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(a) Photoshop history list (b) Our history with semantic segments (c) Our semantic navigation

Figure 1: User interface of our system. (a) is the Photoshop history list. (b) is our data-driven adaptive history list. Our UI assigns a unique color to
all entries belonging to the same semantic segment, with the scroll bar (right) colored accordingly. Our UI also groups repeating commands into tiles, which
can be folded/unfolded via the corresponding plus/minus signs. (c) is the thumbnail preview mode for semantic segments. The color bar at right shows the
assigned colors for the segments as in (b). Double clicking a thumbnail image would lead users to the corresponding segment in the history list. (Note: all
screen shots display the same image; the perceived color differences are caused by different color spaces of Photoshop and our Qt-based UI.) Please refer to
the accompanying video for live actions. (Photo credit: Kevin Dooley)

Abstract

Digital image editing is usually an iterative process; users repeti-
tively perform short sequences of operations, as well as undo and
redo using history navigation tools. In our collected data, undo,
redo and navigation constitute about 9 percent of the total com-
mands and consume a significant amount of user time. Unfortu-
nately, such activities also tend to be tedious and frustrating, espe-
cially for complex projects.

We address this crucial issue by adaptive history, a UI mecha-
nism that groups relevant operations together to reduce user work-
loads. Such grouping can occur at various history granularities. We
present two that have been found to be most useful. On a fine level,
we group repeating commands patterns together to facilitate smart
undo. On a coarse level, we segment commands history into chunks
for semantic navigation. The main advantages of our approach are
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that it is intuitive to use and easy to integrate into any existing tools
with text-based history lists. Unlike prior methods that are predom-
inately rule based, our approach is data driven, and thus adapts bet-
ter to common editing tasks which exhibit sufficient diversity and
complexity that may defy predetermined rules or procedures.

A user study showed that our system performs quantitatively bet-
ter than two other baselines, and the participants also gave positive
qualitative feedbacks on the system features.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; H.5.2 [Information Interfaces
and Presentation (e.g., HCI)]: User Interfaces—Graphical user in-
terfaces (GUI);

Keywords: image editing, interaction, adaptive history, smart
undo, semantic navigation

1 Introduction

Undo, redo, and history navigation are the most commonly used
operations in interactive image editing [Lafreniere et al. 2010; My-
ers et al. 2015]. In our data collected from digital artists, such meta
commands constitute about 9% of all issued commands (66 out of
797 per task average). However, they are also the most tedious, as
it may take many repetitive operations to reach the intended points
on the editing histories. This can greatly diminish user efficiency
and satisfaction in common image editing tasks.

http://dx.doi.org/10.1145/2856400.2856417


Prior works attempted to address this critical issue by proposing
new graphical history representations or better undo mechanisms.
However, these methods either introduce completely different rep-
resentations from the traditional linear histories and thus present
usability issues (e.g. hierarchical graphs in [Chen et al. 2011])
or hardcoded rules that might not be flexible enough in handling
more complex real-world cases (e.g. regular expressions in [Den-
ning et al. 2011] and spatial filters in [Meng et al. 1998]). Thus, a
linear text list, despite its deficiencies, remains the dominant form
of operation history representation in image editing software.

We propose adaptive history, a data-driven method to aggregate
user editing operations for more efficient undo, redo, and history
navigation (Figure 1).

Our two key observations are that 1) users often mentally chunk
sequences of low-level editing operations into high-level, seman-
tically meaningful units; during undo operations, users typically
seek to undo an entire semantic unit instead of just individual op-
erations, and 2) there are certain repeating command patterns with
frequent occurrences in the command histories which are semanti-
cally inseparable (e.g. copy + paste or patch tool + patch selection
in Photoshop). The challenge is to identify the boundaries between
such semantic units. By collecting and analyzing actual data from
professional artists through instrumented image editing tools, we
use machine learning algorithms to train a classifier that can predict
the boundaries between semantic units. We employ two particular
machine learning methods for two levels of editing history granu-
larity:

Semantic navigation On a coarse level, we use support vector ma-
chines (SVM) to identify high level semantic segments, such
as skin smoothing or hair coloring for portrait retouching.

Smart undo On a fine level, we use n-gram analysis to identify
operations often grouped together to accomplish specific mi-
cro tasks, such as “patch tool, patch selection, deselect” for
blemish removal in Photoshop.

