuning parameters, a

physical, spatially-multiplexed control surface is supported.

This chapter first introduces findings from formative interviews that motivate our work.

We then describe the key interaction techniques for creating, executing, and modifying

alternatives with Juxtapose. We describe implementations for desktop, mobile, and tangible

applications. Next, we present evaluation results and conclude by discussing tradeoffs and

limitations of our approach.

5.2 FORMATIVE INTERVIEWS

To augment our intuitions from our own teaching and practice, we conducted three

interviews with interaction designers. Here, we briefly summarize the insights gained.

First, arriving at a satisfying user experience requires simultaneous adjustment of multiple

interrelated parameters. For example, a museum installation developer shared that getting an

interactive simulation to ―feel right‖ required time-intensive experimentation with parameter

settings. Similarly, an instructor for a course on computer-vision input in HCI reported that

students found adjusting recognition algorithm parameters to be a lengthy trial-and-error

process.

Second, creating alternatives of program logic is a complementary practice to parameter

tuning. In one participant‘s code, we saw multiple alternative code strategies living side-by-

side inside a single function (Figure 5.4). To try out these different approaches in succession,

this interviewee would change which alternative was uncommented (i.e., active), recompile,

and execute.

Lastly, all interviewees reported writing custom control interfaces for internal program

variables when they were unsure how to find good values. These tuning interfaces are not

actually part of the functionality of the application — they function exclusively as

exploratory development tools.

Across the three concerns, interviewees resorted to ad-hoc practices that allowed for

some degree of exploration despite a lack of tool support. The following scenario illustrates

123

how Juxtapose can improve such exploration by explicitly addressing parameter variation,

alternative creation and control interface generation.

5.3 EXPLORING OPTIONS WITH JUXTAPOSE

Tina is designing the graphical interface for a new handheld GPS device that both pedestrians

and bicyclists will use. She imagines pedestrians will pan the map by tilting the device, and

use buttons for zooming. Bicyclists mount the device in a fixed position on their handlebars,

so they will need buttons to pan and zoom.

To try out navigation options, Tina loads her existing map prototype and clicks the Add

Alternative button (Figure 5.5A); this duplicates her code in a new tab. With the Linked Edit

box checked, she adds a function to respond to button input. This code change propagates to

both alternatives. She clears the Linked Edit checkbox so that she can write distinct input

handlers in the function body of each alternative (Figure 5.5B). In unlinked mode, edits only

apply to the active tab. A colored background highlights code that differs between

alternatives (Figure 5.5C).

Tina executes her designs. Juxtapose‘s runtime interface shows the application output of

each code alternative side-by-side (Figure 5.5D). One alternative is active, indicated by a red

outline. Global Number and Boolean-typed variables of this alternative are displayed in a

variable panel to the right of the running applications. Tina expands the entries for layer

visibility, panning speed and zoom step size to reveal tuning widgets that allow her to change

values of each variable interactively (Figure 5.5E). Tina uses the tuning widgets to arrive at

fluid pan and zoom animations.

Figure 5.4: Example code from our inquiry: two behaviors co-exist in the same function

body. The participant would switch between alternatives by changing which lines were

commented.

124

Tina also hypothesizes that bicyclists will value velocity-contingent visual and

typographic levels of detail. To adjust the text sizes of multiple road types simultaneously, she

moves her non-dominant hand to an external physical control board (Figure 5.5F). She places

one finger on each slider, and quickly moves multiple sliders simultaneously to visually

understand the gestalt design tradeoffs, such as legibility and clutter. To focus in on the

details of one alternative, she toggles between viewing alternatives side-by-side, and viewing

just one alternative (Figure 5.5G).

Tina finds several promising parameter combinations for showing levels of detail and

uses the snapshot panel to save them (Figure 5.5H). Back in the code editor, she introduces a

speed variable to simulate sensed traveling velocity, and adds code to load different snapshots

from the Juxtapose environment when the speed variable changes. To constrain tuning to

useful values, she adds range annotation comments, e.g., indicating that speed should vary

between 1 and 30 mph (Figure 5.5I). She runs her design again and selects speed for tuning.

Moving the associated slider now switches between the snapshot values she previously saved.

She checks the Linked Tuning box to propagate changes in simulated speed to all alternatives

in parallel (Figure 5.5J).

5.4 ARCHITECTURE FOR ALTERNATIVE DESIGN

This section outlines fundamental requirements for parallel editing, execution, and tuning,

and describes how the Juxtapose implementation supports these techniques.

Figure 5.5: UI vignettes for the Juxtapose Scenario.

125

5.4.1 PARALLEL EDITING

To make working with multiple code alternatives feasible, an authoring environment must

keep track of code differences across alternatives, make this structure visually apparent to the

user, and offer efficient interaction techniques for manipulating content across alternatives.

To support these three requirements, Juxtapose extends Toomim et al.‘s linked editing

technique [244]: alternatives are accessible through document tabs; source differences

between tabs are highlighted with a shaded background; and edits can be either local to one

alternative or global to all alternatives. Toomim‘s work focused on sharing code snippets

across different locations within a project. Juxtapose instead targets creation of sets of

applications based on a core of shared code. To enable interactive editing across multiple

documents, Juxtapose replaces Toomim‘s algorithm with incremental correspondence

tracking during editing and slower content differencing during compilation. The efficiency

gains thus realized enable Juxtapose to run comparisons after each key press. Average times

for single character replacement operations were under 1 ms with up to 5 alternatives on a 2

GHz PC running Windows Vista.

Juxtapose tracks correspondences between alternatives by partitioning all source

alternatives into corresponding blocks. In linked editing, the block structure stays fixed and

block content is modified in all alternatives. In unlinked editing, code blocks are subdivided

and alternatives store different content in their sub-blocks (Figure 5.6). When inserting text

while unlinked, Juxtapose‘s data structure splits the code into pre- and post-insertion blocks

and creates a new code block for the inserted text. Juxtapose splits all alternatives, inserting

an empty element into the unmodified alternatives. Deletions also split code blocks. Here, the

active document represents the deletion with an empty element; the corresponding elements

in the other alternatives contain the deleted text. Code modifications are expressed as

deletions followed by insertions. Blocks are never merged during editing.

INSERTION DELETION

Figure 5.6: Juxtapose’s implementation of linked editing is

based on maintaining block correspondences between

alternatives across document modifications.

A top of page text box for a figure or table

126

Incremental structure tracking performs differently than content-based matching if a

user types identical code into corresponding locations in two distinct documents: content-

based approaches will mark this as a match; structure-based approaches will not. To obtain

both interactive performance and content matching, Juxtapose optimizes global block

structure with a slower longest common subsequence algorithm at convenient times (i.e.,

when compilation is started).

5.4.2 PARALLEL EXECUTION AND TUNING

Executing a set of related interaction designs raises two principal questions: Should

alternatives be presented in series or in parallel? And should users interact with these

alternatives one-at-a-time or simultaneously? To investigate how different target devices offer

unique opportunities for parallel input and output, we implemented versions of the Juxtapose

environment for three domains: desktop interactions written in ActionScript for Adobe Flash;

mobile phone interactions for Flash Lite; and physical interactions based on the Arduino

microcontroller platform. The three implementations share a common editor but differ in

their runtime environment. We discuss each in turn.

DESKTOP

Desktop PCs offer sufficient screen resolution to run alternative interactions side-by-side,

analogous to application windows. In our implementation, alternatives are authored in

ActionScript 2, from which Juxtapose generates a set of Flash movie files using the MTASC

compiler [27]. The generated files are then embedded into the Juxtapose Java runtime

interface using a Windows-native wrapper library [28]. For consistency with the temporally

multiplexed input of windowed operating systems, only one active alternative receives

keyboard and mouse input events by default. However, Juxtapose offers the option to

replicate user input across alternatives through event echoing [176]. By using a provided

custom mouse class, mouse events can be intercepted in the active alternative and injected

into all other alternatives, which then show a ghost cursor. This parallelism only operates at

the low level of mouse move and click events, which is useful when both application logic and

visual layout are similar across alternatives. However, in the absence of a model that

translates abstract events in one application into equivalent events in another, users cannot

usefully interact with different application logic simultaneously. While development of an

abstract input model that provides such a mapping is certainly possible, it is unlikely to occur

during prototyping, when the application specification is still largely in flux.

127

To accomplish runtime variable tuning, bi-directional data exchange between the user‘s

application and the tuning interface is required. On startup, the application transmits

variable names, types, and values to Juxtapose (Figure 5.7). The tuning interface in turn sends

value updates for variables to the application whenever its widgets are used. Loading

snapshots defined in the tuning interface from code is initiated by a request from the user

application, followed by a response from Juxtapose. To accomplish this communication, the

user adds a Juxtapose library module to their code. In our implementation, communication

between the Flash application and the hosting Java environment takes place through a

message-passing protocol and synchronous remote procedure call interface built on top of the

Flash Player API.

MOBILE PHONE

For smart phones, the most useful unit of abstraction for parallel execution might not be an

application window on a handset, but rather the entire handset itself. The small form factor

and comparatively lower cost make it attractive to leverage multiple physical devices in

parallel (Figure 5.8). In Juxtapose mobile, developers still compose and compile applications

on a PC. At runtime, the tuning interface resides on the PC, and the alternatives run on

different handsets. A designer can rapidly switch between alternatives by putting one phone

down and picking another one up. To target tuning events to an application running on a

particular phone, Juxtapose offers alternative selection buttons in the runtime interface.

Figure 5.7: Runtime tuning is achieved through bi-directional

communication between a library added to the user’s

application and the Juxtapose runtime user interface.

128

Our Juxtapose mobile prototype generates binaries which run on the Flash Lite 2.0

player on Nokia N93 smart phones. The desktop tuning interface and the smart phone

communicate through network sockets. When designers run an application on the mobile

phone, it opens a persistent TCP socket connection to the Juxtapose runtime interface on the

PC. Our prototype uses Wi-Fi for simplicity. Informally, we found that the phone receives

variable updates at approximately 5 Hz, much slower than on the PC, but still sufficient for

interactive tuning. Response rates are slower because mobile devices trade off increased

battery life for slower network throughput and increased latency. A limitation of the current

Figure 5.8: When using Juxtapose mobile, code alternatives

are executed on different phones in parallel. Variable tuning is

accomplished through wireless communication.

Figure 5.9: Two prototypes built with Juxtapose mobile. Left: A map navigation

application explored use of variable tuning. Right: Two alternatives of a fisheye menu

navigation technique running on two separate phones.

129

Juxtapose mobile implementation is that users must manually upload compiled files to the

phones and launch them within the Flash Lite player. This is due to restrictions of the phone‘s

security architecture. We have explored the utility of Juxtapose mobile with several UI

prototypes, including map navigation and fisheye menus (Figure 5.9). While the latency of

tuning messages made the external MIDI controller less useful in our tests (it generates too

many events which queue up over time), the ability to modify the application running on the

phone while another user is interacting with that phone appeared to be especially useful.

PHYSICAL INTERACTIONS

Many interaction designers work with microcontrollers when developing new physical

interfaces because they offer access to sensors and actuators. The primary difference to both

desktop and mobile development is that novel physical interaction design involves building

custom hardware, which is resource intensive. Consequently, designers are likely to embed

multiple different opportunities for interaction into the same physical prototype.

Juxtapose supports developing for the Arduino [185] platform and language, a

combination popular with interaction designers and artists. Code for all alternatives is cross-

compiled with the AVR-GCC compiler suite. Juxtapose for Arduino uploads and runs only

one code alternative on one attached Arduino board at a time. When the designer switches

between alternatives, Juxtapose transparently replaces the binary running on the

microcontroller through a bootloader (Figure 5.10).

Figure 5.10: For microcontroller applications, Juxtapose

transparently swaps out binary alternatives using a

bootloader. Tuning is accomplished through code wrapping.

130

Real-time tuning of variables requires a mapping from variable names to types and

storage locations, which is not available in the C language that Arduino uses. Juxtapose

constructs this map using a preprocessing step that transforms a user‘s program before

compilation (Figure 5.11). The user‘s source code is parsed to build a table of global variable

names, types, and pointers to their memory locations. The source is then wrapped in

Juxtapose-specific initialization code, into which the variable table is emitted as C code.

When a variable is tuned (Figure 5.12), the embedded wrapper code uses this table to find a

pointer to the correct runtime variable from its name and changes the value of the memory

location. The wrapper code also contains communication functions to exchange information

between microcontroller and PC through a serial port. Some price must be paid for this added

flexibility. The developer has to relinquish control of a hardware serial port, and application

state is lost whenever alternatives are switched. Snapshots provide a way to save and restore

values across such changes.

Figure 5.11: The pre-compilation processing step extracts

variable declarations and emits them back into source code

as a symbol table.

Figure 5.12: Example application demonstrating live tuning of

color parameters of a smart multicolor LED through the

Juxtapose runtime user interface.

131

5.4.3 WRITING TUNABLE CODE

Ideally, programmers should be able to leverage tuning and alternatives in their project

without changing their source. In practice, tuning is invisible unless modified parameter

values have some observable effect on program execution. In other words, the changed

variable has to be read again and some action has to be taken based on its value after it was

modified at runtime. Thus programmers may have to write additional code that is solely

concerned with making their application tunable.

To help programmers express the logic for runtime updates, callback functions provide a

lightweight harness: whenever a variable is tuned at runtime, the application is notified of the

parameter name and its updated value. In ActionScript, this callback facility is already

provided on the language level by the Object.watch() method. The following example calls

a redraw routine whenever the variable tunable is updated by the Juxtapose tuning UI:

01 var tunable = 5; //@RANGE 0..100

02 var counter; //@IGNORE

03 var callback= function(varName,oldVal,newVal){

04 redraw();

05 return newVal;

06 }

07 this.watch(′tunable′,callback);

Beyond callbacks, protocols to communicate information from the source code to the runtime

interface enable designers to initialize the runtime UI programmatically. Programmers can

specify minimum and maximum values for Number variables through comment annotations

(line 1). They can also hide variables for which tuning is not useful, e.g., counters, from the

variable list (line 2). Code annotations have been used in other projects as a source of meta-

information, e.g., for labeling different experimental conditions for user testing [180].

Juxtapose currently uses code comments to capture annotations; this functionality could

become part of the language definition in an alternative-aware programming language.

5.4.3.1 Hardware Support

Three important benefits can be realized by using a dedicated external controller instead of

mouse and keyboard input for parameter control. First, spatially multiplexed input enables

users to modify multiple parameters simultaneously. Second, with mouse control, tuning is

mainly a hand-eye coordination task — with a dedicated control board, it turns into a motor

task that leaves the eyes free to focus on the application being tuned. Third, moving the

tuning UI to a dedicated controller allows for tuning of interactions that require mouse and

132

keyboard input, e.g., adjusting the rate at which mouse wheel movement magnifies a

document.

Our implementation supports a commercially available USB MIDI device [29] with 16

buttons with LED status indicators, 8 rotary encoders (presently not used) and 8 motorized

faders (Figure 5.13). The controller transmits input events as MIDI control change messages

and receives similar control change messages to actuate sliders and toggle LED feedback.

Actuation of the hardware controller is essential for saving and restoring parameter snapshots

— without actuation it is impossible to recall saved parameter values and edit them

incrementally. To facilitate locating a particular variable‘s control, the mixer was augmented

with a small top-mounted projector which displays parameter names next to the appropriate

controls, a technique inspired by Crider et al. [65]. While a projector setup is unwieldy in

practice, controllers with embedded text LCDs that can offer the same functionality are

commercially available.

5.5 USER EXPERIENCES WITH JUXTAPOSE

To evaluate the authoring approach embodied in Juxtapose, we built example prototypes

using the tool and conducted a summary usability study of Juxtapose for desktop

applications. We recruited 18 participants, twelve male, six female. Participants were

undergraduate and graduate students with HCI experience. Their ages ranged from 20 to 32

Figure 5.13: An external controller enables rapid surveying of multidimensional spaces.

Variables names are projected on top of assigned controls to facilitate mapping.

133

years. All but one participant had at least working knowledge of procedural programming

and all had at least some expertise in interaction design.

