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INTRODUCTION 
A key characteristic of academic makerspaces that distin-
guishes them from fab labs in secondary schools, non-profit 
community spaces, or for-profit membership facilities is of 
course that they are embedded in institutions with significant 
research activity. Yet academic makerspaces also differ from 
traditional research labs in that they are open to a broader set 
of constituents and expertise levels, and often support a 
larger variety of possible uses. While many emerging aca-
demic makerspaces are primarily associated with instruction 
and student service goals, we argue that research and making 
can and should intersect in productive ways. This paper lays 
out the landscape of possible engagements based on our own 
experience and observations. 
A tight connection to academic research promises benefits 
for both sides:  
1) Educational research and qualitative observational re-
search can improve our fundamental understanding of the 
values of making for students; as well as elucidate the con-
ceptual and pragmatic hurdles makers face today through 
careful study of making in practice.  
2) Makers can serve as a new target audience for technology
research and development in engineering disciplines. 
3) Research projects in a large number of domains can lev-
erage makerspace resources to accelerate their progress and 
engage students to turn fundamental discoveries into usable 
devices and services.  
In addition to these intellectual threads, research integration 
can also contribute to important pragmatic and operational 
goals, for example ensuring that makerspaces receive appro-
priate institutional attention, credit, and funding. 
We next present our own institutional context, review the 
three major themes listed above and present illustrative ex-
ample projects.  

CONTEXT 
Our review of research integration opportunities is based on 
our experience launching and running two makerspaces for 
the past four years at UC Berkeley within the College of En-
gineering (see Figure 1). The CITRIS Invention Lab, 
launched in 2012, started as a bottom-up effort to bring dig-
ital fabrication equipment out of restricted lab settings of in-
dividual faculty and make it available to the larger campus 
for teaching, independent project work, and research. The 
Invention Lab is located in a large, multi-disciplinary re-
search building and has a focus on supporting researchers 
and university startups. Our experience in launching the In-
vention Lab strongly informed the design of the Jacobs In-

stitute for Design Innovation, a 24,000sq ft building with 
three teaching studios, a 7,000sq ft maker space, and ad-
vanced fabrication and electronics labs spread throughout 
four floors. One of the main missions of the Jacobs Institute 
is to impact undergraduate education at UC Berkeley. An 
important feature of our programming in both locations is 
that community space, classroom space, and fabrication labs 
are all co-located, and that intersections between different 
cohorts of undergraduate students, graduate researchers, fac-
ulty and staff are explicitly encouraged.  

THEME 1: UNDERSTANDING THE VALUE OF MAKING 
AND HOW MAKING HAPPENS IN PRACTICE 

Academic makerspaces offer easy access for education re-
searchers who wish to study the impact of making-based 
curricula on STEM preparation and other learning outcomes. 
Claims in the maker movement about increases in 
self-efficacy or motivation towards STEM careers abound. 
But how can we rigorously test whether this is indeed the 
case?  A growing body of research is investigating the im-
pact of making, including crucial questions round what the 
right metrics for impact are [1,2]. Some existing research 
focuses on K-12 education [3], or specialized education set-
tings [4]. There is significant need and opportunity to con-
tribute sound assessments at the college level. The learning 
sciences provide relevant theories, such as constructionism 

Figure 1 - Top: The Jacobs Institute for Design Innovation at UC Berke-
ley. Bottom: Students working in Berkeley’s CITRIS Invention Lab. 
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and project-based learning, and appropriate assessment 
methodologies, such as comparisons of pre- and post-tests 
and surveys of students engaged in makerspace activities 
and classes. It would be especially enlightening to find set-
tings where such results can be compared against matching 
activities that take place without access to a makerspace. In 
the Jacobs Institute, we plan on hosting a graduate research 
course on pedagogy and assessment in engineering design 
education, led by Prof. Alice Agogino, where graduate stu-
dents will be embedded as observers of the making activities 
in the building. 
In addition to formal education, researchers are also seeking 
to gain insight into informal learning by makers – e.g., un-
derstanding how online tutorials, project sharing sites or 
communities help or confuse individuals [5,6,7]. Our col-
laborators have used community workshops located in aca-
demic makerspaces to investigate how a broader public can 
become engaged in the fabrication of electronic products [8] 
(see Figure 2).  Such studies shed light on the role of infor-
mal networks of expertise sharing, and they can also result in 
guidelines for the design of better future technologies that 
overcome hurdles that individuals makers and groups expe-
rience today. 

THEME 2: ENVISIONING THE FUTURE OF MAKING: 
DESIGNING TECHNOLOGIES FOR MAKERS 

Because of the institutional support for developing and 
evaluating novel, experimental technologies, academic mak-
erspaces are also ideally positioned to push the boundaries of 
the hardware and software tools that are found in such spac-
es. Different engineering disciplines from Computer Science 
to Electrical Engineering and Mechanical Engineering are 
increasingly becoming interested in developing technologies 
that are tailored to makers as target users.  Academic mak-
erspaces can also help disseminate the most promising tech-
nologies through workshops and through developing and 
publishing documentation, tutorials, and example projects. 