Overall, our approach belongs to the emerging trend of data-driven
user interfaces (e.g. [Grabler et al. 2009; Su et al. 2009; Hartmann
et al. 2010; Chaudhuri and Koltun 2010; Li et al. 2011; Lafre-
niere et al. 2011; Lu et al. 2012; Kazi et al. 2012; Yu et al. 2012;
Limpaecher et al. 2013; Iarussi et al. 2013; Berger et al. 2013; Zit-
nick 2013; Pavel et al. 2013; Kazi et al. 2014b; Chen et al. 2014;
Lu et al. 2014; Xing et al. 2014; Kazi et al. 2014a; Xing et al.
2015]), with specific applications in interactive image editing and
history navigation. Our user interface design leverages the familiar
UI concept of traditional linear history lists: for appearances, we
enhance traditional linear history lists with visual cues with colors
and foldable items; for behaviors, users still interact with our adap-
tive history lists as usual, but have the option to navigate through
semantic chunks rather than just individual commands.

We evaluate our system by comparing it with traditional linear text
history lists and time-based clustering of command history in [Li
et al. 2011]. The result shows that our system performs significantly
better than two other baselines. The participants, all of them profes-
sional artists, provided positive feedback on the proposed system
features and commented that our system could be very helpful to
their daily tasks.

2 Previous Work

Here we review prior art most relevant to our work.

2.1 Operation Sequence Analysis

Data analysis has been extensively applied for operation sequences
of content creation tools. However, efforts so far have been pri-
marily focusing on text editing, such as word processing [Kay and
Thomas 1995; Linton and Schaefer 2000] and software develop-
ment [Murphy et al. 2006]. Similar efforts for image editing have
made significant progress recently, such as command vocabular-
ies [Lafreniere et al. 2010], command recommendation [Li et al.
2011], UI customization [Lafreniere et al. 2011], command brows-
ing [Pavel et al. 2013], and sequence prediction [Xing et al. 2014].
We encourage readers to see a recent survey on different concep-
tual models from Nancel and Cockburn [2014]. Such data driven
analysis has yet to be applied for facilitating common undo, redo,
and history navigation operations, which our work targets.

2.2 Graphical History

Graphical history visualization has long been an active research
field; see a comprehensive suvey from [Heer et al. 2008]. Here,
we focus on works most relevant to operation history in real-world
settings (where each history may contain hundreds of commands).
These focus on two main strategies: clustering and filtering.

The basic idea behinds clustering is to group similar or related com-
mands together to reduce visual clutter [Kurlander and Feiner 1991;
Nakamura and Igarashi 2008; Grabler et al. 2009]. Example meth-
ods include Chronicle from [Grossman et al. 2010] which builds
the history hierarchy based on the user “save” commands, Mesh-
flow from [Denning et al. 2011] which clusters operations based on
hand-crafted regular expression rules, and [Chen et al. 2011] which
visualizes editing histories via hierarchical graphs.

The basic idea behinds filtering is to selectively display information
based on contextual criteria, including spatial relationships [Meng
et al. 1998; Nakamura and Igarashi 2008; Denning et al. 2015; Chen
et al. 2011], temporal relationships [Grossman et al. 2010; Denning
et al. 2011], or content properties [Kurlander and Bier 1988; Calla-
han et al. 2006; Su 2007; Denning and Pellacini 2013; Chen et al.
2014].

A notable difference between these prior techniques and our
method is that they are based on rules or heuristics whereas ours
is data driven. Such hand crafted rules or heuristics are usually dif-
ficult to derive and have built-in assumptions that might not hold
when facing the diversity real-world command histories. A data-
driven approach could instead learn from such diversity and provide
better results.

2.3 Undo Management

Navigating editing history is one of the most common operations
for interactive editing tools, in particular undo and redo. For digi-
tal content creation, methods such as [Meng et al. 1998; Su 2007;
Chen et al. 2011; Myers et al. 2015] provided the functionality
of “undo by selection”, and Edward et al. [2000] allowed users to
bound atomic operations into semantic “chunks” for better naviga-
tion while also prevent accidental undo that breaks such chunk. In-
spired by Edwards et al. [2000], the short-term “smart undo” func-
tion in our system also serves a similar purpose. However, instead
of manually defined rules as in these prior works, we learn the op-
eration patterns from analyzing collected user data. Thus, our algo-
rithm is not constrained to any pre-defined rules and thus can adapt
to different users, tasks, and tool versions.