5.5.1 METHOD

Evaluation sessions lasted approximately 75 minutes. Participants were seated at a

workstation with mouse, keyboard and MIDI controller. After a demonstration of Juxtapose,

participants were given three tasks. The first task was a warm-up exercise to modify a grid

animation reacting to mouse movement, adapted from the book Flash Math Creativity [206].

Participants were asked to make changes that required both code alternatives and tuning.

The second task was a within-subject comparison that asked participants to adjust four

parameters of a recursive tree-drawing routine to match four specific tree shapes (Figure

5.14). The provided code was also adapted from Flash Math. For two trees, this was

accomplished using the full Juxtapose interface. For the other two, participants were given

the same editor without the possibility of creating alternatives or tuning. Order of assignment

between Juxtapose and control conditions was counterbalanced and a random tree order was

generated for each participant.

The third task asked participants to work on the mapping scenario introduced earlier.

They were provided with a working ActionScript program that loaded a map containing 28

different layers of information (e.g., land areas, parks, local streets, local street names,

highways). Participants were given 30 minutes to create two map navigation alternatives.

They were then asked to present their maps to a researcher. Documentation contained

examples for how to programmatically change visibility of layers, color and brightness, text

size and formatting, and mouse interactions. Participants had to modify and add to these

examples to either hardcode design decisions or to set up tunable parameters through

callback functions in the source code.

Figure 5.14: Study participants were given a code example

that generates images of trees. They were asked to then

match the four tree images shown above.

134

5.5.2 RESULTS

In all tasks, all participants properly applied linked and unlinked editing and tuning, with no

apparent confusion. Participants commented positively on the ease of adjusting numerical

parameters through tuning and the reduced iteration time this permitted. One participant

commented that the explicit management of alternative documents improved on their

existing practice of ―half-hearted attempts to name saved [configurations] with memorable

names.‖ Today, designers commonly use layer sets as a technique for composing alternatives

in graphics. A participant commented that Juxtapose brings this pattern to interaction

design.

TUNING ENABLES MORE PARAMETER EXPERIMENTATION, FASTER

In the tree matching task, participants took an average of 258 seconds (σ: 133 s) to complete

the matching in the control condition, and an average of 161 seconds (σ: 82 s) to complete the

task with Juxtapose. This difference was significant (one-tailed, paired Student‘s t-test; p <

Figure 5.15: Study participants were faster in completing the

tree matching task with Juxtapose than without.

Figure 5.16: Study participants performed many more design

parameter changes per minute with Juxtapose than without.

0

100

200

300

400

Tree 1 Tree 2 Tree 3 Tree 4
se

co
n

d
s

Tree Matching Task:
Mean Completion Times by Tree

Control

Juxtapose

0

10

20

30

40

Histogram of Parameter Changes

Juxtapose Tuning
Interface

Edit-Compile-Test
Cycle

T
ri

al
s

(2
 e

ac
h

 p
er

 p
ar

ti
ci

p
an

t)

Changes per Minute

135

0.01). When looking at completion times by tree (Figure 5.15), a large discrepancy for trees

three and four becomes apparent. For these trees, participants quickly narrowed in on the

approximate shape but frequently had trouble minimizing the remaining visual disparity

when they could no longer reason about how to proceed toward the goal. Participants then

often broadened their search in parameter space and diverged from the solution while looking

for the right parameters to adjust. We believe that Juxtapose outperformed the control

condition here because the penalty for an uncertain, diverging move was much smaller — the

result could immediately be observed and corrected.

To quantify the cost of making a change, we investigated how many parameter

combinations participants explored. In the control condition, on average, participants tested

2.60 parameter combinations per minute to arrive at matches (σ: 0.93; we counted each

execution after changing source as one combination). In contrast, using Juxtapose,

participants executed the Flash file only once, and generated parameter changes through the

tuning interface. Here participants explored 64 combinations on average (σ: 80; we counted

each variable change sent to Flash as a tuning event). The external MIDI controller generated

many input events and one might contend that our definition of parameter change over-

estimates the number of perceptually different states explored by users. We note that

participants adopted a wide range of tuning strategies — some exclusively typing in numbers

in the tuning interface, others using multiple sliders simultaneously. This resulted in a wide

spread of parameter changes per minute for Juxtapose (Figure 5.16), but even participants at

the lower end of the histogram explored an order of magnitude more states than participants

in the control condition.

ALTERNATIVES & TUNING PROVIDE VALUE, AT A PRICE

In our mapping task, many participants began by adding instrumentation code to the

provided framework to make map attributes tunable at runtime. While hard-coding design

choices into source code would have been easier from a programming perspective,

participants spent extra effort to make variables tunable so they could experiment at runtime.

Two participants mixed strategies, making some parameters tunable while setting others in

code in different alternatives when they were sure about their desired values. For example,

one participant hard-coded a higher initial magnification factor in the pedestrian map

interface.

Most participants preferred to set the ranges for Number variables in source code, not in

the runtime interface. Only one participant used the runtime interface for this purpose. A

136

possible explanation is that reasoning about ranges has to do with how a variable is used in

the source so participants were more inclined to express ranges there.

SUGGESTIONS FOR IMPROVEMENT

The map task also uncovered a number of usability shortcomings. In multiple instances,

participants closed the runtime window to change a line of code and recompile, discovering

that their runtime parameter settings from the last execution were gone. To address this,

Juxtapose could automatically save the last parameter values in a snapshot when the runtime

window is closed.

Participants also wished for a larger range of variables to access — for the study, only

variables declared in the main application class and variables of the root object of the visual

hierarchy were accessible for tuning. Participants thus had to introduce intermediate

variables to influence other graphical objects. It would be preferable to have a ―tuning mode‖

for direct manipulation of all graphical objects, extending ideas introduced in SUIT [203].

Many participants expressed frustration at the lack of search and undo in the source

editor. Both could clearly be added. Multiple participants also felt that it was overly onerous

to properly write the application callbacks that make a design tunable. This can be addressed

in two ways. Directly modifying object fields can be handled by making all fields tunable, not

just global variables. More complex parameter mappings however will still require callbacks:

producing these callbacks can be supported through a code generation wizard.

5.6 LIMITATIONS & EXTENSIONS

Juxtapose focused on exploring alternatives of user interfaces that were programmatically

defined within a single file of source code. The design choices made during the development

of Juxtapose represent one particular point in a larger space of tools for explorative

programming. In this section, we discuss assumptions made in our current design and

highlight limitations of our implementation. Following Fitzmaurice‘s design space for

graspable interfaces [78], we summarize the most salient design decisions in Figure 5.17. This

design space is not meant to be exhaustive — it covers the decision points encountered

during prototyping and development. Nevertheless, the table suggests additional techniques,

such as automatic generation of alternatives, which may be a fruitful area for future work.

137

5.6.1 WILL DESIGNERS REALLY BENEFIT FROM LINKED SOURCES?

The efficacy of linked editing in Juxtapose rests on the assumption that interaction designers

create multiple alternatives of a common code document, where individual alternatives only

differ in parameter settings and small sections of code. Experimenting with code in this

manner only covers part of the solution space for a given problem. Different solution

approaches may be based on distinct implementations. Alternatives as discussed in this paper

explore options within one particular solution strategy. Are alternative designs related

enough in practice to benefit from linked editing and tuning?

Figure 5.17: A design space for exploring program

alternatives. Choices implemented by Juxtapose are shown

with a shaded background.

138

Beyond evidence from our formative interviews, the book Flash Math Creativity [206]

provides detailed examples of source code experimentation by professionals: 15 Flash

designers share how they create computational designs in 56 projects. Each project starts

from a single idea, e.g., animating geometric grid structures. The designers then show how

they modified the initial source to explore the design space. 12 of 15 designers showed

multiple alternatives for their projects (mean: 10.2 alternatives per project; range: 3 to 23). The

difference between these alternatives is usually small: a change to a line of code to load

different graphics, alterations to parameter values, or substitutions of function calls.

5.6.2 IS TUNING OF NUMBERS AND BOOLEANS SUFFICIENT?

Juxtapose‘s runtime tuning focuses on direct manipulation of Boolean and Number types.

Would designers benefit from more expressive abstractions and additional functionality in

the tuning interface?

An underlying assumption in this work is that developers both produce the application

and tune it. If they desire a more complex mapping, e.g., a logarithmic parameter scale, they

may express this mapping in the source. Locating additional functionality in the source itself

may be more useful since logic expressed in the tuning UI is not available when the

application is run outside Juxtapose. This assessment changes if alternatives and tuning

options are used by a third party, e.g., during participatory design sessions. In this case it

would make sense to imbue the runtime interface with more flexibility to let users express a

more complete set of modifications without editing the program source, e.g., by providing

rich widgets for commonly used complex data types such as colors or coordinates.

5.6.3 ARE CODE ALTERNATIVES ENOUGH?

Perhaps the most important limitation is that Juxtapose does not offer support for managing

multiple alternatives of graphical assets. Interface design is concerned with both look and feel

— graphics and behavior. Many popular user interface authoring tools today follow a hybrid

authoring approach, where graphical appearance is edited through visual direct manipulation,

while behavior is specified in source code (e.g., Flash [1], Director [6]). We believe Juxtapose

is a first step towards an integrated authoring environment that offers management of

alternatives across graphics and code. Future research should investigate to what extent it is

possible to offer a coherent method of exploring alternatives for both, in a single tool. The

most relevant prior work for exploring graphical alternatives is Terry‘s work on embedding

alternatives for graphics manipulations into a single canvas [242], and research on editable

139

graphical histories [153,236]. However, a naive crossproduct of Juxtapose‘s linked editing and

graphical alternative or history techniques is unlikely to work, because it would likely

overburden the user with too many inconsistent methods of making choices. The goal of

future research should be to find a single, ―simple-enough‖ mental model.

5.6.4 ALTERNATIVES FOR COMPLEX CODE BASES

Another open question is how an alternative-aware editor could be extended to handle large

software projects. Juxtapose targeted UI prototypes, for which interaction logic is frequently

authored in a single source file today. If the goal is not the design of a new UI, but the

augmentation of an existing program, designers may have to contend with large existing code

bases. For example, a software engineer at Adobe reported that to try alternatives for a new

feature in a large authoring tool, he would have to check out several thousand files into

independent workspaces, and manage any changes between alternatives manually [94].

As an interaction technique, we have envisioned the use of hierarchical tabs where the

top level identifies the alternative, and a lower level identifies the file within the

alternative.The primary challenge will be to reduce the potential complexity stemming from

dealing with multiple alternatives in the authoring interface. As an implementation strategy,

it would be interesting to consider to what extent virtualization technology can be harnessed

to quickly create independent copies of complex applications and system configurations that

are adequately isolated from each other.

5.6.5 SUPPORT EXPLORATION AT THE LANGUAGE LEVEL

Juxtapose chose to implement support for runtime tuning at the library level — the source

language, ActionScript in the case of Juxtapose, remained unchanged. Juxtapose shares this

approach with prior work like Amulet [190]. Operating as a library has the advantage that

Juxtapose can target a widely used language; it has the drawback that the program has to be

explicitly changed to include library support. More importantly, the library has limited

control over program execution at runtime. For example, when running multiple alternatives

side by side, it is not possible to pause execution of one application as it loses focus — all

applications run in parallel, even if interaction with them is sequential.There are two possible

ways for future research to extend the reach of runtime exploration:

1) augment an existing programming language with additional language constructs

2) develop a new language to provide explicit developer control over alternatives and

variable parameter spaces.

140

Terry‘s Partials project [239: Appendix B] was an exploration of the first option. He

augmented the Java language with the keywoard ―partial‖ which could be used to decorate

variable definitions to gain runtime control over those variable values. It is worthwile to

explore what benefits an entirely new language targeted at exploration could provide.

5.6.6 INTEGRATE WITH TESTING

A final direction worth pursuing in future work is to extend parallel editing and tuning to

support user testing of alternatives. A particularly promising application domain would be

the authoring of user interfaces for web applications, since online deployment could provide a

way to rapidly gather empirical data on user preferences for different alternatives. Large web

sites already routinely test alternatives of new features by running controlled bucket

experiments: a small percentage of site visitors are exposed to a new proposed feature or

layout, and results (time spent on site, purchases made) are compared with the control

condition [16]. An interesting an as-of-yet unexplored research question is to what extent

such comparative testing with remote users is possible during earlier prototyping stages.

5.7 SUPPORTING ALTERNATIVES IN VISUAL PROGRAMS

How might support for alternative behavior transfer from the textual programming domain of

Juxtapose into visual authoring environments such as d.tools? Following our implementation

of Juxtapose, we examined to what extent the advantages of defining and editing multiple

alternatives can be realized within d.tools. We have not yet investigated how to transfer

variable tuning; partially because variables play a less prominent role within d.tools projects.

Because d.tools focuses on user interfaces with custom hardware, parallel execution of

alternatives is less likely to be useful. We therefore focused on expressing and managing

alternatives in the editor, but only support executing one alternative at a time.

What level of abstraction should alternatives operate on? Juxtapose manages alternatives

at the file level. For visual diagrams, this choice is also possible, but less compelling. A

prototype implementation of file alternatives in d.tools suggested that making sense of the

differences between alternative files is harder for visual programs than for textual ones.

Specifically, changes in the visual gestalt of the diagram are not necessarily related to changes

in the functionality expressed by the diagram. Rearranging states in a d.tools diagram changes

appearance but not logic. We therefore sought ways to express alternatives within a single

diagram, at the state level.

141

Designers can introduce state alternatives in d.tools to define both appearance and

application logic. An alternative container (Figure 5.18, Figure 5.19) encapsulates two or more

states. State alternatives are created in a manner analogous to the Juxtapose editor: designers

select a state and choose ―Add Alternative‖ from its right-click context menu. The original

state (with all defined output such as screen graphics) is duplicated and both states are

placed into an alternative contained. To express that the incoming transitions remain the

same, regardless of which alternative is active, the original state‘s incoming connections are

rerouted to point to the encapsulating container. To define which of the alternative states

should become active when control transfers to an alternative container, the container shows

Figure 5.18: Schematic of state alternatives in d.tools:

alternatives are encapsulated in a common container. One

alternative is active at a time. Alternatives have different

output and different outgoing transitions.

Figure 5.19: Screenshot of a d.tools container with two state

alternatives. In the right alternative, screen graphics have

been revised.

142

radio buttons, one above each contained state. Outgoing transitions are not shared between

alternatives: each state can thus define its own set of target states and transition events. To

reduce visual clutter, only outgoing transitions of the active alternative are shown; other

outgoing transitions are hidden until that state is activated.

State alternatives support more localized changes than Juxtapose‘s code alternatives. If

alternatives are defined for more than one state, managing correspondences between the

different alternatives is currently cumbersome. Support to combine different alternatives into

coherent alternative sets is needed and should be addressed in future work. State alternatives

have been evaluated in laboratory studies as part of the d.note project on revising d.tools

diagrams, which will be described in the next chapter.

143

CHAPTER 6 GAINING INSIGHT THROUGH FEEDBACK

Iterative design proceeds in cycles of creating prototypes, testing what was created, and

analyzing the obtained feedback to drive the next design. The ultimate purpose of a prototype

is thus to elicit feedback that can inform future designs. If iteration based on feedback is a

central activity of design, then tools should include functionality to explicitly support

capturing, organizing, and analyzing feedback obtained from a particular prototype. This

chapter presents two approaches to make prototyping tools feedback-aware: capturing and

organizing video data from prototype test sessions, and managing revisions and change

suggestions in visual storyboard diagrams.

6.1 FEEDBACK IN USER TESTING: SUPPORTING DESING-TEST-

ANALYZE CYCLES

Video recordings of prototypes in use can provide critical usability insights and aid in

communicating these insights to other team members, but working with usability video can

be prohibitively time consuming [179]. Our fieldwork indicated that, even though video

recording of user sessions is common in design studios, resource limits often preclude later

analysis of this data. Video is recorded, but rarely used after the fact. This section introduces

techniques that radically shorten the time required to review usability test data of physical

prototypes to unlock some of the latent value of usability videos for design teams. The d.tools

Figure 6.1: d.tools supports design, test & analysis

stages through integration with a video editor.

144

video suite integrates support for design, test, and analysis of prototypes in a single tool

(Figure 6.1). The guiding insight is that timestamp correlation between recorded video and execution

event traces of the prototype can provide access from the video to the model, and vice versa.