A. DESIGN SOFTWARE 
One strand of recent research provides improved design 
software for existing digital fabrication equipment in such 
spaces. For example, in our own work we have developed 
design tools for modeling, routing and fabricating hollow 
tubes inside 3D-printed objects, which can then be filled 
with conductive materials to integrate electronic components 
or create interactive, touch-sensitive objects (released in 
Autodesk’s Meshmixer) [9]. Others have developed algo-
rithms to 3D print “wireframe” models an order of magni-
tude faster than solid 3D models [10], or computationally 

modify models to create tactile textures [11], or articulated 
figures [12]. One advantage of such software advances is 
that wide distribution is simple. However, making the transi-
tion from a research prototype to robust software with ap-
propriate maintenance and support is at not always aligned 
with researchers’ academic career incentives. 

B. FABRICATION HARDWARE 
Researchers are also developing novel hardware tools – from 
CNC felting machines [13], to actuated hand-held carving 
tools [14] and augmented drills and saws [15] (Figure 3). 
These explorations can most profoundly re-envision what 
future makerspaces will look like and how makers will in-
teract with their tools.  

C. EMBEDDED CODE AND ELECTRONICS 
Many projects created in makerspaces include embedded 
code and electronics. Moore’s law and the success of acces-
sible microcontroller platforms such as Arduino have low-
ered both the price and expertise barriers such that adding 
computation and interactivity has come within reach even 
for novices. Research labs have produced embedded compu-
ting platforms aimed at makers, e.g. for interactive textiles 
[16], or for connecting sensors to smart phones [17]. Be-
cause of maker-oriented electronics distributors such as 
Sparkfun, Adafruit and Seeed, these research projects are 
increasingly available to the larger community. In our own 
work we have focused on making the new “stack” for Inter-
net of Things devices – embedded, smartphone and cloud – 
more easily programmable for makers [18].  
One of the key challenges going forward will be to support 
makers in understanding and debugging the complexity of 
the cyber-physical systems they build in makerspaces [19]. 
For example, to support novices in circuit construction, we 
are developing an augmented breadboard that continuously 
scans voltages across all rows and visualizes discrepancies 
between intended and observed circuit behavior in a web in-
terface [20] (Figure 4). 

Figure 2: Makerspaces can serve as locations for qualitative research, 
such as Mellis et al,’s investigation into how novices approach circuit 

board design [8]. 

Figure 3: Augmented power tools by Schoop et al. [15] aim to deliver dy-
namic tutorials to tool users. 

Figure 4: The Toastboard, an augmented breadboard for 
troubleshooting circuits by Drew et al. [20].  
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THEME 3: MAKER RESOURCES AMPLIFY EXISTING 
RESEARCH 

The equipment available in makerspaces, and the re-
sult-oriented, prototype-driven value system frequently 
found there, can support research in a wide variety of do-
mains. While many scientific disciplines have developed 
highly specialized equipment, our experience has shown that 
the general-purpose fabrication tools in makerspaces have 
broad applications across many scientific fields. Further-
more, the relatively low expertise threshold for digital fabri-
cation tools – when compared to traditional machining – 
means more researchers perceive working in a makerspace 
as within their reach. 
For example, our labs have seen researchers build automated 
RFID rodent trackers, novel haptic actuators, spherical 
tensegrity robots, laser-cut water treatment devices, 3D 
printed microfluidic devices, pressure ulcer sensors, domed 
LED arrays for mobile microscopy [21], robotic floats that 
study the ocean’s carbon cycles [22], and low-cost, wearable 
air particle sensors [23] (see Figure 5). 
While such research is often federally or industrially funded 
and access fees are of little budgetary significance for PIs, 
we have found that merit-based fellowships that give free 
access to our makerspace are a very effective vehicle to raise 
awareness of our makerspace among graduate students. In 
addition to the resulting research itself, the mixing of highly 
trained doctoral students from various disciplines with un-
dergraduates who are getting their first exposure to hands-on 
design is a tremendous positive for our lab culture. 
Ideas that arise in graduate research groups can also serve as 
the basis for undergraduate student projects. A fundamental 
insight or discovery can be further explored, or moved to-
wards a translation into a concrete product or service. Sever-
al project ideas that teams developed in the Jacobs Institute 
and Invention Lab originated as research projects in the 
medical school and medical center at the University of Cali-
fornia, San Francisco. For example, a student group created 
pressure-sensing insoles for patients with sensory ataxia 
(loss of feeling) in the legs. The idea first arose in medical 
research; students in a class hosted in our makerspace then 
contributed engineering expertise to build a wireless proto-
type. Additional class projects based on medical center 
needs have included liquid tracking for nephrology patients, 
and methods to counteract patient delirium. 

METRICS 
Documenting the integration of research can be helpful in 
arguing for appropriate resources for makerspaces, and in 
showing how making activities connect to the core academic 
mission of knowledge production. In addition to examples 
and anecdotes such as the ones listed in this paper, we sug-
gest that documentation should, at a minimum, comprise 
descriptive statistics on fundamental metrics such as: 
• The number of research artifacts or instruments that

were built in a makerspace.
• The number of papers published that were enabled by a

makerspace.
• The number of research grants or gifts submitted and

funded that leveraged a makerspace.
• The number of graduate, postdoctoral or professional

researchers served.
• The number of undergraduate makerspace students who

were involved in the research and were trained in re-
search methods.

CONCLUSION 
We have described three separate but complementary themes 
how research activity can be integrated into academic mak-
erspaces. In addition to the intellectual value, research inte-
gration can also contribute to important pragmatic and oper-
ational goals, for example ensuring that makerspaces receive 
appropriate institutional attention, credit, and funding. Fi-
nally, the community benefits of creating spaces where both 
novices and experts cross paths are significant. We encour-
age other makerspaces to consider attracting and growing 
research engagements in their facilities. 
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