3 User Interface

The history panel serves as a core UI component in common image
editing systems such as Photoshop and GIMP, with main usages in-
cluding undo, redo and history navigation. However, its basic repre-
sentation and interaction have not evolved much from the original
linear text-based lists. We propose a data-driven adaptive history
with two key enhancements over traditional history lists: semantic
navigation at a coarse level and smart undo at a fine level.

This two-level design was based on our informal discussions with
artists as well as field observations on their workflows. In partic-
ular, we noticed that artists tend to work on two different levels of
granularity:

• On a coarse level, they usually used layers or files to manage
and store progress milestones, e.g. finished eye retouching or
skin smoothing.

• On a fine level, they frequently undid through history list
progresses that were considered to be unsatisfactory or ex-
ploratory.

Our semantic navigation and smart undo have been designed in
response to these two levels of common artist workflows. Even
though prior works have proposed fancier multi-resolution naviga-
tion (e.g. [Chen et al. 2011; Denning et al. 2011; Denning et al.
2015]), we believe this is not necessary, due to both prior user stud-
ies (e.g. “users tended to stay on a single resolution to avoid losing
context of their navigations” as in [Chen et al. 2011]) as well as our
own observations as described above.

From the users’ perspective, our interface design minimally
changes the feel and look of the traditional history lists. In par-
ticular, users still interact with our adaptive history as usual, but
with enhanced interaction through semantic navigation and smart
undo, and enhanced perception through color coding and foldable
tile-based command grouping. From the developer’s perspective
our interface design, due to its minimal change from traditional his-
tory lists, should be straightforward to port into their existing UIs.
Our underlying algorithms are all data-driven; with proper training
data, developers can train their own classifier as either a fixed pre-
process or as an ongoing process that dynamically adapts to user
behaviors.

3.1 Semantic Navigation

Scenario Alex is in the middle of a photo retouching session. He
has just finished the hair part of the portrait and was performing the
skin smoothing. Feeling uncomfortable about the overall feeling of
skin, he decided to undo all the skin smoothing work he has done
and start over. At this point, as the history list has already grown
too long and the image already contains too many layers, Alex had
to go through lots of trials-and-errors to reach the right roll-back
spot via the Photoshop history list (Figure 1a).

With our system, Alex can clearly see the automatically colored and
aggregated segments of his work history (Figure 1b) and locate the
right spot of interest. Our system also provides the dual view func-
tion that allows Alex to switch between text and thumbnail view
(Figure 1c) and performs analogous operations.

Design We design our system with simplicity and minimal
changes to traditional linear histories. The segments are visual-
ized with different colors and correspond to semantic chunks such
as hair retouch, skin smoothing, and eye sharpening. We pick the
color scheme with the following goals in mind: 1) segment colors
should differ sufficiently from each other for distinctiveness, and 2)

the colors should be dark enough to visualize the text labels, which
are all white instead of in different colors to avoid confusion. In our
early design phase, we have tried to use colors based on the under-
lying color changes of the corresponding image regions. However,
this might not produce distinctive enough colors. For example, the
representative colors for retouching eyes and retouching hair can be
very similar.

The segmentation is performed on the fly, based on the classifier
trained from the data collected from the professional artists. Users
can adjust the granularity of the segmentation using the slider bar
at the top of the UI (Figure 1b). In addition, we also modify the
color of the scroll bar beside the history list, so that users can see
the relative lengths of the segments (Figure 1b).

(a) lists (b) tiles (c) groups

Figure 2: History list display modes. Our history list has three display
modes: list, tile, and group. We provide zoom-in views from our main UI
in Figure 1 for easier comparison. List mode (a) is the basic text-based
list with semantic colors, tile mode (b) groups the detected repeating com-
mands into a single tile, and group mode (c) folds the command groups in
(b) into single entries. Users can also manually fold/unfold by clicking on
the plus/minus sign on each group tile.

3.2 Smart Undo

Scenario During skin smoothing, Alex uses the healing patch
tool to remove large area of undesired features on the skin. Each
removal operation involves three steps: (1) select the target region
to be retouched, (2) drag the target region to the artifact-free source
region, and (3) deselect the target region. If he is not satisfied with
the result, Alex would have to issue the undo command three times
in a row to fully undo the retouching effect. Similar scenarios also
happen on other tools such as the clone stamp tool, the pen tool
(add anchor point, drag anchor point) and common action patterns
such as copy-paste-move. Also as Alex is using the brush tool, the
history list is quickly filled with identical “brush tool” entries. If
he is not satisfied with the outcome, using the traditional interface
he would have to continuously issue undo command and visually
check the result to find the point he wishes to return to.