The d.tools video suite adds two usage modes to the d.tools environment: test mode,

which records live video and an event trace of the test; and analysis mode, which provides

access to the recorded data from one or more test sessions and introduces interaction and

visualization techniques that enable rapid video querying. The following sections describe

each mode in turn.

6.1.1 TESTING PROTOTYPES

After completing construction of a prototype, when seeking to gather feedback from others,

designers switch to test mode. In test mode, d.tools records live video and audio of user

interactions with the prototype — important for understanding ergonomics, capturing user

quotes, and finding usability problems (Figure 6.2). During a test, a video camera (Figure

6.2A) is aimed at the tester and the prototype (Figure 6.2B). The interaction logic of the

prototype is defined by a particular storyboard (Figure 6.2C). As in design mode, input from

the prototype causes state transitions in the storyboard and corresponding output defined in

states is shown on the prototype. In addition to this normal functionality, all device events

and state transitions are saved in a time stamped log for video synchronization. Live video

from the camera is recorded in a video editor (Figure 6.2D & E). The live video stream is

augmented with event and state transition metadata in real-time. As events and transitions

Figure 6.2: Testing a prototype built with d.tools: A camera (A) is aimed at the tester and

the physical prototype (B), which is driven by a storyboard (C) in d.tools. Live video of the

test is recorded in the video editor (D) and annotated with events and state changes (E).

Designers can add additional events to the record with a control console (F).

145

occur during a test, they are visualized in several annotation tracks in a timeline display

(Figure 6.3).

One row of the timeline corresponds to the active state of the storyboard at any given

point in time (Figure 6.3A). To clarify correspondence between storyboard states and video

segments, state outlines in the editor are color coded, and the same color scheme is used for

timeline segments. A second row in the timeline displays hardware input events. Three types

of hardware events are displayed. Instantaneous events, such as a switch changing from on to

off, appear as short slices on the timeline. Events with duration, such as the press and release

of a button, show up as block segments (Figure 6.3B). Lastly, continuous events, such as

slider movements, are drawn as small line graphs of that event‘s value over time (Figure 6.3C).

In addition to automatically generated timeline events, the designer can also explicitly

add markers during a test session on an attached video control console (Figure 6.2F). The

console enables designers to quickly mark sections for later review (e.g., interesting quotes or

usability problems). The experimenter‘s annotations are displayed in the video view as a

separate row on the timeline.

Figure 6.3: The video recording interface in test mode. A: Active states at any point in

time are encoded in a timeline view. B: Discrete input events show up as instantaneous

events or press/release pairs. C: Continuous input data is visualized in-situ as a small

graph in the timeline.

146

6.1.2 ANALYZING TEST SESSIONS

Analyze mode allows the designer to review the data from one or more user test sessions. The

video view and storyboard editor function in tandem as a multiple view interface [41] into the

test data to aid understanding of the relationship between the user experience and the

underlying interaction model (Figure 6.4). d.tools supports both single user analysis and

group analysis, which enables designers to compare data across multiple users.

6.1.2.1 Single User Analysis

Single user mode provides playback control of a single test session video. The timeline

visualization of collected metadata shows the flow of UI state and data throughout that

session. d.tools speeds up video analysis by enabling designers to access interaction models

through the corresponding video segments and to access video segments from the interaction

model, facilitating analysis within the original design context. In addition to this dynamic

search and exploration, the storyboard also shows an aggregation of all user interactions that

occurred during the test: the line thicknesses of state transitions are modified to indicate how

often they were traversed (Figure 6.5). This macro-level visualization shows which

transitions were most heavily used and which ones were never reached.

Figure 6.4: In analysis mode, a dual-screen workstation

enables simultaneous view of state model and video editor.

147

VIDEO TO STORYBOARD

During video playback, a dynamic visualization of transition history is displayed in the d.tools

storyboard. The state that was active at the current point in time of the video is highlighted.

d.tools also animates moving trail along the state transitions, indicating which state a user

Figure 6.5: Line thickness in analysis mode shows how many

times a given transition was taken.

Figure 6.6: Two query techniques link storyboard and video.

A: Selecting a video segment highlights the state that was

active at that time. B: Selecting a state in analyze mode

highlights the corresponding video segment(s).

Figure 6.7: Designers can query by demonstration:

Generating input events in analyze mode filters recorded

video so that only those sections where similar events were

received are shown.

148

was coming from, and which state will become active next. This window into the chronology

of interactions provides a visual reminder of context. Selecting any state segment in the

timeline moves the play head to that segment and, as a result, highlights the corresponding

state in the storyboard (Figure 6.6A)

STORYBOARD TO VIDEO

To query video using the interaction model, the designer can select a state in the storyboard

— the recorded video is then filtered such that only segments where the user was in the

corresponding state are highlighted in the timeline view and played (Figure 6.6B). In addition

to querying by selecting states, designers can query for video segments in which certain input

components were used through a query-by-demonstration technique: manipulating a hardware

component on the physical prototype (e.g., pushing a button or moving a slider) causes the

corresponding input event category to be selected in the video view (Figure 6.7). Designers

can also select multiple categories by manipulating multiple hardware components within a

small time window. Thus, the designer can effectively search for a particular interaction

pattern within the video data by reenacting the interaction on the prototype itself.

6.1.2.2 Group Analysis

Group mode collects data from multiple test sessions of a given storyboard (Figure 6.8). The

timeline now aggregates flows for each user. The video window displays an n × m table of

Figure 6.8: Group analysis mode aggregates video and event data of multiple user

sessions into one view.

149

videos, with the rows corresponding to the n users, and the columns corresponding to m

categories (comprised of states, hardware events, and annotations). Thus, a cell in the table

contains the set of clips in a given category for a given user. Any set of these clips may be

selected and played concurrently. Selecting an entire row plays all clips for a particular user;

selecting an entire column plays all clips of a particular category. As each clip is played, an

indicator tracks its progress on the corresponding timeline.

6.1.3 IMPLEMENTATION

The d.tools video editor is implemented as an extension to the VACA video analysis tool [54].

The video viewer is implemented in C# and uses Microsoft DirectShow technology for video

recording and playback. Synchronization between the storyboard and video views is

accomplished by passing XML fragments over UDP sockets between the two applications. As

video recording and playback is CPU-intensive, this separation also allows authoring

environment and video editor to run on different machines. DirectShow was chosen because

it allows synchronized playback of multiple video streams, which is needed for group analysis

mode. The use of Microsoft APIs for video processing limits use of d.tools testing and analysis

modes to Windows PCs.

6.1.4 LIMITATIONS & EXTENSIONS

The d.tools video suite introduces ways to integrate the prototype authoring environment

and a video review tool for analyzing user test sessions. The focus on rapid review of test

sessions of a single prototype limits the utility of d.tools video functions in some important

areas, which we review in this section.

6.1.4.1 No Support for Quantitative Analysis

Analysis in formal user testing often involves quantifying observations and computing

statistics for those observations. In d.tools, video analysis so far is restricted to accessing and

reviewing video segments. The introduced interaction techniques shorten the time required

to access the right parts of the video. We hypothesize that tools could further aid designers

by extracting relevant statistics for the test automatically.

Two complementary strategies to support more quantitative analysis suggest

themselves: the first is to automatically extract data from the recorded test (e.g., state dwell

statistics — how long did users spend in each state, which states were never reached). The

second is to provide the reviewer with better tools to conduct such analyses manually. An

150

example of a more fine-grained analysis approach is Experiscope [97], a tool for analyzing user

tests of mouse- or stylus-based interaction techniques. Experiscope can both visualize input

event data well as produce aggregate reports of event frequency and duration. As an initial

step into this direction, d.tools visualizes how many times a transition was taken by changing

transition line thickness in the diagram. However, it is not currently possible to extract the

precise number of times the transition was taken, or to derive a similar figure for the number

of times a state was active during a test.

6.1.4.2 Limited Visibility of Application Behavior During Test

d.tools video records a single stream of live video from a digital camera. Recording how a

device was handled is especially important for devices with new form factors, as ergonomics

and questions about device control layout may be part of the test. This focus on embodied use

of a device during a test comes at a price: it is not always possible to see what happened on

the screen(s) of the tested prototypes in live video. Linking the video to the state diagram

enables the tester to see which state the device was in at any given time. However, states

present only a static view of the application. Dynamic animations scripted in d.tools are not

visible — reviewing these may be important as well. One possible solution suggested by

commercial GUI testing applications such as Silverback [4] is to record multiple video

streams of both live video and screen output and to then composite those streams into a

single video feed.

6.1.4.3 Cannot Compare Multiple Prototypes in Analysis Mode

The video spreadsheet view enables comparison of multiple test sessions by multiple users,

but only for a single prototype. As the previous chapter has argued, exploration of design

alternatives is an important practice and should therefore be supported in analysis tools as

well. We see two separate opportunities for further research: 1) enabling comparative testing

of multiple, simultaneously developed alternatives; 2) supporting comparison of prototypes

across different design iterations.

Tohidi and Buxton [243] note that testing multiple prototypes is preferable to testing a

single prototype, since users will feel less pressured to be ―nice‖ to experimenters and can

draw comparisons between prototypes. In addition, if prototypes are more refined and the

designer has concrete hypotheses in mind, formal comparative testing is required to support

or reject these hypotheses. For traditional GUI interactions, tools that support such

comparative analysis of alternatives exist. Experiscope [97] enables testers to visually

151

compare event traces of multiple treatment conditions side-by-side. However, existing tools

such as Experiscope do not link the recorded trace back to the source of the application being

tested. It is an open question how tools can show video, event traces, and software models for

multiple alternative designs simultaneously without overwhelming the designer with

complexity.

A separate question is how one might support the comparison of different iterations of a

given project over time. In the iterative design-test-analyze paradigm, subsequent iterations

are informed by what was learned before. Testing tools should offer support for checking

whether the feedback collected during prior iterations was properly acted on in later

iterations and if identified issues were in fact resolved.

6.1.4.4 Limited Query Language

An additional limitation of d.tools video analysis is that the query language over states and

events is rather primitive at the present time. The queries that can be executed select

segments from single video files based on states or input events. A natural extension would be

to enable testers to specify more complex, and thus more useful, queries. Badre suggests using

regular expressions to filter user events [39]. We are skeptical whether regular expressions

are accessible to our target audience. An alternative approach would be to use a textual query

language, such as SQL, and then building GUI tools for specifying queries in that language.

Interactive query builders are common for expressing SQL queries in database applications.

6.1.4.5 Interaction Techniques Have Not Been Formally Evaluated

The introduced interactions have not been evaluated in a formal user study. Their efficacy in

real design contexts has not been established, although the rapid video query techniques have

received positive comments from professional designers in informal conversations and at

presentations to professional design conference attendees.

152

6.2 CAPTURING FEEDBACK FROM OTHER DESIGNERS: D.NOTE

Interaction design in teams oscillates between individual work and team reviews and

discussions. Team reviews of user interface prototypes provide valuable critique and suggest

avenues forward [189:pp. 374-5]. However, changes proposed by others can rarely be realized

immediately: often the proposer lacks the implementation knowledge, the changes are too

complex, or the ideas are not sufficiently resolved.

In many areas of design, annotations layered on top of existing drawings and images, or

―sketches on top of sketches‖ [55], are the preferred way of capturing proposed changes. They

are rapid to construct, they enable designers to handle different levels of abstraction and

ambiguity simultaneously [66], and they serve as common ground for members with different

expertise and toolsets [205]. Individual designers later incorporate the proposed changes into

the next prototype. This annotate-review-incorporate cycle is similar to revising and

commenting on drafts of written documents [198]. While word processors offer specialized

revision tools for these tasks, such tools don‘t yet exist for the domain of interaction design.

This section demonstrates how three primary text revision techniques can be applied to

interaction design: commenting, tracking changes, and visualizing those changes. It also

Figure 6.9: d.note enables interaction designers to revise

and test functional prototypes of information appliances using

a stylus-driven interface to d.tools.

153

introduces revision tools unique to interaction design: immediate testing of revisions and

proposing alternatives. The novel revision techniques are embodied in d.note (Figure 6.9), an

extension to d.tools. The d.note notation supports modification, commenting, and proposal of

alternatives (see Section 5.7, p. 140) for both appearance and behavior of information

appliance prototypes. Concrete modifications to behavior can be tested while a prototype is

running. Such modifications can exist alongside more abstract, high-level comments and

annotations.

This section also contributes a characterization of the benefits and tradeoffs of digital

revision tools such as d.note through two user studies. We show that the choice of revision

tool affects both what kind of revisions are expressed, as well as the ability of others to interpret

those revisions later on. Participants who used d.note to express revisions focused more on

the interaction architecture of the design, marked more elements for deletion, and wrote

fewer text comments than participants without d.note. Participants who interpreted d.note

diagrams asked for fewer clarifications than participants that interpreted freeform

annotations, but had more trouble discerning the reviser‘s intent.

In the remainder of this section, we first describe revision principles from related

domains. Current practices of UI designers were described in Section 3.1.2.2. We then

introduce d.note and its implementation. We present results from two studies of revision

expression and interpretation, and conclude by discussing the design space of revision tools.

6.2.1 REVISION PRACTICES IN OTHER DOMAINS

Interaction designers are concerned with both look and feel of applications [189]. Absent a

current, complete solution for both aspects, we can draw on important insights from revising

textual documents, source code, and movie production.

Figure 6.10: Interlinear revision tracking and comment

visualization in word processing.

154

TEXT DOCUMENTS

The fundamental actions in written document revision are history-preserving modification

(insertion, deletion) and commenting. Each operation has two components: visual syntax and

semantics. For example, in word processing, a common interlinear syntax to express deletion

is striking through the deleted text (Figure 6.10); the semantics are to remove the stricken

text from the next version of the document, should the revision be accepted. Original and

modification are visible simultaneously, to communicate the nature of a change. Furthermore,

edits are visually distinguished from the base version so the recipient can rapidly identify

them. When editing documents collaboratively, different social roles of co-author,

commenter, and reader exist [198]. Offering ways to modify the underlying text as well as

adding meta-content that suggests further modification serves these different roles.

SOURCE CODE DOCUMENTS

Source code revision tools, such as visual difference editors, enable users to compare two

versions of source files side-by-side [115] (Figure 6.11). In contrast to document revision tools,

changes are generally not tracked incrementally, but computed and visualized after the fact.

Comments in source code differ from comments in text documents as they are part of the

Figure 6.11: Source code comparison tools show two versions

of a file side-by-side.

Figure 6.12: Video game designers draw annotations directly

on rendered still images (from [55:p. 179]).

155

source document itself. Meta comments (comments about changes) are generally only

available for an entire set of changes.

VISUAL MEDIA

WYSIWYG document editors do not distinguish between source and final document;

authors revise a single, shared representation. For program source code, there is no way to

comment directly on the output of the program, only the source. In contrast, movie producers

and video game developers convey revisions by drawing directly on output, i.e., rendered

video frames (Figure 6.12). Because the revisions address changes in appearance, sketching is

the preferred method of expression. Working in the output domain is a compelling approach,

but has thus far been limited to static content [55].

DESIGN PRINCIPLES

Comparing these three existing domains leads to the formulation of four design principles. UI

revision tools should support the following workflows:

1) History-preserving incremental modification of the source representation

2) Commenting outside the underlying source language

3) Sketching as an input modality for graphical content

4) Revising the output, i.e., the resulting user interface screens, not just the source.

6.2.2 A VISUAL LANGUAGE FOR REVISING INTERACTIONS

Guided by our assessment of current practice and tools available in other domains, we

developed d.note, a revision notation for user interface prototypes. d.note extends the d.tools

authoring environment. In text, the atomic unit of modification is a character. Because visual

program diagrams have a larger set of primitives, the set of possible revision actions is more

complex as well. In d.tools, the primitives are states, transitions, the device definition, and

graphical screens. With each primitive, d.note defines both syntax and semantics of

modification. This section will provide an overview of each modification operation. Concrete

examples of these operations in d.note are provided in Figure 6.13 – Figure 6.17.

6.2.2.1 Revising Behavior

d.note uses color to distinguish base content from elements added and removed during

revision. In d.note and in the following diagrams, states and transitions rendered with a black

outline are elements existing in the base version; added elements are shown with a blue

outline; deleted elements in red.