With our system (Figure 2), such repeating commands are automat-
ically grouped into a foldable single entry. Alex can smart undo
the whole chunk of command and navigate through the history list
more easily.

Design We provide three different display modes for visualizing
the repeating command patterns (Figure 2). Besides the basic com-
mand list, users can switch to “tile” mode, where repeating patterns
are grouped into single tiles. In “group” mode, tiles are automati-
cally folded into single entry, which users can manually fold/unfold
by clicking on the plus/minus icons. In these modes, the smart undo
function can undo a whole tile/group in addition to a single com-
mand.



Figure 3: Spatial filter. Users can select particular regions of interest
(A), and review the corresponding history via the thumbnail images at (B).
(Photo credit: Kevin Dooley)

3.3 Spatial Filter

Besides two major functions mentioned above, we also provide a
spatial filter function to enhance the usability of our system. Spatial
filter allows users to select particular image regions of interest and
see only the relevant portions of the command history. For example,
Alex might want to roll back to the point before he retouched the
eyes. With this function, he can select the region of interest and
our system will show the thumbnail image of the region in each
semantic segmentation (Figure 3).

4 Method

The main challenges for semantic navigation and smart undo are
to segment the working history into semantically meaningful seg-
ments and to identify atomic repeating patterns. We adopt a data-
driven approach based on two hypotheses:

H1 Artists tend to use different command and/or parameter sets for
different retouching tasks, e.g., hairs or lips.

H2 Experienced artists tend to perform certain image editing pro-
cedure in a fixed order, e.g., copy-paste-move.

A valid H1 implies a classifier that segments and labels the given
editing history list. A valid H2 implies the usefulness of the smart
undo function.

In the following sections, we describe our data collection process,
examining our hypotheses, followed by the algorithm details.

4.1 Data Collection

Instrumentation We chose Photoshop as our target software due
to its popularity among digital artists. The instrumentation is

achieved by the history log tool provided in Photoshop, which out-
puts commands and parameters in a human-readable text form, as
well as a Photoshop scripts written by ourselves that records inter-
mediate frames of every command in the history as well as stroke
motions and parameters of brush-operations that were not captured
by the Photoshop history log tool.

Artists To collect the training data, we recruited 10 freelancer
artists on oDesk. They were all professional photo retouchers with
at least 5 years of working experiences residing in different coun-
tries including Belarus, Bulgaria, Colombia, Philippines, Serbia,
Ukraine and United States. The average hourly payment was 14.3
U.S. dollars (σ = 5.4). Six of them used keyboards and mice as
their primary interaction devices while the other four used Wacom
pen tablets.

Tasks We then gave each artist four portrait photos downloaded
from Flickr for retouching. We were aware of the fact that some
artists may prefer to perform minimal retouching to keep the por-
traits as natural as possible. To avoid such situation and make sure
our collected data contains enough information, we gave artists a
minimum retouch requirement list, e.g. you must retouch the hair,
whiten the eyes, remove blemish, etc. Interestingly, in the end we
noticed that all retouchers actually performed much more retouches
than we asked. We believed this implied that these professional re-
touchers truly respected their works and had a very high bar on the
quality of the portrait shot. For the retouching of all four photos,
the average working time was 9 hours and 28 min (σ = 1 hour and
55 min) and the average number of collected operations per artist
was 852 (σ = 444, min = 893, max = 5977).

After finishing retouching, we asked the artists to segment and label
their own retouching processes into smaller sub-tasks based on the
reference retouching tag lists we provided (Appendix A). This list
was compiled with the chapter/section names of the photo retouch-
ing tutorial book [Kelby 2011] with entries like “eye sharpening”,
“blemish removal”, “skin smooth”, etc. We also made it clear to
artists that they can add their own tag descriptions if necessary.

In summary, we collected three types of data: fine-grained opera-
tion sequences (in text), corresponding image content of each op-
eration, and the text labels describing the operation sequences pro-
vided by the artists.

4.2 Insights from Collected Data

Hypothesis H1 is false After examining the data, we surpris-
ingly found out that it is difficult to statistically distinguish the com-
mand sets of different retouch tasks. For example, we expect to see
dramatically different command sets between eye sharpening and
skin smoothing. However, multiple artists used similar commands
for both, e.g. even sharpen filter (with masked layers) appears in
the skin smoothing tasks to compensate the blurred facial features.

However, the data shows that when transition from one image edit-
ing task to another, artists tend to create new layers, start using new
editing operations, and adjust the parameters, such as brush size,
brush color etc. Editing operations are also more likely to be ap-
plied at different spatial location during the transition. This obser-
vation leads to the use of a binary classifier (SVM) that identifies
the transition spot between tasks and divides the editing history into
semantic segments. Note that some meta operations, such as layer
creation or layer merge, frequently appear at the boundaries of se-
mantic segments. However, naively treat such layer operations as
transition points may not produce the desired outcomes. For ex-
ample, skin smoothing often involves the creation and combination



of multiple layers, which should belong to one instead of multiple
semantic segments.

Hypothesis H2 is true As we hypothesized, the collected data
contains many short repeating patterns with high frequency and
are semantically inseparable. Common examples include “Patch
Tool, Patch Selection, Deselect” for skin retouch, “Add Anchor
Point, Drag Anchor Point” for path selection, and “Master Opac-
ity Change, Merge Layer” for finishing retouching sub-tasks. The
inseparability means that it is usually meaningless to undo or navi-
gate to the middle of such chunks.

4.3 Semantic Segmentation

Per our insights from the collected data, we design a Support Vec-
tor Machine (SVM) classifier to label the transition spots between
retouching tasks, i.e., the boundaries between semantic segments.

Feature Vector We associate a feature vector with each opera-
tion; the vector is defined as the combination of the operation his-
togram of the k preceding operations and the corresponding af-
fected image regions. Note that we use a causal window so that
we can perform on-the-fly prediction based on users’ current oper-
ation.

Formally, for the jth operation, we denote its previous k operations
as its neighbor N(j) and its feature vector F (j) can be written as:

F = {O,P} (1)

where:

• O ∈ Ro indicates the histogram of operations in N , Ro the
o-dimensional (reduced) operation space (explained below),
and O[i] the number of type-i operations in N .

• P ∈ Rp is the position vector; we divide the image into p grid
cells (default p = 16), and Pi = 1 if the content at ith cell is
modified and 0 otherwise.

With the feature vector defined as above, we train the SVM classi-
fier using LIBSVM [Chang and Lin 2011]. We found k = 10 yield
reasonable precision and used it for all our experiments.

Operation space dimension reduction There are about 168 ba-
sic operations in Photoshop (command information obtained from
Photoshop → Edit → Keyboard Shortcuts → Summarize). We
found the large number of operations hamper the ability of our clas-
sifier to extract meaningful information from collected user editing
sequences. To address this issue, we reduce the dimensionality of
operation space, i.e., the dimensions of O in the feature vector.

Among all Photoshop operations, some have similar semantic
meanings, such as (“New Layer”, “New Color Filled Layer”,
“Layer from Background Color”) and (“Rotate 90 degree clock-
wise”, “Rotate 180 degree clockwise”), while others are designed
for similar purposes, e.g., there are 15 different blurs in Photoshop.
Fortunately, the Photoshop menu hierarchy already provides good
suggestions about command clusters; for example, all blurs com-
mands are clustered under the menu item of “blur”. This allows
us to reduce the dimension of the command space from 168 to 41
by simply classifying all non-root-level commands into its ancestor
command at the root level menu.

Validation To exam the precision of our SVM classifier, we per-
formed a 4-fold validation. In our data set, each of 10 artists was
asked to retouch and label four photos. We trained the classifier
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Figure 4: Pattern usage chart. There are 4 patterns (average length 3)
shared by half of the artists while 56 patterns (average length 3.7) used by
only one artist.

from 3 of the 4 photos (i.e. 30 photo retouch history in sum) and
predict the remaining one (i.e. 10 photo retouch history). The aver-
age prediction precision is 96%.

However, our data set is asymmetric where most positions are neg-
ative (not boundary) and only very few of them, which lie on seg-
mentation boundaries, are positive. If we only look at the positive
label, the prediction precision is around 70%. More specifically,
around 80% of the errors are false positive, which causes over-
segmentation of the given editing history.

We believe that the lower prediction rate is due to the different gran-
ularity of labeling in our data set. For example, some artists might
label the whole chunk of operations as face retouch while others
might separate it into skin smoothing, blemish removal, etc. As a
result, applying a classifier with finer granularity to data with coarse
labels will produce many false positive labels.

Fortunately, in our user study, such over segmented results did not
turn out to negatively affect users’ experience of semantic naviga-
tion. Over-segmentation might decrease the effectiveness of se-
mantic navigation, but it is still much better than traditional non-
segmented history lists.