156

In revision mode, users can add states and transitions as they normally would; these states

and transitions are rendered in blue to indicate their addition (Figure 6.13, Figure 6.14).

Semantically, these states and transitions behave like their regular counterparts.

When users remove states from the base version, the state is rendered as inactive in red.

To visually communicate that a state can no longer be entered or exited, all incoming and

outgoing transitions are rendered as inactive with dashed lines (Figure 6.15). At runtime,

incoming transitions to such states are not taken, making the states unreachable. Individual

transitions can also be directly selected and deleted. Deleted transitions are shown with a

dashed red line as well as a red cross, to distinguish them from transitions that are inactive as

a result of a state deletion (Figure 6.16). As with many source code and word processing tools,

deleting states or transitions that were added in revision mode completely removes the

objects from the diagram.

Figure 6.13: States added

during revision are

rendered in blue.

Figure 6.14: New screen

graphics can be sketched in

states.

Figure 6.15: State

deletions are rendered in

red. Connections are

marked as inactive.

Figure 6.16: Transition

deletions are marked with

a red cross and dashed

red lines.

Figure 6.17: Comments can

be attached to any state.

Figure 6.18: Alternative

containers express

different options for a

state.

157

6.2.2.2 Revising Appearance

Designers can modify graphics by sketching directly on top of them with a pen tool within

the d.tools graphics editor (Figure 6.19). Sketched changes are then rendered on top of the

existing graphics in a state at runtime. In addition to sketching changes to appearance, users

may also rearrange or otherwise modify the different graphical components that make up the

screen output of a state. d.note indicates the presence of such changes by rendering the screen

outline in the state editor in a different color, as showing modification side-by-side with the

original graphics would interfere with the intended layout. The changes are thus not

visualized on the level of an individual graphical widget, but in aggregate.

6.2.2.3 Revising Device Definition

Thus far, we have described changes to the information architecture and graphic output of

prototypes. When prototyping products with custom form factors such as medical devices,

Figure 6.19: Sketched updates to screen content are

immediately visible on attached hardware.

Figure 6.20: Changes to the device configuration are

propagated to all states. Here, one button was deleted while

two others were sketched in.

158

the set of I/O components used on the device may also be subject to change and discussion.

When revising designs in d.note, users can introduce new input elements by sketching them

in the device editor (Figure 6.20). Prior to binding the new component to an actual piece of

hardware, designers can simulate its input during testing using the d.tools simulation tool

(see Section 4.1.3). Currently, the d.note implementation does not support adding output

devices through sketching; we believe adding output within this paradigm would be fairly

straightforward.

6.2.2.4 Commenting

In addition to functional revision commands, users can sketch comments on the canvas of

device, graphics, and storyboard editors (Figure 6.17). Any stroke that is not recognized as a

revision command is rendered as ink. This allows tentative or ambiguous change proposals to

coexist with concrete changes. Inked comments are bound to the closest state so they

automatically move with that state when the user rearranges the diagram.

6.2.2.5 Proposing Alternatives

As covered in Section 5.7 (p. 140), users can introduce alternatives for appearance and

application logic. We summarize the functionality of alternative containers again briefly:

d.tools represents the alternative by duplicating the original state and visually encapsulating

both original and alternative (Figure 6.18). The original state‘s incoming connections are

rerouted to point to the encapsulating container. Each state maintains its own set of outgoing

transitions. To define which of the alternative states should become active when control

transfers to an alternative set, the set container shows radio buttons, one above each

contained state. To reduce visual clutter, only outgoing transitions of the active alternative

are shown; other outgoing transitions are hidden until that alternative is activated.

6.2.3 SCENARIO

The following scenario summarizes the benefits d.note provides to interaction design teams.

Adam is designing a user interface for a new digital camera with on-camera image editing

functions. To get feedback, he drops his latest prototype off in Betty‘s office. Betty picks up

the camera prototype, and tries to crop, pan and color balance one of the pictures that Adam

preloaded on the prototype. She notices that exiting to the top level menu is handled

inconsistently in different screens. She opens up the d.tools diagram for the prototype and,

with d.note enabled, changes the transitions from those screens to the menu state. She next

159

notices that the image delete functionality is lacking a confirmation screen – images are

deleted right away. To highlight this omission, Betty creates a new state and sketches a

rudimentary confirmation dialog, which she connects to the rest of the diagram with new

transitions so she can immediately test the new control flow. Betty is not convinced that the

mapping of available buttons to crop an image region is optimal. She selects the crop state and

creates an alternative for it. In the alternative, she redirects button input and adds a comment

for Adam to compare the two implementations. She also thinks that the current interface for

balancing colors via RGB sliders is cumbersome. Since she does not have time to change the

implementation, she circles the corresponding states and leaves a note to consider using an

alternative color space instead.

6.2.4 THE D.NOTE JAVA IMPLEMENTATION

d.note was implemented as an extension to d.tools. As such, it was written in Java 5 and

makes use of the Eclipse platform, specifically the Graphical Editing Framework (GEF) [24].

d.note runs on both Windows and Mac OS X operating systems.

6.2.4.1 Specifying Actions Through Stylus Input

Because much of early design relies on sketches as a visual communication medium [55],

d.note‘s revision interface can be either operated through mouse and keyboard commands, or

it can be entirely stylus-driven. Stylus input allows for free mixing of commands and non-

command sketches. When using the stylus, strokes are sent through a recognizer (the Paper

Toolkit [258] implementation of Wobbrock et al.‘s $1 recognizer [253]) to check if they

represent a command. Command gestures to create states and alternatives use a pigtail

delimiter [120], to reduce the chance of misinterpretation of other rectangular strokes (Figure

6.21). Gesture recognition takes into account what existing diagram element (if any) a gesture

was executed above. The gesture set contains commands to delete the graphical element

Figure 6.21: The d.note gesture set for stylus operation. Any

stroke not interpreted as one of the first four actions is

treated as a comment.

160

underneath the gesture, and to create new states, transitions and alternatives. All other

strokes are interpreted as comments. In addition to providing drawing and gesture

recognition, d.note extends the d.tools runtime system to correctly handle the interaction

logic semantics of its notation, e.g., ignore states marked for deletion.

6.2.5 EVALUATION: COMPARING INTERACTIVE & STATIC REVISIONS

To understand the user experience of the interactive revision techniques manifest in d.note,

we conducted two studies: the first compared authoring of revisions with and without d.note;

the second compared interpretation of revisions with and without d.note. We recruited

product design and HCI students at our university. Because the required expertise in creating

UIs limited recruitment, we opted for a within-subjects design, with counterbalancing and

randomization where appropriate.

6.2.5.1 Study 1: Authoring Revisions

In the domain of word processing, Wojahn [254] found that the functionality provided by a

revision interface influenced the number and type of problems discussed. Do users revise

interaction designs differently with a structured, interactive tool than by making freeform,

static annotations on a diagram?

METHOD

We recruited twelve participants. Participants each completed two revision tasks: one

without d.note and one with. The non-d.note condition was always assigned first to prevent

exposure to d.note notation from influencing freeform annotation patterns. Each revision task

asked participants to critique one of two information appliance prototypes, one for a

keychain photo viewer, and one for the navigation and management of images on a digital still

camera (Figure 6.22). The tasks were inspired by student exercises in Sharp et al.‘s

interaction design textbook [226]. We counterbalanced task assignment to the conditions.

Participants were seated in front of a Mac OS X workstation with an interactive 21‖,

1600×1200 pixel tablet display (Figure 6.23). Participants could control this workstation with

stylus as well as keyboard and mouse. We first demonstrated d.tools to participants and had

them complete a warm-up menu navigation design (taken from the d.tools evaluation in

Section 4.1.5.1) to become familiar with the visual authoring language. In the condition with

d.note, students were given a demonstration of its revision features, and five minutes to

become familiar with the commands using the warm-up project they completed earlier.

161

Participants were then given a working prototype, run by d.tools and d.note, and were asked

to take 15 minutes to revise the prototype directly in the application using d.note‘s

commenting and revision features.

In the non-d.note condition, participants were given a working prototype along with a

static image of the d.tools state diagram for the prototype. The image was loaded in Alias

Sketchbook Pro [30], a tablet PC drawing application, and participants were given 15 minutes

to draw modifications and comments on top of that image.

The caveat of our design is that ordering of conditions may have affected usage. For

example, participants may have become more comfortable, or more fatigued, for the second

condition. However, we judged this risk to be lower than the potential learning effect of

becoming familiar with the d.note annotation language and then applying it in the non-d.note

Figure 6.22: Participants were given a prototype device with a

color display and button input. They were asked to revise

designs for a keychain display and a digital camera, both

running on the provided device.

Figure 6.23: Participants in study 1 revised d.tools designs on

a large tablet display.

162

condition. After the design reviews, participants completed a survey that elicited high-level

summative feedback in free response format.

RESULTS

We categorized all marks participants made; Table 6.1 summarizes the results. Figure 6.24

shows four examples of diagrams; two for each condition. Most notably, participants wrote

significantly more text comments without d.note than with it. In contrast, deletions were rare

without d.note (4 occurrences); but common with d.note (34 occurrences; 8 out of 12

participants). Finally, revisions with d.note focused on changes to the information

Table 6.1: Content analysis of d.tools diagrams reveals

different revision patterns: with d.note, participants wrote less

and deleted more.

Table 6.2: Most frequently mentioned advantages and

disadvantages of using d.note to express revisions.

163

architecture, while freeform revisions often critiqued the prototype on a more abstract level.

Our results thus corroborate Wojahn‘s finding that the choice of revision tool affects the

number and type of revision actions [254].

The post-test survey asked participants to compare the relative merits of Sketchbook

and d.note. We categorized their freeform written answers (Table 6.2). The two most

frequently cited advantages of d.note were the ability to make functional changes (6 of 12

participants), and to then test proposed changes right away (7 of 12 participants). Three

participants suggested that commenting was more difficult with d.note; two wrote that the

tool had a steeper learning curve. Two participants with a product design background wrote

that using d.note led them to focus too much on the details of the design. In their view, the

lack of functionality in the Sketchbook condition encouraged more holistic thinking.

DISCUSSION

Why did participants write less with d.note? One possibility is that that users wrote more with

Sketchbook because it was easier to do so (Sketchbook is a polished product, d.note a

research prototype). To the extent this is true, it provides impetus to refine the d.note

Figure 6.24: Two pairs of revision diagrams produced by our study participants. Diagrams

produced with Sketchbook Pro in the control condition are shown on the left; diagrams

produced with d.note are shown on the right.

164

implementation, but tells us little about the relative efficacy of a static and dynamic approach

to design revision.

More fundamentally, d.note may enable users to capture intended changes in a more

succinct form than text comments. Four participants explicitly wrote that d.note reduced the

need for long, explanatory text comments in their survey responses: ―[with d.note] making a

new state is a lot shorter than writing a comment explaining a new state‖; ―[without d.note] I

felt I had to explain my sketches.‖ d.note‘s rich semantics enable a user‘s input to be more

economical: an added or deleted transition is unambiguously visualized as such. In d.note,

users can implement concrete changes interactively; only abstract or complex changes require

comments. Without d.note, both these functions have to be performed through the same

notation (drawing), and participants explained their graphic marks with additional text

because of the ambiguity. In our data, inked transition arrows drawn without d.note (44

drawn transitions) were replaced with functional transitions with d.note (78 functional

transitions added; only 3 drawn as comments).

Though participants could have disregarded the revision tools and only commented with

ink, the mere option of having functional revision tools available had an effect on their

activity. This tendency has been noted in other work [55,156] as well.

Why did participants delete more with d.note? While participants created new states and

transitions in both conditions, deletions were rare without d.note. Deletions may have been

implied, e.g., drawing a new transition to replace a previously existing one, but these

substitutions were rarely noted explicitly. We suggest that deletions with d.note were

encouraged by the ability to immediately test concrete changes. Quick revise-test cycles

exposed areas in which diagrams had ambiguous control structure (more than one transition

exiting a state on the same event).

Why were more changes to information architecture made with d.note? The majority of revision

actions with d.note concerned the flow of control: adding and deleting transitions and states.

In the Sketchbook condition, participants also revised the information architecture, but

frequently focused on more abstract changes (Example comment: ―Make [feedback] messages

more apparent‖). The scarcity of such comments with d.note is somewhat surprising, as

freeform commenting was equally available. One possible explanation is that participants

focused on revising information architecture because more powerful techniques were at hand

to do so. Each tool embodies a preferred method of use; even if other styles of work remain

possible, users are driven to favor the style for which the tool offers the most leverage.

165

6.2.5.2 Study 2: Interpreting Revisions

The first study uncovered differences in expressing revisions. Are there similar characteristic

differences in interpreting revisions created with the two tools?

METHOD

Eight (different) participants interpreted the revisions created by participants of the first

study. After a demonstration and warm-up task (as in study 1), participants were shown the

two working prototypes (camera and key chain) and given time to explore. Next, participants

were shown screenshots of annotated diagrams from the first study (Figure 6.24) on a second

display. Participants were asked to prepare two lists in a word processor: one that

enumerated all revision suggestions that were clear and understandable to them; and a second

list with questions for clarification about suggestions they did not understand. Participants

completed this task four times: one d.note and one freeform diagram were chosen at random

for each of the two prototypes.

RESULTS

The cumulative count of clear and unclear revision suggestions for all participants are shown

in Table 6.3. Participants, on average, requested 1.3 fewer clarifications on revisions when

using d.note than when sketching on static images (two-sample t(29)=1.90, p=0.03).

The post-test survey asked participants to compare the relative merits of interpreting

diagrams revised with d.note and Sketchbook. The most frequently mentioned benefits arose

from having a notation with specified semantics (Table 6.4): revisions were more concrete,

specific, and actionable. Frequently mentioned drawbacks were visual complexity and

problems discerning high-level motivation in d.note diagrams.

DISCUSSION

Why did participants ask for fewer clarifications with d.note? When interpreting revised diagrams,

participants are faced with three questions: First, what is the proposed change? Second, why

was this change proposed? Third, how would I realize that change? The structure of the

second user study asked participants to explicitly answer the first question by transcribing

all proposed changes. We suggest that the formal notation in d.note decreased the need for

clarification for two reasons. First, the presence of a formal notation resulted in a smaller

number of handwritten comments, and hence fewer problems with legibility (Example

without d.note: ―Change 6 — unreadable‖). Second, because of the ad-hoc nature of

handwritten annotation schemes in absence of a formal system, even if comments were

166

legible, participants frequently had trouble tying the comments to concrete items in the

interface (Example: ―I have no idea what it means to ‗make it clear that there is a manual

mode from the hierarchy‘. What particular hierarchy are we talking about?‖)

In the survey, participants commented on the remaining questions of why changes were

proposed and how one might implement those changes. We next discuss mitigation

strategies for managing visual complexity and the reported problems discerning high-level

motivation in d.note diagrams.

Visual complexity of annotated diagrams: Visual programs become harder to read as the node

& link density increases. Showing added and deleted states and transitions simultaneously in

the diagram sometimes yielded ―visual spaghetti‖: a high density of transition lines made

Table 6.3: How well could study 2 participants

interpret the revisions created by others? Each

vertical bar is one instance.

Table 6.4: Perceived advantages and disadvantages

of using d.note to interpret revisions as reported by

study participants.

167

distinguishing and following individual lines hard. The connection density problem becomes

worse when state alternatives are introduced because each alternative for a state has an

independent set of outbound transitions.

In response, we already modified the drawing algorithm for state alternatives to only

show outgoing connections for the currently active alternative within an alternative

container. Additional simplification techniques are needed though. One option to selectively

lower transition density in the diagram while preserving relevant context would be to only

render direct incoming and outgoing transitions for a highlighted state and hide all other

transitions on demand.

Capturing the motivation for changes: While many handwritten comments focused on high-

level goals without specifying implementations, tracked changes make the opposite tradeoff:

the implementation is obvious since it is already specified, but the motivation behind the

change can remain opaque. We see two possible avenues to address this challenge. First,

when using change tracking, multiple individual changes may be semantically related. For

example, deleting one state and adding a new state in its stead are two actions that express a

desired single intent of replacement. The authoring tool should detect such related actions

automatically or at least enable users to specify groups of related changes manually. Second,

even though freeform commenting was available in d.note, it was not used frequently.