4.4 Smart Undo

N-gram analysis To extract the useful repetitions, we perform
standard n-gram analysis (n >= 3). There are lots of redundant
patterns in the n-gram table, e.g. the pattern of ABCABC is the
complete repetition of ABC, and we should only insert the ABC
pattern into our pattern table. We resolve such redundancy by a
top-down→ bottom-up approach. We first scan the table from top-
down (larger n to smaller n), and remove the patterns that are com-
plete repetitions of some existing patterns (e.g., ABCABC is the
complete repetition of ABC). Then in second pass, we perform a
bottom-up scan to remove patterns which are sub-strings of other
longer patterns and has same count (e.g. ABC has 3 appearance,
and there are already 2 ABCE and 1 ABCD in the table).

Repeating pattern By performing the n-gram analysis, we ex-
tract command patterns with length at least 3 and occur more than
3 times in the data. We found 112 such patterns with the average
occurrence count of 7 (σ= 27).

Figure 4 shows that users usually have their own particular personal



Pattern Count User%
Eraser, Master Opacity Change, Eraser 26 50%
Move, Free Transform, Move 11 50%
Master Opacity Change, Hue/Saturation
Layer, Modify Hue/Saturation Layer

8 50%

Brush Tool, New Layer, Brush Tool 7 50%
Patch Tool, Patch Selection, Deselect 295 40%
Blending Change, Master Opacity Change,
Blending Change

12 40%

Table 1: Pattern usage table. Here we show top patterns that are used by
most artists.

Pattern Count User%
Healing Brush, Layer Via Copy, Gaus-
sian Blur, High Pass, Curves Layer, Mod-
ify Curves Layer, Group Layers, Blending
Change, Channel Mixer Layer, Modify Chan-
nel Mixer Layer

4 10%

Duplicate Layer, High Pass, Gaussian Blur,
Invert, Blending Change, Blending Options,
Add Layer Mask, Invert, Brush Tool

4 10%

Duplicate Layer, High Pass, Blending
Change, Add Layer Mask, Invert, Eraser

5 10%

Master Opacity Change, Duplicate Layer,
Merge Layers, Selective Color Layer, Fill,
Brush Tool

4 20%

Lasso, Paste, Layer Order, Move, Free Trans-
form, Eraser

5 10%

Table 2: Table with longer command patterns. There are some longer
repeating patterns, usually reflection of preferences of individual or small
groups of users.

usage patterns but about half of them are still shared by two or more
users. While Tables 1 and 2 show that shorter command patterns
are more likely to be shared among users while longer ones usually
reflects the personal usage patterns.

The command-patterns with high numbers of occurrence across
users imply that they should be treated as an atomic operation in
the history list and thus lead to our idea of “smart undo”. Such pat-
terns can also help improve the design of image editing softwares
or as macros to distribute over the community [Berthouzoz et al.
2011; Lafreniere et al. 2011].

Identical repetition It is common for users to issue identical
commands repeatedly, such as brush, clone tool or move. Some
previous works count all such repeating commands as single en-
tries [Kurlander and Feiner 1992; Lafreniere et al. 2011], which we
believe is not correct since identical command type could still have
different semantic meanings (e.g. brush operations for retouching
hair and retouching skin should not be clustered together). In our
system, we group such identical repeating commands based on the
position of modified region and time spent on operations. More
specifically, we group commands together if they modify the same
region of the image (based on the position vector) or is issued in
less than 500 ms interval. Note that parameters of operations could
also serve as a good factor for grouping, but currently it is not pos-
sible to obtain parameters related to brush operations in Photoshop
due to the SDK constraint.

5 System Implementation

We built our system as a standalone application instead of part of
Photoshop; the core algorithms are implemented with Qt and the
user interface with QML. With newly announced Connection SDK
from Adobe, our application communicates and synchronizes with
Photoshop via TCP protocol.

It is certainly possible to implement our system via Photoshop plug-
in for direct integration, allowing users to perform all the interaction
and editing in one place. However, after some considerations, we
chose not to do so for our first prototype because the plugin SDK
imposes too many limitations on UI design. For example, it is not
clear how we can create important UI components in our system
such as a list with foldable items or a scrollbar with multiple colors
through Photoshop plug-in SDK. Another main reason for using
Connection SDK is that our standalone application can run on a
variety of other devices such as tablets and smartphones to provide
additional flexibility and screen space.

One implementation detail worth mentioning is that due to the la-
tency and performance issues, it is currently not possible for Pho-
toshop to transmit every intermediate frame to clients, especially
when users issue commands in a high frequency or when the im-
ages are large. Our solution is to synchronize only the text history
list when user is actively interacting with Photoshop, and sync the
intermediate images in undo stack only when Photoshop is idle.

6 Evaluation

6.1 Design

We conducted a user study to evaluate the usability of our system.
The study consists of three sessions: introduction, a comparison
study on navigation tasks and a think-aloud exploratory session
where participants freely use our system. Below are detailed de-
scriptions of the participants and our study design.

Participants We recruited six professional artists who used Pho-
toshop on daily basis in their works, including two professional
photo retouchers, three professional photographers, and one digi-
tal image sketcher.

Introduction session Each test session started with a 5-minute
introduction to our system and its features, followed by ask-
ing the participants to perform several simple trial tasks such as
“fold/unfold the command group”, “perform partial comparison on
eye region”, and “increase the number of semantic segments via
slider”.

Comparison study session The comparison study evaluates the
effectiveness of our semantic navigation function by comparing it
with traditional linear text history lists and time-based clustering of
command history in [Li et al. 2011] in three navigation tasks.

Each navigation task first requires the participants to watch through
a pre-recorded portrait retouching session (with controllable play-
back speed). Then given the history list of this pre-recorded video,
the participants are asked to locate approximate starting points of
three semantic chunks: eye sharpening, skin smoothing, and lip re-
touching.

Note that we use pre-recorded history lists to facilitate the com-
parison between three different visualizations. The study interview
confirmed that participants can all comprehend the retouching pro-



cess in the video because professional artists share similar retouch-
ing techniques.

Exploratory session After the comparison study session, the
participant is given an additional 20 minutes to freely explore our
system with the prepared photos and graphics assets. An observer
sits through the session and encourages the participant to think
aloud. At the end of the session, the participant fills a 7-point Likert
survey about our system features followed by an brief interview.

6.2 Results and Discussion
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Figure 5: Comparison study chart. We use failure-rate instead of success-
rate (as in the main text) for more coherent visualization, so that all quanti-
ties are the lower the better.

For the tasks in comparison study session, we measured the rate
of success, time to completion, and the number of mouse clicks.
Figure 5 showed the result of the comparison test. We also
performed an ANOVA on three measured factors: time-on-task:
F = 11.83, p-level = 0.0014; mouse click count: F =
10.56, p-level = 0.0022; success rate: F = 0.75, p-level = 0.49.
The lack of sufficient differences on the success rate indicates that
participants were pretty good at finding the target states using all
three kinds of systems. However, participants achieve the same
success rate with our system using significantly less time and fewer
mouse clicks.

The post-hoc questionnaire about features of our system shows
highly positive results (Figure 6). Averaged across all features, the
ranking were 6.5 for both “ease of use” and “usefulness”. One par-
ticipant gave lower scores on semantic navigation (5) and dual view
(4) features. The participant commented that his job was to retouch
huge amount of photos in limited time. His per-photo history list
tends to be short and thus requires little navigation. He rated highly
on the command grouping function for it provides even better com-
pact history and might lead to better efficiency.
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Figure 6: Likert scale rating for importnat functions in our system. Error
bars show 95% CI.

During the final interview, all participants agreed that the scenario
of rolling back to some previous states frequently happened during
their daily works. They also looked forward to seeing our features
appear in the Photoshop. We also received many encouraging com-
ments from our participants. One professional photographer who
uses history list and snapshot heavily for daily photo retouching
works said “The history list hasn’t changed too much since around
Photoshop 5.0, which added the function of snapshot; your system
would be really really useful for my workflow and I cannot wait to
use it”. The image sketcher said “I appreciate the fact that you add
these cool features without increasing the size of the history list.
History list review is very important to me, and although there are
plug-ins available, they often took additional spaces and distracted
my work”. And from the professional retoucher “I mainly manage
my progress via layers because the history list in Photoshop is re-
ally not that helpful. With your system, it seems like that I could
finally use fewer layers in my workflow!”.

7 Limitations and Future Work

Data variety We demonstrated and evaluated our UI and algo-
rithms through only portrait retouching examples. We chose photo
retouching as the primary subject of our pilot study because a) it is
a common and popular type of photo editing tasks among profes-
sional photo retouchers, and b) it usually contains sufficiently long,
varying, and complex editing histories to benefit from good naviga-
tion mechanisms as well as contribute to data analysis + machine
learning. As a future work, we would like to extend our data col-
lection to other image editing tasks such as scenery retouching and
graphics design. Digital sketching is a particularly interesting appli-
cation [Xing et al. 2014], provided future Photoshop SDK support
logs of brush path and parameters.