Therefore, techniques that proactively encourage users to capture the rationale for changes

may be useful.

6.2.6 LIMITATIONS & EXTENSIONS

The d.note project introduced a notation and interaction techniques for managing revisions of

user interface designs expressed as state diagrams. Diagrams can be modified and annotated.

The particular implementation of revision techniques in d.note represents only one point

solution in a larger design space of possible user interface revision tools. The main salient

dimensions we considered during our work are summarized in Figure 6.25. This table reveals

limitations and additional areas of exploration we have not touched upon so far.

168

6.2.6.1 Cannot Comment on Dynamic Behavior

The stylus-driven annotation makes it easy to add comments to both layout and information

architecture. It is not feasible to efficiently comment on dynamic behaviors, as there is no

visual record of these behaviors in the interaction diagram. Recording and annotating video of

an application‘s runtime output is one promising avenue to enable comments on behavior.

d.tools can already record live video of interaction with a built prototype. If this video capture

were augmented with a second stream of screen captures, then designers could sketch

directly onto those video frames. To make such sketches useful for others, they have to be

retrievable from the editing environment. Future work should examine how to associate such

video annotations with the state diagrams and other static source views.

6.2.6.2 Cannot Revise Dynamic Behavior

d.note currently enables designers to express functional changes to the information

architecture of the user interface, and to the screen content of a given state within that larger

architecture. However, changes to scripts are not well supported in that there are no

visualizations to show in detail what has changed, and no interaction techniques to accept or

undo such changes.

Figure 6.25: A design space of user interface revision tools.

The sub-space d.note explored is highlighted in green.

169

6.2.6.3 How To Support Identified Revision Principles for Source Code?

The presented design space finally raises the question how one might offer the benefits of a

revision tool such as d.note for user interfaces specified entirely in source code. The particular

revision techniques of d.note are based on a visual language that shows both user interface

content and information architecture in the same environment. The techniques should

therefore transfer to other visual control-flow tools such as DENIM [171] or SUEDE [148]. But

what about user interfaces that are not programmed visually? Existing source revision

techniques for non-visual programs do not permit designers to comment or revise the output

of their application. Future research should investigate if sketch-based input and annotation

in the output domain of a program can be transferred to such applications.

170

CHAPTER 7 CONCLUSIONS AND FUTURE WORK

This dissertation has shown how to support creation, exploration, and iteration of user

interface prototypes for ubiquitous computing applications. This final chapter recapitulates

the contributions made by the presented systems, and concludes with an outlook on future

work.

7.1 RESTATEMENT OF CONTRIBUTIONS

We introduced principles and systems for prototyping user interfaces that span physical and

digital interactions. Three areas of technical contributions can be distinguished:

1) Techniques for authoring user interfaces with non-traditional input/output

configurations. This dissertation contributed:

a. Rapid authoring of interaction logic through a novel combination of storyboard

diagrams for information architecture with imperative programming for interactive

behaviors.

b. Demonstration-based definition of discrete input events from continuous sensor data

streams enabled by a combination of pattern recognition with a direct

manipulation interface for the generalization criteria of the recognition

algorithms.

c. Management of input/output component configurations for interface prototypes through

an editable virtual representation of the physical device being built. This

representation reduces cognitive friction by collapsing levels of abstraction; it

is enabled by a custom hardware interface with a plug-and-play component

architecture.

2) Principles and techniques for exploring multiple user interface alternatives. The

dissertation contributed:

a. Techniques for efficiently defining and managing multiple alternatives of user interfaces in

procedural source code and visual control flow diagrams.

b. User-directed generation of control interfaces to modify relevant variables of user

interfaces at runtime.

171

c. Support for sequential and parallel comparison of user interface alternatives through

parallel execution, selectively parallel user input, and management of

parameter configurations across executions.

d. Implementations of the runtime techniques for three different platforms: desktop PCs,

mobile phones, and microcontrollers.

3) Techniques for capturing feedback from users and design team members on user

interface prototypes, and integrating that feedback into the design environment. The

dissertation contributed:

a. Timestamp correlation between live video, software states, and input events during a

usability test of a prototype to enable rapid semantic access of video during

later analysis.

b. Novel video query techniques: query by state selection where users access video

segments by selecting states in a visual storyboard; and query by input

demonstration where sections of usability video are retrieved through

demonstrating, on a physical device prototype, the kind of input that should

occur in the video.

c. A visual notation and stylus-controlled gestural command set for revising user interfaces

expressed as control flow diagrams.

The dissertation also provided evidence, through laboratory studies and class deployments,

that the introduced techniques are successful. In particular, the dissertation contributed:

1) Evidence that the introduced authoring methods for sensor-based interaction are

accessible and expressive through two laboratory evaluations and two class

deployments.

2) Evidence from a laboratory study that the techniques for managing interface alternatives

enable designers to explore a wider range of design options, faster.

3) Evidence from two laboratory studies that an interactive revision notation for interfaces

leads to more concrete and actionable revisions.

7.2 FUTURE WORK

Future work in the space of design tools outlined by this dissertation falls into two general

categories. First, additional research can extend the introduced systems and techniques, to

overcome present limitations or to take logical next steps that enhance expressivity and

utility. Second, reconsidering the assumptions underlying the systems described in this thesis

172

yields additional opportunities for different types of tools that can support a broader range of

authoring tasks. Important limitations and possible extensions were discussed at the

conclusion of each preceding chapter, in Sections 4.1.7 (d.tools, p. 92), 4.2.6 (Exemplar, p.

116), 5.6 (Juxtapose, p. 136), 6.1.4 (d.tools video analysis, p. 149), and 6.2.6 (d.note, p. 167). This

chapter briefly discusses some larger future research directions.

In retrospect, most of the work presented in this dissertation implicitly shares a set of

assumptions: that an individual designer creates one or more alternative designs for a single device,

starting from scratch, through a desktop-based graphical user interface tool. Changing any of these

four core assumptions yields areas of future work that suggest different types of design tools.

We review each of these four areas in turn.

7.2.1 DESIGN TOOLS THAT SUPPORT COLLABORATION

Most existing authoring tools for user interfaces, the ones proposed in this dissertation

included, focus on the work of a single creative individual. Future research should broaden

this scope to integrate support for collaboration and sharing directly into authoring

environments. Two reasons for making such a shift are the predominance of team-based

design in industry, and the rise of open, amateur design communities online.

PROFESSIONAL DESIGN TAKES PLACE IN TEAMS

Professional work on complex user interfaces takes place in design teams; and an increasing

number of such teams are geographically distributed. Office suite applications such as word

processors and spreadsheets now routinely offer support for asynchronous review and

annotation; some web-based applications also support synchronous collaborative editing.

Outside the realm of office applications, support for distributed work is still lacking. In this

dissertation, the d.note project for revising interaction design diagrams considered the

importance of asynchronous communication about such diagrams between team members.

But the presented work has not yet addressed synchronous collaboration. How can

technology help teams jointly construct, discuss, and test user interface prototypes? In this

chapter, Section 7.2.3.1 proposes a concrete project to redesign the interaction design studio

itself to better support team activities.

SUPPORTING AMATEUR DESIGN COMMUNITIES

Beyond the professional, corporate context, social production of both information and

software is becoming increasingly important. Successful online environments for

collaborative information production (e.g., Wikipedia, ‗view source‘ on Web 1.0 HTML

173

pages) are built around open access to modify, copy, and reuse content. For interaction design

beyond HTML pages, and programming in general, most social exchanges today happen

outside the authoring environments, through plain text in online forums and blogs. We

believe that there is significant additional latent value in integrating collaborative aspects of

design and development directly into our authoring tools, where richer ways for collecting,

presenting, and interacting with authored media are available.

As a first step, some programming IDEs have begun to integrate support for publishing

projects online. Scratch [13], the multimedia programming environment for children

developed at the MIT Media Lab, has a function to share one‘s program on the Scratch

website. Resnick recently reported that 30% of projects on the Scratch website are based on

other projects; and that some projects have been ―remixed‖ (copied, modified, and shared

again) up to 29 different times [76]. We believe that sharing the authoring process in addition

to the end result can significantly aid designers and developers in gaining expertise,

integrating pre-existing pieces of functionality into their project, and understanding and

correcting problems. The following section on authoring by example modification introduces

some concrete research projects along these lines.

7.2.2 AUTHORING BY EXAMPLE MODIFICATION

Most existing authoring tools implicitly assume that creators start with a clean slate, and

then create their design, e.g., a user interface, a layout of a brochure, or a personal website,

from scratch. However, less design happens tabula rasa than one might surmise. In practice,

much creative work starts with finding relevant existing examples and modifying those to fit

a new context.

Examples play at least two fundamental roles in the design and programming of user

interfaces: they can provide inspiration by providing anchors for analogical thinking [85], and

they can provide concrete functionality that can shortcut the time required for implementation.

For inspiration, designers like to immerse themselves in the domain of their current project by

collecting a large and diverse set of examples [118]. These examples can be competing

products, swatches of materials, color schemes (e.g., ‗mood boards‘), or clever mechanisms

(e.g., the IDEO Tech Box [141:pp. 143-145]). In fact, ―shopping for functionality‖ was reported

as an important early design activity in our study of interaction, web, and hardware designers

[108]. Examples provide an experiential feel for the space of existing solutions and allow

identification of desirable traits, both concrete (―knob should be self-centering with detents‖)

174

and abstract (―product should feel warm and welcoming‖). These traits are then transferred

to the product being designed by analogy.

Many designers and programmers also rely on examples to provide working

implementations of desired functionality. Integrating existing examples may be faster, more

economical, or may enable designers to leverage functionality they could not create

themselves. In the software domain, programming by example modification [196] is especially

useful for learning how to integrate existing libraries into one‘s own project. Brandt et al.

found programming by example modification to be pervasive [50]. In a lab study where

subjects had to implement a chat room application, all participants extensively copied code

found on web sites: 1/3 of the final code in participants‘ projects came from pre-existing

examples..

If use of examples is pervasive in design and programming, what are the implications for

future design tools? We see four aspects deserving of future work: New tools can help users

find relevant examples, synthesize new examples if none exist, extract examples from larger

projects, and facilitate integration of found examples into projects. The following sections

review three of these areas in some additional detail.

7.2.2.1 Finding Examples

For programmers, code search engines like Assieme [122] and Mica [235] provide support for

finding relevant source examples. Brandt‘s Blueprint system integrates search for example

code snippets directly into the Adobe Flex development environment [49]. Going beyond

source code, it is not immediately clear how searches for examples should be specified. For

visual material, hierarchical browsing interfaces [181], faceted metadata browsing [257], and

image search by sketching [223] have been proposed, but we are not aware of studies about

the efficacy of such techniques for design. It is even less clear how designers might search for

interactive behaviors.

7.2.2.2 Synthesizing Examples

Our d.mix project [113] explored how to automatically synthesize new examples of web

service API calls by enabling developers to point to elements on web pages that they would

like to access programmatically. The Design Galleries system [181] generates a space-spanning

set of examples based on algorithms evaluating alternatives. For any system that

automatically generates examples, designers somehow have to steer and control the synthesis

175

process. Whether the right interfaces for doing so can be general or have to be domain-

specific remains to be determined.

7.2.2.3 Extracting Examples

Useful examples for programmers are short, minimal, self-sufficient, and have explanatory

documentation. These attributes are entirely different from the characteristic of source code

found in open repositories, where projects are large, complex, and rife with

interdependencies. One possible area of future research is therefore how to give developers

the right tools to make it easier (or automatic) to publish relevant, small examples from their

larger codebases.

Our recently started HelpMeOut project [110] suggests that IDE instrumentation can be

used to automatically collect histories of problems and problem fixes during programming

sessions. A database of such fixes can then be used as a source of examples for other

programmers who are experiencing similar problems (Figure 7.1).

7.2.2.4 Integrating Examples

Once relevant examples have been found, how can designers integrate parts of those examples

into their projects? The Adaptive iDEAS project [158] introduced limited support for copying

font and color attributes of web pages these exemplars into one‘s own page designs. Kumar

and Kim [152] are expanding on the motivation of this work by enabling designers to reuse

the layout structure of existing web pages, but substitute one‘s own content.

Figure 7.1: HelpMeOut offers asynchronous collaboration to

suggest corrections to programming errors. 1: IDE

instrumentation extracts bug fixes from programming

sessions to a remote database. 2: Other programmers query

the database when they encounter errors. 3: Suggested fixes

are shown inside their IDE.

A top of page text box for a figure or table

176

Kelleher‘s Looking Glass project [138] aims to enable users of the Alice virtual world

authoring system to ―steal‖ behaviors from other users. Since these behaviors are represented

in code in a structured editor, key challenges are how to find the right scope of code to copy,

and how to adapt the found code to fit, e.g., by remapping object identifiers. How to aid

similar integration for arbitrary code remains an open question. It would also be valuable to

have a more concrete understanding which kind of examples are most frequently consulted

and appropriated for different kinds of design projects by studying example use in real-world

scenarios.

7.2.3 AUTHORING OFF THE DESKTOP

The tools introduced in this dissertation focused predominantly on prototyping user

interfaces that aim beyond the standard desktop paradigm. However, the tools proposed for

doing so were desktop applications themselves. What benefits can be realized by moving the

authoring environment off the desktop? We propose two possible research directions: going

large to create new design studio spaces, and going small by researching authoring tools for

mobile computing devices.

7.2.3.1 Going Large: New Studio Spaces for Interaction Design

As noted in section 7.2.1, professional design is a team activity. Creative work alternates

between phases of individual production and team discussion, ideation, and review. Based on

insight into design team work patterns, what should the computing infrastructure in the

interaction design studio of the future look like? To what extent can designers benefit from

interactive spaces that are tailored to their design process, as opposed to generic meeting

support? Three different ―form factors‖ have been proposed in prior work to support team

collaboration: large interactive wall displays, interactive tables, and entire augmented rooms

that combine interactive walls, tables, and other computing devices.

WALLS

A number of prior systems have focused on supporting design teams with interactive display

walls. Notable systems include PostBrainstorm [98], a large high-resolution projected mural

for enhancing and capturing brainstorming sessions, TEAM STORM [101] a brainstorm

support system that uses individual tablet displays and a shared wall display; and the

Designers‘ Outpost [147], a wall display that integrates digital capture and projection, and

physical post-it notes to create information architecture diagrams for web sites. While wall

177

displays offer the benefit of a shared focal point, arm fatigue limits their use for extended

work sessions [95:p. 1322].

TABLES

Interactive tables have unique benefits that may make them suitable for interaction design

and product design. Discussion in these domains is almost always tied to concrete artifacts:

designers use sketches, photographs, physical prototypes, and other products to structure

conversation and creativity. As a result, design meetings, whether they focus on planning,

brainstorming, or reviewing, draw on a wide variety of ―stuff.‖ Creative thought moves freely

across digital and physical boundaries. We hypothesize that interactive tables are particularly

suited to support and enhance group design work when they enable co-habitation of digital

and physical artifacts on the table surface. In our own recent work, we have developed

Pictionaire (Figure 7.2), a large, multi-user, standing height interactive table that supports

physical to digital transition techniques through overhead image capture [111]. Pictionaire

was expressly created for team meetings of user interface designers; its software supports the

creation of linear interface walkthroughs from sketches and photographs. The next logical

step is to move beyond sketching straightforward walkthroughs into higher-fidelity

prototyping of interfaces on the table.

There are additional reasons for moving away from desktop UIs, even for individual

design work: in the domain of 3D modeling and animation, repetitive strain injuries (RSI) are

a serious problem for professional artists. Research on leveraging multi-touch authoring

techniques for animation professionals, e.g., at Pixar, is ongoing [142]. Large interactive tables

Figure 7.2: The Pictionaire table supports co-located design

team work through multi-touch, multi-device input and

overhead image capture.

178

that offer high-resolution pen-input for digital drawing are also an active area of research

[102].

To truly gauge the potential of table form factors and to find the right fit with

professional practice, longer deployments outside research labs are needed. It would therefore

be valuable to study use of a large interactive table such as our Pictionaire system with a local

professional design company.

ROOMWARE

Streitz‘ iLand [234] and the Stanford iRoom [134] investigated how collections of many

different computing form factors can support team work in a single room. The results, at least

for the Stanford iRoom, have been mixed. Distinct benefits of a room-scale infrastructure

include the ability to migrate applications between multiple displays and retarget interaction

based on the best available input device at the time. However, the complexity of room-scale

systems also creates maintenance and challenges that may outweigh the offered benefits. It is

telling that one particular interactive wall display was replaced with a traditional, non-

interactive whiteboard after it fell into disuse. The experience with roomware then should

serve as reminder not to blindly accept a vision of an all-digital future. More realistically,

future research will have to find solutions that tread a careful line between keeping

appropriate physical processes physical while adding digital flexibility where it is beneficial.

7.2.3.2 Going Small: Authoring on Handheld Devices

As a counterpoint to large, complex team design environments, we may also ask what kind of

authoring is possible on very small devices such as smart phones or PDAs. This question is

reasonable to consider because of two trends:

1) At the cutting edge of technology, smart phones today offer the processing power found

on desktop computers only a few years ago. Video and still image capture, location

sensing, and 3D graphics acceleration are becoming common place. The latest version for

Apple‘s iPhone now includes an application for video cutting and editing on the phone.

2) On the other end of the spectrum, for the majority of the world‘s population, access to

computation happens through cheap, low-powered cell phones. The mobile phone may

be the only computing device millions of people will ever have access to.

These two trends raise the following research questions: Fundamentally, what kind of

content will users want to author on mobile devices in the future? What kind of content can be

authored on such devices? The technical challenges are plentiful. The limited input/output

179

affordances of mobile devices are an immediate, obvious hurdle. While mobile authoring is

unlikely to replace the desktop paradigm, these questions are deserving of future study.

7.2.4 DESIGNING DEVICE ECOLOGIES

d.tools, Exemplar, and Juxtapose all assumed that a single, standalone device or software

interface was being designed. Increasingly, this assumption is no longer sufficient, as a

growing number of smart products offer their value through device or application ecologies

with multiple, connected components. An important, if overused, example of such an ecology

is the Apple iPod + iTunes system. The iPod is a portable digital music player; iTunes is an

application to play and manage one‘s digital media library on a desktop computer, linked to

an online store for browsing and purchasing new music. The overall user experience arises

out of the tight integration between the components. As another example, personal fitness

devices such as heart rate monitors are starting to include web interfaces for analyzing and

sharing the collected data [224].

Sensor networks — collections of small, programmable, self-powered computing nodes

that communicate with each other over ad-hoc wireless networks, are another area where

behavior for multiple interconnected components has to be authored. While early sensor

networks were used for unattended data collection, for example in conflict areas or for

environmental monitoring, future applications, e.g., controlling energy usage in smart

buildings, will likely require end-user interfaces. Merrill‘s Siftables project [187] explicitly

realizes the potential of sensor networks as user interfaces. Each node has a small color

display and can sense neighboring nodes as well as acceleration. While existing research has

introduced hardware and software tools for programming sensor network applications (e.g.,

tinyOS [160]), and multi-display applications (e.g., Vigo [151]), such tools are aimed at

researchers and technology experts. Support for prototyping and end-user authoring of multi-

display or multi-device applications is still lacking and worthy of future research.

180

7.3 CLOSING REMARKS

The desktop computing paradigm has largely ossified around a common set of input devices

and interaction techniques. With the rise of mobile and ubiquitous computing, it has also

already eclipsed its zenith. While desktop computing still has an important role to play, a

wider variety of different computing devices are quickly populating our lives. Beyond bringing

new technologies for novel interfaces within the reach of interaction designers, this

dissertation advocated that tools should also explicitly support fundamental design process

steps. By encouraging exploration of alternatives, informed by feedback, design tools can help

designers create interfaces that truly fit their intended users, contexts, and tasks, while being

delightful to use. The research presented in this dissertation empowers designers to better

envision and realize a broader range of such alternative futures for the post-desktop

computing age.

181

REFERENCES

1. Flash. Adobe Systems. http://www.adobe.com/products/flash/

2. BASIC Stamp. Parallax. http://www.parallax.com/

3. IxDA Discussion Listserv. http://www.ixda.org/discuss.php

4. Silverback Usability Testing Software. Clearleft Ltd. http://silverbackapp.com/

5. Morae User Testing Software. TechSmith Corporation.
http://www.techsmith.com/morae.asp

6. Director. Adobe Systems. http://www.adobe.com/products/director/

7. Cybelius Maestro. Nickom Ltd. http://cybelius.com/

8. Flash Catalyst. Adobe Systems. http://labs.adobe.com/technologies/flashcatalyst/

9. Quartz Composer. Apple Computers.
http://developer.apple.com/graphicsimaging/quartz/quartzcomposer.html

10. Mindstorms. The LEGO Group. http://mindstorms.lego.com/

11. BUG: modular, open source hardware. Bug Labs. http://www.buglabs.net/

12. UML - Unified Modeling Language. Object Management Group. http://www.uml.org/

13. Scratch. MIT Media Lab Lifelong Kindergarten Group. http://scratch.mit.edu/

14. Rational Rose. IBM. http://www-01.ibm.com/software/awdtools/developer/technical/

15. LabVIEW. National Instruments. http://www.ni.com/labview/

16. Simulink. The MathWorks. http://www.mathworks.com/products/simulink/

17. VEE Pro. Agilent Technologies. http://agilent.com/find/vee

18. Max/MSP. Cycling74. http://www.cycling74.com/products/max5

19. Pipes. Yahoo. http://pipes.yahoo.com/pipes/

20. Pixel Bender. Adobe Systems. http://labs.adobe.com/technologies/pixelbender/

21. Eclipse IDE. Eclipse Foundation. http://www.eclipse.org/

22. ATmega128 8-bit Microcontroller. Atmel Corporation.
http://www.atmel.com/dyn/products/product_card.asp?PN=ATmega128

23. ATtiny45 8-bit Microrontroller. Atmel Corporation.
http://www.atmel.com/dyn/products/product_card.asp?PN=ATtiny45

24. Eclipse Graphical Editing Framework (GEF). Eclipse Foundation. http://eclipse.org/gef/

25. SWT: The Standard Widget Toolkit. Eclipse Foundation. http://www.eclipse.org/swt/

26. VST - Virtual Studio Technology. Steinberg Media Technologies GmbH.
http://ygrabit.steinberg.de/~ygrabit/public_html/index.html

27. MTASC Actionscript 2 Compiler. Motion-Twin Technologies. http://mtasc.org/

28. EMFlash. Markelsoft. http://www.markelsoft.com/products/emflash/

29. BCF2000 MIDI Controller. Behringer.
http://www.behringer.com/EN/Products/BCF2000.aspx

30. SketchBook Pro. Autodesk. http://www.autodesk.com/sketchbookpro

182

31. The American Heritage Dictionary of the English Language. Houghton Mifflin Company, 2000.

32. I2C-bus specification and user manual Rev 03. NXP Semiconductors, 2007.
http://www.nxp.com/acrobat/usermanuals/UM10204_3.pdf

33. Aigner, W., Miksch, S., Muller, W., Schumann, H., and Tominski, C. Visual Methods for
Analyzing Time-Oriented Data. Visualization and Computer Graphics, IEEE Transactions on 14,
1 (2008), 47-60.

34. Akers, D., Simpson, M., Jeffries, R., and Winograd, T. Undo and erase events as
indicators of usability problems. Proceedings of the 27th international conference on Human
factors in computing systems, ACM (2009), 659-668.

35. Andreae, P.M. Justified Generalization: Acquiring Procedures from Examples. 1985.
http://dspace.mit.edu/handle/1721.1/6950

36. Atkinson, B. Hypercard. Apple Computers.

37. Avrahami, D. and Hudson, S.E. Forming interactivity: a tool for rapid prototyping of
physical interactive products. Proceedings of the 4th conference on Designing interactive systems:
processes, practices, methods, and techniques, ACM (2002), 141-146.

38. Badre, A.N., Guzdial, M., Hudson, S.E., and Santos, P.J. A user interface evaluation
environment using synchronized video, visualizations and event trace data. Software
Quality Journal 4, 2 (1995), 101-113.

39. Badre, A.N., Hudson, S.E., and Santos, P.J. Sychronizing video and event logs for
usability studies. Proceedings of the workshop on Advanced visual interfaces, ACM (1994), 222-
224.

40. Bailey, B.P., Konstan, J.A., and Carlis, J.V. DEMAIS: designing multimedia applications
with interactive storyboards. Proceedings of the ninth ACM international conference on
Multimedia, ACM (2001), 241-250.

41. Baldonado, M.Q.W., Woodruff, A., and Kuchinsky, A. Guidelines for using multiple
views in information visualization. Proceedings of the working conference on Advanced visual
interfaces, ACM (2000), 110-119.

42. Ballagas, R., Memon, F., Reiners, R., and Borchers, J. iStuff mobile: rapidly prototyping
new mobile phone interfaces for ubiquitous computing. Proceedings of the SIGCHI
conference on Human factors in computing systems, ACM (2007), 1107-1116.

43. Ballagas, R., Ringel, M., Stone, M., and Borchers, J. iStuff: a physical user interface
toolkit for ubiquitous computing environments. Proceedings of the SIGCHI conference on
Human factors in computing systems, ACM (2003), 537-544.

44. Ballagas, R., Szybalski, A., and Fox, A. Patch Panel: Enabling Control-Flow
Interoperability in Ubicomp Environments. Proceedings of the Second IEEE International
Conference on Pervasive Computing and Communications (PerCom'04), IEEE Computer Society
(2004), 241.

45. Barragán, H. Wiring: Prototyping Physical Interaction Design. Unpublished Master's Thesis.
Interaction Design Institute Ivrea, 2004.

46. Bellotti, V., Back, M., Edwards, W.K., Grinter, R.E., Henderson, A., and Lopes, C.
Making sense of sensing systems: five questions for designers and researchers.
Proceedings of the SIGCHI conference on Human factors in computing systems: Changing our world,
changing ourselves, ACM (2002), 415-422.

183

47. Blackwell, A. and Green, T.R.G. A Cognitive Dimensions Questionnaire. 2000.
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDquestionnaire.pdf

48. Böhm, C. and Jacopini, G. Flow diagrams, turing machines and languages with only two
formation rules. Communications of the ACM 9, 5 (1966), 366-371.

49. Brandt, J., Dontcheva, M., Weskamp, M., and Klemmer, S.R. Example-Centric Programming:
Integrating Web Search into the Development Environment. Technical Report CSTR 2009-01.
Stanford University Computer Science Department, 2009. http://hci.stanford.edu/cstr/

50. Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M., and Klemmer, S.R. Two studies of
opportunistic programming: interleaving web foraging, learning, and writing code.
Proceedings of the 27th international conference on Human factors in computing systems, ACM
(2009), 1589-1598.

51. Brooks, F.P. The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition.
Addison-Wesley Professional, 1995.

52. Buchenau, M. and Suri, J.F. Experience prototyping. Proceedings of the 3rd conference on
Designing interactive systems: processes, practices, methods, and techniques, ACM (2000), 424-433.

53. Burnett, M.M., Baker, M.J., Bohus, C., Carlson, P., Yang, S., and Zee, P.V. Scaling Up
Visual Programming Languages. Computer 28, 3 (1995), 45-54.

54. Burr, B. VACA: a tool for qualitative video analysis. CHI '06 extended abstracts on Human
factors in computing systems, ACM (2006), 622-627.

55. Buxton, B. Sketching User Experiences: Getting the Design Right and the Right Design. Morgan
Kaufmann, 2007.

56. Buxton, W. Living in Augmented Reality: Ubiquitous Media and Reactive
Environments. In K. Finn, A. Sellen and S. Wilber, eds., Video Mediated Communication.
Erlbaum, Hillsdale, NJ, 1997, 363-384.

57. Card, S.K., Mackinlay, J.D., and Robertson, G.G. A morphological analysis of the design
space of input devices. ACM Transactions on Information Systems (TOIS) 9, 2 (1991), 99-122.

58. Chi, E.H., Riedl, J., Barry, P., and Konstan, J. Principles for Information Visualization
Spreadsheets. IEEE Computer Graphics and Applications 18, 4 (1998), 30-38.

59. Clark, A. Being There. MIT Press, 1997.

60. Clark, A. Supersizing the Mind. Oxford University Press US, 2008.

61. Clark, A. and Chalmers, D. The Extended Mind. Analysis 58, 1 (1998), 7-19.

62. Coniglio, M. Isadora. TroikaTronix. http://www.troikatronix.com/isadora.html

63. Cooper, A. Visual Basic. Microsoft Corporation.

64. Cooper, A. The Inmates Are Running the Asylum. Sams Publishing, 1999.

65. Crider, M., Bergner, S., Smyth, T.N., et al. A mixing board interface for graphics and
visualization applications. Proceedings of Graphics Interface 2007, ACM (2007), 87-94.

66. Cross, N. Designerly Ways of Knowing. Birkhäuser Basel, 2007.

67. Cypher, A., ed. Watch what I do: Programming by Demonstration. MIT Press, 1993.

68. Davis, R.C., Colwell, B., and Landay, J.A. K-sketch: a 'kinetic' sketch pad for novice
animators. Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in computing
systems, ACM (2008), 413-422.

184

69. Davis, R.C., Saponas, T.S., Shilman, M., and Landay, J.A. SketchWizard: Wizard of Oz
prototyping of pen-based user interfaces. Proceedings of the 20th annual ACM symposium on
User interface software and technology, ACM (2007), 119-128.

70. Dey, A.K., Hamid, R., Beckmann, C., Li, I., and Hsu, D. a CAPpella: programming by
demonstration of context-aware applications. Proceedings of the SIGCHI conference on Human
factors in computing systems, ACM (2004), 33-40.

71. Dobing, B. and Parsons, J. How UML is used. Communications of the ACM 49, 5 (2006), 109-
113.

72. Dow, S., Heddleston, K., and Klemmer, S.R. The Efficacy of Prototyping Under Time
Constraints. Proceedings of Creativity & Cognition 2009, ACM (2009).

73. Dreyfuss, H. Designing for people. Simon and Schuster, 1955.

74. Drucker, S.M., Petschnigg, G., and Agrawala, M. Comparing and managing multiple
versions of slide presentations. ACM (2006), 47-56.

75. Fails, J. and Olsen, D. A design tool for camera-based interaction. Proceedings of the SIGCHI
conference on Human factors in computing systems, ACM (2003), 449-456.

76. Fischer, G., Jennings, P., Maher, M.L., Resnick, M., and Shneiderman, B. Creativity
challenges and opportunities in social computing. Proceedings of the 27th international
conference extended abstracts on Human factors in computing systems, ACM (2009), 3283-3286.

77. Fish, R.S., Kraut, R.E., and Leland, M.D.P. Quilt: a collaborative tool for cooperative
writing. Proceedings of the ACM SIGOIS and IEEECS TC-OA 1988 conference on Office information
systems, ACM (1988), 30-37.

78. Fitzmaurice, G.W., Ishii, H., and Buxton, W.A.S. Bricks: laying the foundations for
graspable user interfaces. Proceedings of the SIGCHI conference on Human factors in computing
systems, ACM Press/Addison-Wesley Publishing Co. (1995), 442-449.

79. Floyd, C. A Systematic Look at Prototyping. In Budde, ed., Approaches to Prototyping.
Springer Verlag, 1984, 105-122.

80. Friedrich, H., Münch, S., Dillmann, R., Bocionek, S., and Sassin, M. Robot programming
by demonstration (RPD): supporting the induction by human interaction. Machine
Learning 23, 2-3 (1996), 163-189.

81. Fujima, J., Lunzer, A., Hornbæk, K., and Tanaka, Y. Clip, connect, clone: combining
application elements to build custom interfaces for information access. Proceedings of the
17th annual ACM symposium on User interface software and technology, ACM (2004), 175-184.

82. Gane, C. and Sarson, T. Structured Systems Analysis: Tools and Techniques. McDonnell
Douglas Systems Integration Company, 1977.

83. Gaver, B. and Martin, H. Alternatives: exploring information appliances through
conceptual design proposals. Proceedings of the SIGCHI conference on Human factors in
computing systems, ACM (2000), 209-216.