Adaptive learning Our current implementation performs both
SVM learning and n-gram analysis as an offline preprocess based
on the collected data from professional artists. This fixed initializa-
tion might not adapt well to individual users or tasks with different
preferences or characteristics from the initial training data. For ex-
ample, users might have unique command usage patterns and the
spatial elements in the feature vectors might vary for different tasks.

One interesting potential is to perform both learning processes pe-
riodically in an incremental fashion so that our system can better
adapt to individual users and tasks. The n-gram analysis is already
real-time as it involves only hash table lookup. But the SVM clas-
sifier would take minutes for training, which is not fast enough for
online learning. We are looking at potential incremental learning
algorithms as well as the possibility of using idle CPU/GPU times
for such training tasks.

Nonlinear navigation Our system currently supports only linear
undo, redo, and navigation. As demonstrated in earlier works such
as [Chen et al. 2011; Myers et al. 2015], nonlinear explorations can
provide extra flexibilities and possibilities not possible with linear
exploration, such as undo a specific image region (e.g. left eye of a
portrait) with histories preceding other regions that we wish to keep
(e.g. right eye of the same portrait). We believe extending our cur-
rent methodology from linear lists to non-linear graphs should be
quite feasible from the algorithm and design perspective. However,
the main issues lie in usability; non-linear histories will differ more
from traditional linear histories than our linear adaptive approach.
Thus, further user studies will be needed for further investigation.

Evaluation in the wild Our controlled pilot evaluation in the
lab yielded encouraging and positive results as well as interesting



questions. The current study used pre-recorded video for simpler
between-subjects comparison and shorter study session. A natu-
ral next step would be to collect daily image editing histories from
each participant and evaluate the performance on open-ended tasks.
As the research community proposes different visualizations tech-
niques, such as hierarchical graph and multi-resolution history strip,
for editing history [Chen et al. 2011; Denning et al. 2011; Nancel
and Cockburn 2014; Myers et al. 2015], a more thorough compari-
son evaluation is also required. Finally, the release of the plug-in or
the integration of the proposed UI into open source image editors
such as GIMP will give us more insights into how the modification
on the history panel affects artists’ daily workflow.

Segment labeling We are also interested in the possibility of au-
tomatic labeling the semantics segments extracted from command
histories. In our preliminary experiments, we have found this a dif-
ficult task due to the high amount of ambiguity among different
photo retouching techniques. For example, artists might use very
similar operation sets for different tasks (e.g. retouching eyes and
hairs), and they might also use very different operation sets for sim-
ilar tasks (e.g. skin smoothing). We believe that with better simi-
larity measurements (e.g. region segmentation for facial structures
in [Berthouzoz et al. 2011]), it should be possible to automatically
label the command histories.

8 Conclusions

In this paper we introduced a data-driven adaptive history that
enhances the usability of traditional linear history with two main
mechanisms: semantic navigation and smart undo. Our design
minimally changes the look and feel of traditional history lists,
while significantly enhances their usability and satisfaction for his-
tory navigation. Users can easily adapt to our UI, while the devel-
opers will find it straightforward to integrate our design into com-
mon image editing systems. Our methodology is data-driven; with
proper data collection, it can be applied to different image editing
tasks and systems. Our design has shown significant improvements
over traditional history lists through user studies that incorporate
both quantitative measurements and qualitative feedbacks. We be-
lieve that our data-driven history list could be of great benefit to
digital artists, who tend to have long editing histories due to the
complexity and the trial-and-error nature of their common tasks.
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A Reference Label List

The reference label list provided to hired artists during data collec-
tion.

• global adjustment

– color/tone adjustment

– brightness/contrast adjustment

– transformation (crop/rotation/perspective)

• retouching eyes

– sharpening the eyes

– brightening the whites of the eyes

– removing eye veins

– reducing dark circles under eyes

– deforming eye

– enhancing eyelashes

– enhancing eyebrows

• retouching skin

– smoothing skin

– removing hotsopt

– removing blemishes

– removing wrinkle

– applying digital makeup

• retouching hair

– removing stray hair

– filling hair gap

– adding highlight to hair

• retouching lips

– changing lip shape

– changing lip color

– creating glossy lip

– whitening/repairing teeth

• slimming and trimming

– face thinning

– body slimming