84. Gedenryd, H. How Designers Work. PhD Dissertation, Lund University, 1998.

85. Gick, M.L. and Holyoak, K.J. Analogical Problem Solving. Cognitive Psychology 12, 3 (1980),
306-55.

86. Girschick, M. Difference Detection and Visualization in UML Class Diagrams. Technical Report
TUD-CS-2006-5. University of Darmstadt, 2006.

87. Glinert, E.P. Visual Programming Environments. IEEE Computer Society Press, 1990.

185

88. Goldman, K.J. An interactive environment for beginning Java programmers. Science of
Computer Programming 53, 1 (2004), 3-24.

89. Green, T.R.G. Cognitive Dimensions of Notations. In People and Computers V. 1989, 443-
460.

90. Green, T.R.G. and Petre, M. Usability Analysis of Visual Programming Environments: A
'Cognitive Dimensions' Framework. Journal of Visual Languages & Computing 7, 2 (1996), 131-
174.

91. Greenberg, S. Toolkits and interface creativity. Multimedia Tools and Applications 32, 2
(2007), 139-159.

92. Greenberg, S. and Boyle, M. Customizable physical interfaces for interacting with
conventional applications. Proceedings of the 15th annual ACM symposium on User interface
software and technology, ACM (2002), 31-40.

93. Greenberg, S. and Fitchett, C. Phidgets: easy development of physical interfaces through
physical widgets. Proceedings of the 14th annual ACM symposium on User interface software and
technology, ACM (2001), 209-218.

94. Greenfield, E. Presentation at the Adobe/Stanford Workshop on Tools for Exploration,
Creativity, and Play. 2008.

95. Greenstein, J.S., Helander, M., Landauer, T.K., and Prabhu, P. Pointing Devices. In
Handbook of Human-Computer Interaction. Elsevier Science BV, 1977, 1317-1348.

96. Guimbretière, F. Paper augmented digital documents. Proceedings of the 16th annual ACM
symposium on User interface software and technology, ACM (2003), 51-60.

97. Guimbretière, F., Dixon, M., and Hinckley, K. ExperiScope: an analysis tool for
interaction data. Proceedings of the SIGCHI conference on Human factors in computing systems,
ACM (2007), 1333-1342.

98. Guimbretière, F., Stone, M., and Winograd, T. Fluid interaction with high-resolution
wall-size displays. Proceedings of the 14th annual ACM symposium on User interface software and
technology, ACM (2001), 21-30.

99. Hackos, J.T. and Redish, J.C. User and Task Analysis for Interface Design. Wiley, 1998.

100. Haenlein, H. Personal Communication. 2007.

101. Hailpern, J., Hinterbichler, E., Leppert, C., Cook, D., and Bailey, B.P. TEAM STORM:
demonstrating an interaction model for working with multiple ideas during creative
group work. Proceedings of Creativity and Cognition 2007, ACM (2007), 193-202.

102. Haller, M., Brandl, P., Leithinger, D., Leitner, J., Seifried, T., and Billinghurst, M. Shared
Design Space: Sketching Ideas Using Digital Pens and a Large Augmented Tabletop
Setup. In Advances in Artificial Reality and Tele-Existence. 2006, 185-196.

103. Hammontree, M.L., Hendrickson, J.J., and Hensley, B.W. Integrated data capture and
analysis tools for research and testing on graphical user interfaces. Proceedings of the
SIGCHI conference on Human factors in computing systems, ACM (1992), 431-432.

104. Hansen, M. and Rubin, B. The Listening Post.
http://www.earstudio.com/projects/listeningpost.html

105. Harel, D. Statecharts: A visual formalism for complex systems. Science of Computer
Programming 8, 3 (1987), 231-274.

186

106. Harrison, C. and Hudson, S.E. Scratch input: creating large, inexpensive, unpowered
and mobile finger input surfaces. Proceedings of the 21st annual ACM symposium on User
interface software and technology, ACM (2008), 205-208.

107. Hartmann, B., Abdulla, L., Mittal, M., and Klemmer, S.R. Authoring sensor-based
interactions by demonstration with direct manipulation and pattern recognition.
Proceedings of the SIGCHI conference on Human factors in computing systems, ACM (2007), 145-
154.

108. Hartmann, B., Doorley, S., and Klemmer, S.R. Hacking, Mashing, Gluing: Understanding
Opportunistic Design. IEEE Pervasive Computing 7, 3 (2008), 46-54.

109. Hartmann, B., Klemmer, S.R., Bernstein, M., et al. Reflective physical prototyping
through integrated design, test, and analysis. Proceedings of the 19th annual ACM symposium
on User interface software and technology, ACM (2006), 299-308.

110. Hartmann, B., MacDougall, D., and Klemmer, S.R. What Would Other Programmers
Do? Suggesting Solutions to Error Messages. Adjuct Proceedings of UIST 2009.

111. Hartmann, B., Morris, M.R., Benko, H., and Wilson, A.D. Pictionaire: Supporting
Collaborative Design Work by Integrating Physical and Digital Artifacts. Proceedings of
the ACM Conference on Computer Supported Cooperative Work (CSCW). In Press., ACM (2010).

112. Hartmann, B., Morris, M.R., and Cassanego, A. Reducing Clutter on Tabletop
Groupware Systems with Tangible Drawers. Adjunct Proceedings of Ubicomp 2006, IEEE
(2006).

113. Hartmann, B., Wu, L., Collins, K., and Klemmer, S.R. Programming by a sample: rapidly
creating web applications with d.mix. Proceedings of the 20th annual ACM symposium on User
interface software and technology, ACM (2007), 241-250.

114. Hartmann, B., Yu, L., Allison, A., Yang, Y., and Klemmer, S.R. Design as exploration:
creating interface alternatives through parallel authoring and runtime tuning. Proceedings
of the 21st annual ACM symposium on User interface software and technology, ACM (2008), 91-100.

115. Heckel, P. A technique for isolating differences between files. Communications of the ACM
21, 4 (1978), 264-268.

116. Heer, J., Mackinlay, J.D., Stolte, C., and Agrawala, M. Graphical Histories for
Visualization: Supporting Analysis, Communication, and Evaluation. Proceedings of IEEE
Information Visualization 2008, IEEE (2008).

117. Heidenberg, J., Nåls, A., and Porres, I. Statechart features and pre-release maintenance
defects. Journal of Visual Languages & Computing 19, 4 (2008), 456-467.

118. Herring, S.R., Chang, C., Krantzler, J., and Bailey, B.P. Getting inspired!: understanding
how and why examples are used in creative design practice. Proceedings of the 27th
international conference on Human factors in computing systems, ACM (2009), 87-96.

119. Hilbert, D.M. and Redmiles, D.F. Extracting usability information from user interface
events. ACM Computing Surveys 32, 4 (2000), 384-421.

120. Hinckley, K., Baudisch, P., Ramos, G., and Guimbretiere, F. Design and analysis of
delimiters for selection-action pen gesture phrases in scriboli. Proceedings of the SIGCHI
conference on Human factors in computing systems, ACM (2005), 451-460.

121. Hinckley, K., Pierce, J., Sinclair, M., and Horvitz, E. Sensing techniques for mobile
interaction. Proceedings of the 13th annual ACM symposium on User interface software and
technology, ACM (2000), 91-100.

187

122. Hoffmann, R., Fogarty, J., and Weld, D.S. Assieme: finding and leveraging implicit
references in a web search interface for programmers. Proceedings of the 20th annual ACM
symposium on User interface software and technology, ACM (2007), 13-22.

123. Hollan, J., Hutchins, E., and Kirsh, D. Distributed cognition: toward a new foundation
for human-computer interaction research. ACM Trans. Comput.-Hum. Interact. 7, 2 (2000),
174-196.

124. Hong, J.I. and Landay, J.A. WebQuilt: a framework for capturing and visualizing the
web experience. Proceedings of the 10th international conference on World Wide Web, ACM
(2001), 717-724.

125. Hopcroft, J.E., Motwani, R., and Ullman, J.D. Introduction to Automata Theory, Languages,
and Computation. Addison Wesley, 2000.

126. Houde, S. and Hill, C. What do Prototypes Prototype? In M. Helander, T.K. Landauer
and P. Prabhu, eds., Handbook of Human-Computer Interaction. Elsevier Science BV, 1997.

127. Hudson, S.E. and Mankoff, J. Rapid construction of functioning physical interfaces from
cardboard, thumbtacks, tin foil and masking tape. Proceedings of the 19th annual ACM
symposium on User interface software and technology, ACM (2006), 289-298.

128. Hunt, J.W. and McIlroy, M.D. An Algorithm for Differential File Comparison. Computing
Science Technichal Report #41, Bell Laboratories, (1976).

129. Huot, S., Dumas, C., Dragicevic, P., Fekete, J., and Hégron, G. The MaggLite post-WIMP
toolkit: draw it, connect it and run it. Proceedings of the 17th annual ACM symposium on User
interface software and technology, ACM (2004), 257-266.

130. Hutchins, E. Cognition in the Wild. MIT Press, 1995.

131. Hutchins, E. Material anchors for conceptual blends. Journal of Pragmatics 37, 10 (2005),
1555-1577.

132. Hutchins, E.L., Hollan, J.D., and Norman, D.A. Direct manipulation interfaces. Human-
Computer Interaction 1, 4 (1985), 311-338.

133. Ivory, M.Y. and Hearst, M.A. The state of the art in automating usability evaluation of
user interfaces. ACM Computing Surveys 33, 4 (2001), 470-516.

134. Johanson, B., Fox, A., and Winograd, T. The Interactive Workspaces Project:
Experiences with Ubiquitous Computing Rooms. IEEE Pervasive Computing 1, 2 (2002),
67-74.

135. Jones, J.C. Design Methods. Wiley, 1992.

136. Jørgensen, A.H. On the psychology of prototyping. In R. Budde, ed., Approaches to
Prototyping. Springer Verlag, 1984, 278-289.

137. Ju, W., Lee, B.A., and Klemmer, S.R. Range: exploring implicit interaction through
electronic whiteboard design. Proceedings of the ACM 2008 conference on Computer supported
cooperative work, ACM (2008), 17-26.

138. Kelleher, C. Looking Glass: Supporting Learning from Peer Programs. Presentation at
the IBM New Paradigms for Using Computers (NPUC) Conference. 2009.
http://www.almaden.ibm.com/cs/user/npuc2009/slides/NPUC09-CaitlinKelleher.pdf

139. Kelleher, C., Cosgrove, D., Culyba, D., Forlines, C., Pratt, J., and Pausch, R. Alice2:
Programming without Syntax Errors. Adjunct Proceedings of UIST 2002, ACM (2002).

140. Kelley, J.F. An iterative design methodology for user-friendly natural language office
information applications. ACM Transactions on Information Systems (TOIS) 2, 1 (1984), 26-41.

188

141. Kelley, T. and Littman, J. The Art of Innovation: Lessons in Creativity from IDEO, America's
Leading Design Firm. Broadway Business, 2001.

142. Kin, K., Agrawala, M., and DeRose, T. Determining the Benefits of Direct-Touch,
Bimanual, and Multifinger Input on a Multitouch Workstation. Proceedings of Graphics
Interface 2009, (2009), 119-124.

143. Kirsh, D. and Maglio, P. On distinguishing epistemic from pragmatic action. Cognitive
Science 18, 4 (1994), 513-549.

144. Klemmer, S.R. Integrating Physical and Digital Interactions. IEEE Computer 38, 10 (2005),
111-113.

145. Klemmer, S.R., Hartmann, B., and Takayama, L. How bodies matter: five themes for
interaction design. Proceedings of the 6th conference on Designing Interactive systems, ACM
(2006), 140-149.

146. Klemmer, S.R., Li, J., Lin, J., and Landay, J.A. Papier-Mâché: toolkit support for tangible
input. Proceedings of the SIGCHI conference on Human factors in computing systems, ACM (2004),
399-406.

147. Klemmer, S.R., Newman, M.W., Farrell, R., Bilezikjian, M., and Landay, J.A. The
designers' outpost: a tangible interface for collaborative web site design. Proceedings of the
14th annual ACM symposium on User interface software and technology, ACM (2001), 1-10.

148. Klemmer, S.R., Sinha, A.K., Chen, J., Landay, J.A., Aboobaker, N., and Wang, A. Suede: a
Wizard of Oz prototyping tool for speech user interfaces. Proceedings of the 13th annual
ACM symposium on User interface software and technology, ACM (2000), 1-10.

149. Klemmer, S.R., Thomsen, M., Phelps-Goodman, E., Lee, R., and Landay, J.A. Where do
web sites come from?: capturing and interacting with design history. Proceedings of the
SIGCHI conference on Human factors in computing systems, ACM (2002), 1-8.

150. Klemmer, S.R., Verplank, B., and Ju, W. Teaching embodied interaction design practice.
Proceedings of the 2005 conference on Designing for User eXperience, AIGA: American Institute of
Graphic Arts (2005), 26.

151. Klokmose, C.N. and Beaudouin-Lafon, M. VIGO: instrumental interaction in multi-
surface environments. Proceedings of the 27th international conference on Human factors in
computing systems, ACM (2009), 869-878.

152. Kumar, R., Kim, J., and Klemmer, S.R. Automatic retargeting of web page content.
Proceedings of the 27th international conference extended abstracts on Human factors in computing
systems, ACM (2009), 4237-4242.

153. Kurlander, D. and Feiner, S. Editable Graphical Histories. IEEE Workshop on Visual
Languages, IEEE (1988), 127-134.

154. Kurlander, D. and Feiner, S. A Visual Language for Browsing, Undoing, and Redoing
Graphical Interface Commands. In S.K. Chang, ed., Visual Languages and Visual
Programming. Plenum Press, NY, 1990, 257-275.

155. Landay, J.A. and Myers, B.A. Interactive sketching for the early stages of user interface
design. Proceedings of the SIGCHI conference on Human factors in computing systems, ACM
(1995), 43-50.

156. Landay, J.A. and Myers, B.A. Sketching Interfaces: Toward More Human Interface
Design. IEEE Computer 34, 3 (2001), 56-64.

157. Lawson, B. How designers think, 4th ed. Elsevier / Architectural Press, 2006.

189

158. Lee, B.A., Klemmer, S.R., Srivastava, S., and Brafman, R. Adaptive Interfaces for Supporting
Design by Example. Technical Report CSTR 2007-16. Stanford University Computer Science
Department, 2007.

159. Lee, J.C., Avrahami, D., Hudson, S.E., Forlizzi, J., Dietz, P.H., and Leigh, D. The calder
toolkit: wired and wireless components for rapidly prototyping interactive devices.
Proceedings of the 5th conference on Designing interactive systems: processes, practices, methods, and
techniques, ACM (2004), 167-175.

160. Levis, P., Madden, S., Polastre, J., et al. TinyOS: An Operating System for Wireless
Sensor Networks. In W. Weber, J. Babaey and E. Aarts, eds., Ambient Intelligence.
Springer, 2005.

161. Levoy, M. Spreadsheets for images. Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, ACM (1994), 139-146.

162. Lewis, C. and Rieman, J. Task-Centered User Interface Design. 1993.
http://hcibib.org/tcuid/

163. Li, Y., Hong, J.I., and Landay, J.A. Topiary: a tool for prototyping location-enhanced
applications. Proceedings of the 17th annual ACM symposium on User interface software and
technology, ACM (2004), 217-226.

164. Li, Y. and Landay, J.A. Informal prototyping of continuous graphical interactions by
demonstration. Proceedings of the 18th annual ACM symposium on User interface software and
technology, ACM (2005), 221-230.

165. Li, Y. and Landay, J.A. Activity-based prototyping of ubicomp applications for long-
lived, everyday human activities. Proceeding of the twenty-sixth annual SIGCHI conference on
Human factors in computing systems, ACM (2008), 1303-1312.

166. Lichter, H., Schneider-Hufschmidt, M., and Züllighoven, H. Prototyping in Industrial
Software Projects-Bridging the Gap Between Theory and Practice. IEEE Trans. Softw. Eng.
20, 11 (1994), 825-832.

167. Licklider, J.C.R. Man-Computer Symbiosis. Human Factors in Electronics, IRE Transactions
on HFE-1, 1 (1960), 4-11.

168. Lieberman, H., ed. Your Wish is My Command. Morgan Kaufmann, 2001.

169. Lieberman, H., Paternò, F., and Wulf, V., eds. End User Development. Springer, 2006.

170. Lim, Y., Stolterman, E., and Tenenberg, J. The anatomy of prototypes: Prototypes as
filters, prototypes as manifestations of design ideas. ACM Trans. Comput.-Hum. Interact. 15, 2
(2008), 1-27.

171. Lin, J., Newman, M.W., Hong, J.I., and Landay, J.A. DENIM: finding a tighter fit
between tools and practice for Web site design. Proceedings of the SIGCHI conference on
Human factors in computing systems, ACM (2000), 510-517.

172. Lins, E. Crumb128 - Atmel ATmega128 module. chip45 GmbH & Co. KG.
http://www.chip45.com/index.pl?page=Crumb128&lang=en

173. Little, G., Lau, T.A., Cypher, A., Lin, J., Haber, E.M., and Kandogan, E. Koala: capture,
share, automate, personalize business processes on the web. Proceedings of the SIGCHI
conference on Human factors in computing systems, ACM (2007), 943-946.

174. Liu, A.L. and Li, Y. BrickRoad: a light-weight tool for spontaneous design of location-
enhanced applications. Proceedings of the SIGCHI conference on Human factors in computing
systems, ACM (2007), 295-298.

190

175. Loewy, R. Never Leave Well Enough Alone: The Personal Record of an Industrial Designer. Simon
and Schuster, 1951.

176. Lunzer, A. Choice and Comparison Where the User Wants Them: Subjunctive
Interfaces for Computer-Supported Exploration. Proceedings of INTERACT '99: IFIP
Conference on Human-Computer Interaction, (1999), 474-482.

177. Lunzer, A. and Hornbæk, K. Subjunctive interfaces: Extending applications to support
parallel setup, viewing and control of alternative scenarios. ACM Transactions on Computer-
Human Interaction 14, 4 (2008), 1-44.

178. MacIntyre, B., Gandy, M., Dow, S., and Bolter, J.D. DART: a toolkit for rapid design
exploration of augmented reality experiences. Proceedings of the 17th annual ACM symposium
on User interface software and technology, ACM (2004), 197-206.

179. Mackay, W.E. EVA: an experimental video annotator for symbolic analysis of video data.
SIGCHI Bulletin 21, 2 (1989), 68-71.

180. Mackay, W.E., Appert, C., Beaudouin-Lafon, M., et al. Touchstone: exploratory design
of experiments. Proceedings of the SIGCHI conference on Human factors in computing systems,
ACM (2007), 1425-1434.

181. Marks, J., Andalman, B., Beardsley, P.A., et al. Design galleries: a general approach to
setting parameters for computer graphics and animation. Proceedings of the 24th annual
conference on Computer graphics and interactive techniques, ACM (1997), 389-400.

182. Maynes-Aminzade, D., Winograd, T., and Igarashi, T. Eyepatch: prototyping camera-
based interaction through examples. Proceedings of the 20th annual ACM symposium on User
interface software and technology, ACM (2007), 33-42.

183. McConnell, S. Code Complete: A Practical Handbook of Software Construction, 2nd ed. Microsoft
Press, 2004.

184. Mehra, A., Grundy, J., and Hosking, J. A generic approach to supporting diagram
differencing and merging for collaborative design. Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering, ACM (2005), 204-213.

185. Mellis, D.A., Banzi, M., Cuartielles, D., and Igoe, T. Arduino: An Open Electronics
Prototyping Platform. Extended Abstracts of the SIGCHI Conference on Human Factors in
Computing Systems, AMC (2007).

186. Merrill, D. FlexiGesture: A sensor-rich real-time adaptive gesture and affordance learning platform
for electronic music control. S.M. Thesis. Massachusetts Institute of Technology, 2004.

187. Merrill, D., Kalanithi, J., and Maes, P. Siftables: towards sensor network user interfaces.
Proceedings of the 1st international conference on Tangible and embedded interaction, ACM (2007),
75-78.

188. Miller, P., Pane, J., Meter, G., and Vorthmann, S. Evolution of Novice Programming
Environments: The Structure Editors of Carnegie Mellon University. Interactive Learning
Environments 4, 2 (1994), 140 – 158.

189. Moggridge, B. Designing Interactions. The MIT Press, 2007.

190. Myers, B., McDaniel, R., Miller, R., et al. The Amulet environment: new models for
effective user interface software development. IEEE Transactions on Software Engineering 23,
6 (1997), 347-365.

191. Myers, B., Hudson, S.E., and Pausch, R. Past, present, and future of user interface
software tools. ACM Transactions on Computer-Human Interaction 7, 1 (2000), 3-28.

191

192. Myers, B.A. Separating application code from toolkits: eliminating the spaghetti of call-
backs. Proceedings of the 4th annual ACM symposium on User interface software and technology,
ACM (1991), 211-220.

193. Myers, B.A. Graphical techniques in a spreadsheet for specifying user interfaces.
Proceedings of the SIGCHI conference on Human factors in computing systems: Reaching through
technology, ACM (1991), 243-249.

194. Myers, B.A. More Natural User Experiences for Design and Software Development.
Presentation at the IBM New Paradigms for Using Computers (NPUC) Conference.
2009. http://www.almaden.ibm.com/cs/user/npuc2009/slides/EUP-Myers-NPUC-
overview.pdf

195. Myers, B.A., Park, S.Y., Nakano, Y., Mueller, G., and Ko, A.J. How Designers Design and
Program Interactive Behaviors. Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), IEEE Computer Society (2008).

196. Nardi, B.A. A small matter of programming. MIT Press, 1993.

197. Nassi, I. and Shneiderman, B. Flowchart techniques for structured programming.
SIGPLAN Notices 8, 8 (1973), 12-26.

198. Neuwirth, C.M., Kaufer, D.S., Chandhok, R., and Morris, J.H. Issues in the design of
computer support for co-authoring and commenting. Proceedings of the 1990 ACM conference
on Computer-supported cooperative work, ACM (1990), 183-195.

199. Nielsen, J. and Molich, R. Heuristic evaluation of user interfaces. Proceedings of the SIGCHI
conference on Human factors in computing systems: Empowering people, ACM (1990), 249-256.

200. Niemeyer, P. JSR 274: The BeanShell Scripting Language.
http://jcp.org/en/jsr/detail?id=274

201. Norman, D.A. Things that make us smart. Basic Books, 1994.

202. Partridge, K., Chatterjee, S., Sazawal, V., Borriello, G., and Want, R. TiltType:
accelerometer-supported text entry for very small devices. Proceedings of the 15th annual
ACM symposium on User interface software and technology, ACM (2002), 201-204.

203. Pausch, R., Conway, M., and DeLine, R. Lessons learned from SUIT, the simple user
interface toolkit. ACM Transactions on Information Systems (TOIS) 10, 4 (1992), 320-344.

204. Pering, C. Interaction design prototyping of communicator devices: towards meeting
the hardware-software challenge. ACM interactions 9, 6 (2002), 36-46.

205. Perry, M. and Sanderson, D. Coordinating joint design work: the role of communication
and artefacts. Design Studies 19, 3 (1998), 273-288.

206. Peters, K., Hirmes, D., Jokol, K., et al. Flash Math Creativity. friends of ED, 2004.

207. Polanyi, M. The Tacit Dimension. Doubleday, 1966.

208. Pomberger, G., Bischofberger, W.R., Kolb, D., Pree, W., and Schlemm, H. Prototyping-
Oriented Software Development - Concepts and Tools. Structured Programming 12, 1 (1991),
43-60.

209. Puckette, M.S. Pure Data: Another Integrated Computer Music Environment. Proceedings
of the International Computer Music Conference, ICMA (1996), 37--41.

210. Reas, C. and Fry, B. Processing: programming for the media arts. AI & Society 20, 4
(2006), 526-538.

211. Rettig, M. Prototyping for tiny fingers. Communications of the ACM 37, 4 (1994), 21-27.

192

212. Riddle, W.E. Advancing the state of the art in software system prototyping. In R.
Budde, ed., Approaches to Prototyping. Springer Verlag, 1984, 19-26.

213. Rittel, H. and Webber, M. Dilemmas in a General Theory of Planning. Policy Sciences 4,
(1973), 155-169.

214. Rogers, Y. and Muller, H. A framework for designing sensor-based interactions to
promote exploration and reflection in play. International Journal of Human-Computer Studies
64, 1 (2006), 1-14.

215. Rozin, D. Wooden Mirror. http://www.smoothware.com/danny/woodenmirror.html

216. Rubin, J. and Chisnell, D. Handbook of Usability Testing: How to Plan, Design, and Conduct
Effective Tests, 2nd ed. Wiley, 2008.

217. de Sá, M., Carriço, L., Duarte, L., and Reis, T. A mixed-fidelity prototyping tool for
mobile devices. Proceedings of the working conference on Advanced visual interfaces, ACM (2008),
225-232.

218. Sakoe, H. and Chiba, S. Dynamic programming algorithm optimization for spoken word
recognition. IEEE Transactions on Acoustics, Speech and Signal Processing, (1978).

219. Salber, D., Dey, A.K., and Abowd, G.D. The context toolkit: aiding the development of
context-enabled applications. Proceedings of the SIGCHI conference on Human factors in
computing systems, ACM (1999), 434-441.

220. Schneider, K. Prototypes as assets, not toys: why and how to extract knowledge from
prototypes. Proceedings of the 18th international conference on Software engineering, IEEE
Computer Society (1996), 522-531.

221. Schon, D.A. The reflective practitioner. Basic Books, 1983.

222. Schrage, M. Serious play. Harvard Business Press, 2000.

223. di Sciascio, E. and Mongiello, M. Query by Sketch and Relevance Feedback for Content-
Based Image Retrieval over the Web. Journal of Visual Languages & Computing 10, 6 (1999),
565-584.

224. Segerståhl, K. Utilization of pervasive IT compromised? Proceedings of the 7th International
Conference on Mobile and Ubiquitous Multimedia - MUM '08, (2008), 168.

225. Selker, T. A bike helmet built for road hazards. 2006. http://news.cnet.com/2300-
1008_3-6111157-1.html?tag=mncol

226. Sharp, H., Rogers, Y., and Preece, J. Interaction Design: Beyond Human-Computer Interaction,
2nd ed. Wiley, 2007.

227. Shneiderman, B. Overview + Detail. In S.K. Card, J.D. Mackinlay and B. Shneiderman,
eds., Readings in Information Visualization. Morgan Kaufmann, 1996.

228. Shneiderman, B. Leonardo's Laptop: Human Needs and the New Computing Technologies. The MIT
Press, 2003.

229. Shneiderman, B., Fischer, G., Czerwinski, M., et al. Creativity Support Tools: Report
From a U.S. National Science Foundation Sponsored Workshop. International Journal of
Human-Computer Interaction 20, 2 (2006), 61.

230. Simon, H.A. The sciences of the artificial. MIT Press, 1996.

231. Smith, D.C., Cypher, A., and Spohrer, J. KidSim: programming agents without a
programming language. Communications of the ACM 37, 7 (1994), 54-67.

193

232. Song, H., Guimbretière, F., Hu, C., and Lipson, H. ModelCraft: capturing freehand
annotations and edits on physical 3D models. Proceedings of the 19th annual ACM symposium
on User interface software and technology, ACM (2006), 13-22.

233. Star, S. and Griesemer, J. Institutional Ecology, `Translations' and Boundary Objects:
Amateurs and Professionals in Berkeley's Museum of Vertebrate Zoology, 1907-39. Social
Studies of Science 19, 3 (1989), 420, 387.

234. Streitz, N.A., Geißler, J., Holmer, T., et al. i-LAND: an interactive landscape for creativity
and innovation. Proceedings of the SIGCHI conference on Human factors in computing systems,
ACM (1999), 120-127.

235. Stylos, J. and Myers, B.A. Mica: A Web-Search Tool for Finding API Components and
Examples. Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), IEEE (2006), 195-202.

236. Su, S. Visualizing, Editing, and Inferring Structure in 2D Graphics. Adjunct Proceedings of
UIST 2007, ACM (2007).

237. Teague, W.D. Design This Day; the Technique of Order in the Machine Age. Harcourt, Brace and
Company, New York, 1940.

238. Teitelbaum, T. and Reps, T. The Cornell program synthesizer: a syntax-directed
programming environment. Commun. ACM 24, 9 (1981), 563-573.

239. Terry, M. Set-based user interaction. Unpublished Ph.D. Dissertation. Georgia Institute of
Technology, 2005.

240. Terry, M. and Mynatt, E.D. Recognizing creative needs in user interface design.
Proceedings of the 4th conference on Creativity & cognition, ACM (2002), 38-44.

241. Terry, M. and Mynatt, E.D. Side views: persistent, on-demand previews for open-ended
tasks. Proceedings of the 15th annual ACM symposium on User interface software and technology,
ACM (2002), 71-80.

242. Terry, M., Mynatt, E.D., Nakakoji, K., and Yamamoto, Y. Variation in element and
action: supporting simultaneous development of alternative solutions. Proceedings of the
SIGCHI conference on Human factors in computing systems, ACM (2004), 711-718.

243. Tohidi, M., Buxton, W., Baecker, R., and Sellen, A. Getting the right design and the
design right. Proceedings of the SIGCHI conference on Human Factors in computing systems, ACM
(2006), 1243-1252.

244. Toomim, M., Begel, A., and Graham, S.L. Managing Duplicated Code with Linked
Editing. Proceedings of the 2004 IEEE Symposium on Visual Languages - Human Centric Computing,
IEEE Computer Society (2004), 173-180.

245. Tufte, E.R. Envisioning information. Graphics Press, 1990.

246. Wang, G. and Cook, P.R. On-the-fly programming: using code as an expressive musical
instrument. Proceedings of the 2004 conference on New interfaces for musical expression, National
University of Singapore (2004), 138-143.

247. Weiler, P. Software for the usability lab: a sampling of current tools. Proceedings of the
INTERACT '93 and CHI '93 conference on Human factors in computing systems, ACM (1993), 57-
60.

248. Weiser, M. The Computer for the Twenty-First Century. Scientific American 265, 3 (1991),
94-104.

194

249. Wellner, P.D. Statemaster: A UIMS based on statechart for prototyping and target
implementation. SIGCHI Bulletin 20, SI, 177-182.

250. Wieringa, R. A survey of structured and object-oriented software specification methods
and techniques. ACM Comput. Surv. 30, 4 (1998), 459-527.

251. Winograd, T., ed. Bringing design to software. ACM, 1996.

252. Winter, D.A. Biomechanics and Motor Control of Human Movement. Wiley-Interscience, 1990.

253. Wobbrock, J.O., Wilson, A.D., and Li, Y. Gestures without libraries, toolkits or training:
a $1 recognizer for user interface prototypes. Proceedings of the 20th annual ACM symposium
on User interface software and technology, ACM (2007), 159-168.

254. Wojahn, P.G., Neuwirth, C.M., and Bullock, B. Effects of interfaces for annotation on
communication in a collaborative task. Proceedings of the SIGCHI conference on Human factors
in computing systems, ACM (1998), 456-463.

255. Wong, Y.Y. Rough and ready prototypes: lessons from graphic design. Posters and short
talks of the 1992 SIGCHI conference on Human factors in computing systems, ACM (1992), 83-84.

256. Wright, M. Open Sound Control: an enabling technology for musical networking.
Organised Sound 10, 3 (2005), 193-200.

257. Yee, K., Swearingen, K., Li, K., and Hearst, M. Faceted metadata for image search and
browsing. Proceedings of the SIGCHI conference on Human factors in computing systems, ACM
(2003), 401-408.

258. Yeh, R.B., Paepcke, A., and Klemmer, S.R. Iterative design and evaluation of an event
architecture for pen-and-paper interfaces. Proceedings of the 21st annual ACM symposium on
User interface software and technology, ACM (2008), 111-120.

259. Yourdon, E. Just Enough Structured Analysis. Yourdon Press, 2006.
http://www.yourdon.com/jesa/pdf/JESA_mpmb.pdf

260. Zhang, H. Control Freaks. Unpublished Master's Thesis. Interaction Design Institute Ivrea,
2006. http://failedrobot.com/thesis/

261. Zhang, H. and Hartmann, B. Building upon everyday play. CHI '07 extended abstracts on
Human factors in computing systems, ACM (2007), 2019-2024.

